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Abstract

Third-order singularly perturbed problems are common models that are prevalent in applied
mathematics and engineering. They model physical phenomenon in fluid dynamics, optimal
control, reaction-diffusion processes and many other fields. A one-step fourth derivative block
integrator is derived in this work to numerically solve general singularly perturbed third-order
problems in ordinary differential equations with prescribed initial or boundary conditions. The
derivation of this block of integrators was achieved via the collocation technique where a shifted
Chebyshev polynomial of the first kind is used as the trial solution. The characteristics of the
method are shown and the numerical examples shows an excellent performance in terms of
accuracy of this block method as compared to existing methods already in literature.

Keywords: Block method, Boundary value problem, Hybrid method, Linear Multistep method,
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1 Introduction
In this work, the numerical solution of the singularly perturbed third-order problem of the form

ϵny′′′(x) + a(x)y(x) + f(x), x ∈ [a, b]
y(a) = α1, y(b) = β1, y′(a) = γ1

(1.1)

is considered. Here α, β, γ are real constants, f(x) is a smooth function and a ≤ x ≤ b and
the parameter ϵ is the perturbation parameter, n is a positive integer. We note here that, other
boundary conditions like y(a) = α2, y(b) = β2, y′′(a) = γ2 may be considered.
Singular perturbation problems (SPPs) models several physical occurrences in different branches
of applied sciences. Such file of application include fluid mechanics or dynamics, chemical reactor
theory, optimal control theory and host of many others. The perturbation parameter is usually
a small constant which is the coefficient of the highest derivative in a given differential equation,
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see [1]. Due to the presence of perturbation parameter, the solution varies swiftly. With this, the
main concern with such problems is the swift growth or deterioration of their solutions in one or
more narrow boundary layer region(s). As a result, not only determining analytical solutions to such
problems is difficult but also the convergence analysis, see [2]. The prevalence of this small constant
coefficient, numerical approaches to the solution of this kind of differential equation remains the
only viable means of obtaining a solution, especially for higher order differential equation. Many
researchers on SPPs have mostly restricted their search for numerical solution to second-order
problems, see [3–6]. Hence, the search for an efficient numerical scheme is the motivation and goal
in this paper.

Some methods for solving singular perturbation problems include Local discontinuous Galerkin
(LDG) method used in [7, 8], initial-value technqiue proposed in [9], exponentially fitted mesh
method in [10], C0-continuous interior penalty method [11], cubic splines in [12] and quartic splines
in [13]. Akram in [14] used quartic splines while Saini and Mishra in [15] used quartic B-splines
to solve third-order self-adjoint SPBVPs. Other methods can be found in [16–18], just to mention
few. The major drawback in obtaining the solution of problems of this nature is that the solution
depends on the perturbation parameter, see [2, 19]. Hence, a more efficient and robust method
would be required for the solution of this problem, see [20,21].

In this work, linear multistep method is derived to form a block method which is rich in handling
pieces of solution in a given domain. The advantage of this technique helps in dealing with the
perturbation parameter, even as it decreases [22–24]. Other advantages includes producing smaller
global errors (at the end of the range of integration).
The technique employed is the collocation method where the trial solution y(x) of (1.1) is given
as q(t) =

∑m
j=0 ρjT

∗(t)j . Here, T ∗(t) is the shifted Chebyshev polynomial of the first kind. The
collocation/interpolation technique affords us the derivation of the main and additional methods,
which are unified to form a block integrator. These integrators are single step hybrid method
called one-step fourth derivative block integrator (OSFDBI). This technique has several interesting
advantages among which are; they overcome the intersections of pieces of solutions, they are self
starting which implies that they do not require any starting values from eternal methods and
solutions can be obtained at intra-points other than the usual grid-points, among others. Thus, the
drawback mentioned earlier can be circumvented with the use of this method, see [24].

2 Derivation of the method
In this section, the derivation of a continuous implicit three intra-step hybrid block method is de-
scribed, for the solution of (1.1) over the integration interval [a, b],

πN ≡ {a = t0 < t1 < · · · < tN−1 < tN = b}

with h the constant step-size, h = ti − ti−1, i = 1, 2, . . . , N .
Three off-step points u, v, w considered are such that 0 < u < v < w < 1 on the interval

[tn, tn+1], so that tn < tn+u < tn+v < tn+w < tn+1, where tn+u = tn + uh, tn+v = tn + vh,
tn+w = tn + wh. Thus, we consider the approximation q(t) of the solution y(t) given by the
polynomial

y(t) ≃ q(t) =

9∑
j=0

ρjT
∗
j . (2.1)

with the dth derivatives given as

y(d)(t) ≃ q(d)(t) =

9∑
j=0

ρjT
∗(d)
j , ; d = 1(1)4 (2.2)
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where ρj are coefficients to be determined and T ∗ is the shifted Chebyshev polynomial of degree j,
t ∈ [a, b]. The shifted Chebychev polynomial on the interval [a, b], is given as

T ∗
n(t) = Tn(x), x =

2

b− a

(
t− a+ b

2

)
(2.3)

with leading coefficient 2n−1
(

2
b−a

)n

. Evaluating (2.1), (2.2) for d = 1, 2 each at the point t = tn,
then evaluating the third derivative in (2.2) (d = 3) at the points tn+j for j = 0, u, v, w, 1, and finally,
evaluating the fourth derivative in (2.2) (d = 4) at the points tn+j j = 0, 1 so that the following
system of equations are obtained q(tn) = yn, q′(tn) = y′n, q′′(tn) = y′′n, q′′′(tn) = fn, q′′′(tn+u) =
fn+u, q′′′(tn+v) = fn+v, q′′′(tn+w) = fn+w, q′′′(tn+1) = fn+1, q(4)(tn) = gn, q(4)(tn+1) = gn+1. Put
in matrix form with ten real unknown constants ρj j = 0(1)9 to be determined.



T∗
0 (tn) T∗

1 (t0) T∗
2 (t0) T∗

3 (t0) T∗
4 (t0) · · · T∗

9 (t0)

T∗′
0 (tn) T∗′

1 (tn) T∗′
2 (tn) T∗′

3 (tn) T∗′
4 (tn) · · · T∗′

9 (tn)

T∗′′
0 (tn) T∗′′

1 (tn) T∗′′
2 (tn) T∗′′

3 (tn) T∗′′
4 (tn) · · · T∗′′

9 (tn)

T∗′′′
0 (tn) T∗′′′

1 (tn) T∗′′′
2 (tn) T∗′′′

3 (tn) T∗′′′
4 (tn) · · · T∗′′′

9 (tn)

T∗′′′
0 (tn+u) T∗′′′

1 (tn+u) T∗′′′
2 (tn+u) T∗′′′

3 (tn+u) T∗′′′
4 (tn+u) · · · T∗′′′

9 (tn+u)

T∗′′′
0 (tn+v) T∗′′′

1 (tn+v) T∗′′′
2 (tn+v) T∗′′′

3 (tn+v) T∗′′′
4 (tn+v) · · · T∗′′′

9 (tn+v)

T∗′′′
0 (tn+w) T∗′′′

1 (tn+w) T∗′′′
2 (tn+w) T∗′′′

3 (tn+w) T∗′′′
4 (tn+w) · · · T∗′′′

9 (tn+w)

T∗′′′
0 (tn+1) T∗′′′

1 (tn+1) T∗′′′
2 (tn+1) T∗′′′

3 (tn+1) T∗′′′
4 (tn+1) · · · T∗′′′

9 (tn+1)

T
∗(4)
0 (tn) T

∗(4)
1 (tn) T

∗(4)
2 (tn) T

∗(4)
3 (tn) T

∗(4)
4 (tn) · · · T

∗(4)
9 (tn)

T
∗(4)
0 (tn+1) T

∗(4)
1 (tn+1) T

∗(4)
2 (tn+1) T

∗(4)
3 (tn+1) T

∗(4)
4 (tn+1) · · · T

∗(4)
9 (tn+1)




ρ0
ρ1
ρ2
ρ3
ρ4
ρ5
ρ6
ρ7
ρ8
ρ9

 =


yn
y′
n

y′′
n

fn
fn+u
fn+v
fn+w
fn+1
gn

gn+1



where y′n ≃ y′(xn), fn = f(xn, yn, y
′
n, y

′′
n), and gn = g(xn, y, y

′, y′′, y′′′). T ∗
0 (t) = 0, T ∗

1 (t) = 2t− 1,
T ∗
n+1(t) = 2(2t− 1)T ∗

n(t)− T ∗
n−1(t); n ≥ 1. Solving for the unknown ρ in the above matrix using

the computer algebraic system in Mathematica, the coefficients ρj , j = 0, 1, . . . , 9 are obtained but
not included here as they are cumbersome. Substituting the values of ρj into (2.1) and after some
simplifications, the following approximate form is obtained

q(t+ jh) = α0y0 + α1hy
′
0 + α2h

2y′′0

+h3
∑4

i=0 βifn+si + h4
∑1

i=0 γign+i

∣∣∣∣
{s0=0,s1=u,s2=v,s3=w,s4=1}

(2.4)

Evaluating the formula in (2.4) and its derivative up to the 2nd at the point t = tn+1, the following
one step formulae are obtained

yn+1 = yn + hy′n +
h2y′′

n

2 + h3
(

A0

5040u2v2w2 fn + (3v(8w−3)−9w+4)
5040(u−1)2u2(u−v)(u−w)fn+u

+ (u(9−24w)+9w−4)
5040(v−1)2v2(u−v)(v−w)fn+v +

(u(9−24v)+9v−4)

5040(w−1)2w2(u−w)+
A1

5040(u−1)2(v−1)2(w−1)2
fn+1(w−v)

fn+w

)
+h4

(
(3u(4v(7w−2)−8w+3)+v(9−24w)+9w−4)

5040uvw gn + (3u(v(6−14w)+6w−3)+9v(2w−1)−9w+5)
5040(u−1)(v−1)(w−1) gn+1

)

A0 =
(
3u2

(
8v2

(
28w2 − 2w − 1

)
+ v(3− 2w(8w + 1)) + (3− 8w)w

)
− u(2vw + v + w)(3v(8w − 3)− 9w + 4)

+vw(v(9− 24w) + 9w − 4)

(2.6)

62

 https://doi.org/10.5281/zenodo.10627387


International Journal of Mathematical Sciences and
Optimization: Theory and Applications

10(1), 2024, Pages 60 - 71
https://doi.org/10.5281/zenodo.10627387

A1 = 3u2
(
8v2(w(7w − 12) + 4) + v(6(27− 16w)w − 55) + w(32w − 55) + 20

)
+ u

(
−3v2(6w(16w − 27) + 55)

+v
(
486w2 − 814w + 282

)
+ 3(94− 55w)w − 104

)
+ 3v2(w(32w − 55) + 20) + v(3(94− 55w)w − 104)

+4w(15w − 26) + 40 (2.7)

hy′n+1 = y′n + h2y′′n + h3
(

A0

840u2v2w2 fn + (2v(7w−3)−6w+3)
840(u−1)2u2(u−v)(u−w)fn+u

+ (u(6−14w)+6w−3)
840(v−1)2v2(u−v)(v−w)fn+v

)
+ (u(6−14v)+6v−3)

840(w−1)2w2(u−w)(w−v)fn+w + A1

840(u−1)2(v−1)2(w−1)2 fn+1

)
+h4

(
(2u(7v(3w−1)−7w+3)+v(6−14w)+6w−3)

840uvw gn + (2u(v(7−14w)+7w−4)+2v(7w−4)−8w+5)
840(u−1)(v−1)(w−1) gn+1

)

A0 = 2u2
(
7v2(w(21w − 2)− 1)− v

(
14w2 + w − 3

)
+ (3− 7w)w

)
− u(2vw + v + w)(2v(7w − 3)− 6w + 3)

+vw(v(6− 14w) + 6w − 3)

A1 = 2u2
(
7v2(w(9w − 16) + 6) + v((197− 112w)w − 75) + 42w2 − 75w + 30

)
+ u

(
−2v2(w(112w − 197) + 75)

+v
(
394w2 − 690w + 267

)
− 3(w(50w − 89) + 36)

)
+ 3

(
v2(28w2 − 50w + 20)

+v((89− 50w)w − 36) + 4w(5w − 9) + 15) (2.8)

h2y′′n+1 = h2y′′n + h3
(

A0

420u2v2w2 f0 +
4−7w+7v(−1+2w)

420(u−1)2u2(u−v)(u−w)fn+u

− 4−7w+7u(−1+2w)
420(u−v)(v−1)2v2(v−w)fn+v +

(−4+u(7−14v)+7v)
420(u−w)(w−1)2w2(w−v)fn+w

+ A1

420(u−1)2(v−1)2(w−1)2 fn+1

)
+ h4

(
(−4+v(7−14w)+7w+7u(1−2w+v(−2+5w)))

420uvw gn

+ (10−14w+7v(−2+3w)−7u(2−3w+v(−3+5w)))
420(u−1)(v−1)(w−1)

)

A0 =
(
vw(−4 + v(7− 14w) + 7w) + u

(
v(−4 + 6w) + t(−4 + 7w) + v2

(
7− 28w2

))
+7u2

(
v + w − 2w2 − 4vw2 + v2

(
−2− 4w + 30w2

)))

A1 = 120 + 4v(−66 + 35v)− 264w + 5(118− 63v)vw + 7(20 + 3v(−15 + 8v))w2

+7u2
(
20 + 2v2(−2 + 3w)(−6 + 5w) +3w(−15 + 8w) + v(−45 + 8(13− 7w)w))

+u
(
−264 + 5(118− 63w)w − 7v2(45 + 8w(−13 + 7w)) +2v(295 + w(−675 + 364w)))(2.9)

formulas in (2)-(2) depends on u, v and w. Their values can be determined by considering
the Local Truncation Errors (LTEs) of (2)-(2) respectively, so that one more order for each of the
formulas can be gained by setting their principal truncation term to zero. consequently, the values
of u, v and w are then optimized. The Obtaining the LTEs for each of u, v and w, we have the
following

L(y(tn+1), h) =
(2−4t+s(−4+9t)+r(−4+s(9−24t)+9t))y(10)(tn)h

10

25401600 +O(h)11 (2.10)

L(hy′(tn+1), h) =
(5−9t+9s(−1+2t)−3r(3−6t+2s(−3+7t)))y(10)(tn)h

10

12700800 +O(h)11 (2.11)
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L(h2y′′(tn+1), h) =
(5−8t+2s(−4+7t)−2r(4−7t+7s(−1+2t)))y(10)(tn)h

10

4233600 +O(h)11 (2.12)

Equating the principal terms in (2.10)-(2.12) to zero, then the following system of algebraic equa-
tions are obtained

24uvw − 9uv − 9uw + 4u− 9vw + 4v + 4w − 2 = 0
42uvw − 18uv − 18uw + 9u− 18vw + 9v + 9w − 5 = 0
28uvw − 14uv − 14uw + 8u− 14vw + 8v + 8w − 5 = 0

 (2.13)

which gives the solution where 0 < u < v < w < 1 as u = 1
6

(
3−

√
3
)
, v = 1

2 , w = 1
6

(
3 +

√
3
)
.

Plugging these values into (2)-(2), the main formulae for the approximation of solution of (1.1) are
obtained

yn+1 = yn + hy′n + 1
2h

2y′′n + h3
(

3fn
70 +

(
3
√
3

140 + 3
70

)
fn+u + 4fn+v

105 −
(

3
√
3

140 − 3
70

)
fn+w

)
+ h4gn

840

(2.14)
hy′n+1 = hy′n + h2y′′n + h3

(
37fn
420 +

(
3
√
3

70 + 9
70

)
fn+u + 16fn+v

105 −
(

3
√
3

70 − 9
70

)
fn+w + fn+1

420

)
+ h4gn

420

(2.15)
h2y′′n+1 = h2y′′n + h3

(
19fn
210 + 9fn+u

35 + 32fn+v

105 + 9fn+w

35 + 19fn+1

210

)
+ h4

(
gn
420 − gn+1

420

)
(2.16)

Thus, completing the block scheme, additional formulae are required to approximate the solution
of (1.1). These formulae are determined by evaluating the formula in (2.4) and its derivative up to
the 2nd at the point t = tn+j , j = u, v, w, and substituting the optimal values u = 1

6

(
3−

√
3
)
≃

0.211325, v = 1
2 = 0.5, w = 1

6

(
3 +

√
3
)
≃ 0.788675 to obtain the following one step formulae

yn+u = yn − 1
6

(√
3− 3

)
hy′n − 1

12

(√
3− 2

)
h2y′′n + h3

3265920

((
45036− 23564

√
3
)
fn

+630
√
3fn+u + 32

(
648− 379

√
3
)
fn+v + 18

(
3888− 2239

√
3
)
fn+w

+4
(
81− 59

√
3
)
fn+1 +

(
1269− 668

√
3
)
hgn +

(
20
√
3− 27

)
hgn+1

)
yn+v = yn +

hy′
n

2 + 1
8h

2y′′n + h3

215040

(
2208fn + 18

(
64 + 35

√
3
)
fn+u

+18
(
64− 35

√
3
)
fn+w − 32fn+1 + h (67gn + 3gn+1)

)
yn+w = yn + 1

6

(
3 +

√
3
)
hy′n + 1

12

(
2 +

√
3
)
h2y′′n + h3

3265920

(
4
(
11259 + 5891

√
3
)
fn

+18
(
3888 + 2239

√
3
)
fn+u + 32

(
648 + 379

√
3
)
fn+v − 630

√
3fn+w

+4
(
81 + 59

√
3
)
fn+1 +

(
1269 + 668

√
3
)
hgn −

(
27 + 20

√
3
)
hgn+1

)
hy′n+u = hy′n − 1

6

(√
3− 3

)
h2y′′n + h3

90720

((
3850− 1366

√
3
)
fn + 630fn+u

+16
(
241− 144

√
3
)
fn+v + 18

(
379− 216

√
3
)
fn+w − 2

(
19 +

√
3
)
fn+1

+
(
106− 35

√
3
)
hgn +

(
2 +

√
3
)
hgn+1

)
hy′n+v = hy′n − 1

2 h2y′′n + h3

53760

(
2342fn + 18

(
105 + 64

√
3
)
fn+u + 560fn+v

+18
(
105− 64

√
3
)
fn+w + 38fn+1 + 67hgn − 3hgn+1

)
hy′n+w = hy′n + 1

6

(√
3 + 3

)
h2y′′n + h3

90720

(
2
(
1925 + 683

√
3
)
fn

+18
(
379 + 216

√
3
)
fn+u + 16

(
241 + 144

√
3
)
fn+v + 630fn+w

+2
(√

3− 19
)
fn+1 +

(
106 + 35

√
3
)
hgn −

(√
3− 2

)
hgn+1

)
h2y′′n+u = h2y′′n + h3

15120

(
2
(
797 + 44

√
3
)
fn + 24

(
81− 8

√
3
)
fn+u

+64
(
36− 23

√
3
)
fn+v + 24

(
81− 43

√
3
)
fn+w +

(
88
√
3− 226

)
fn+1

+
(
53 + 6

√
3
)
hgn +

(
17− 6

√
3
)
hgn+1

)
h2y′′n+v = h2y′′n + h3

3360

(
257fn + 9

(
48 + 35

√
3
)
fn+u + 512fn+v + 9

(
48− 35

√
3
)
fn+w

+47fn+1 + 4hgn − 4hgn+1)

h2y′′n+w = h2y′′n + h3

15120

((
1594− 88

√
3
)
fn + 24

(
81 + 43

√
3
)
fn+u

+64
(
36 + 23

√
3
)
fn+v + 24

(
81 + 8

√
3
)
fn+w − 2

(
113 + 44

√
3
)
fn+1

+
(
53− 6

√
3
)
hgn +

(
17 + 6

√
3
)
hgn+1

)

(2.17)
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3 Characteristics of the OSFDBI
In this section the fundamental characteristics of the proposed method is discussed. This is based
on the Dalhquist theory on linear-multistep approaches. Mainly discussed are the accuracy, consis-
tency, zero-stability and linear stability analysis of the derived method.

Assume that z(t) is a sufficiently differentiable function, we define the operator

L[z(t);h] = z(t)−
2∑

i=0

αih
iz(i)n (t)− h3

5∑
i=0

(
βiz

′′′(t)n+di + hγ0z
4(t)n + hγ1z

4(t)n+1

)
(3.1)

where z(i)(t) = diz
dti

∣∣
i=0,1,2

, d0 = 0, d1 = u, d2 = v, d3 = w, α, β, γ are real coefficients.
Expanding (3.1) in Taylor series about xn and collecting all the terms in h, then (3.1) takes the

form
L[z(x);h] = Rjh

q+3z(p+3)(x) +O(hp+4), (3.2)

Here (3.2) is the local truncation error (LTE) with Rj being the principal error constant and q is
the order of the corresponding formula (3.1).

In particular, if the formulas in (2.14)-(2.16) are considered, the following is obtained

L[y(xn);h] = y(xn + h)− y(xn) + hy′(xn)− 1
2h

2y′′(xn)

+h3
(

3
70y

′′′(xn) +
(

3
√
3

140 + 3
70

)
y′′′(xn + hu) + 4

150y
′′′(xn + hv)

+
(

3
√
3

140 + 3
70

)
y′′′(xn + hw)

)
− h4

840y
(iv)(xn)

L[y′(xn);h] = hy′(xn + h)− hy′(xn)− h2y′′(xn)

−h3
(

37
420y

′′′(xn) +
(

3
√
3

70 + 9
70

)
y′′′(xn + uh) + 16

105y
′′′(xn + vh)

−
(

3
√
3

70 − 9
70

)
y′′′(xn + wh) + y′′′(xn+h)

420

)
− h4

420y
(iv)(xn)

L[y′′(xn);h] = h2y′′(xn + h)− h2y′′(xn)
+h3

(
19
210y

′′′(xn) +
9
35y

′′′(xn + uh) + 32
105y

′′′(xn + vh) + 9
35y

′′′(xn + wh)

+ 19
210y

′′′(xn + h)
)
− h4

(
y(iv)(xn)

420 − y(iv)(xn+h)
420

)

(3.3)

Expanding each operator in (3.3) in Taylor’s series about xn, the following are obtained

L[y(xn);h] =
h11

26824089600y
(11)(xn) +O(h12)

L[y′(xn);h] = − h11

120708403200y
(11)(xn) +O(h12)

L[y′′(xn);h] =
h11

1207084032000y
(11)(xn) +O(h12)

(3.4)

For the formulas in (2.17), the LTEs may be obtained in the same way. The order q of the
method is uniform, hence the block method has the same order q = 8, see [25].

3.1 Zero-stability and Convergence of the OSFDBI
The OSFDBI may be compactly written in the matric form as

A1Ȳn+1 = A0Yn−1 + h3(B1F̄n+1 + hB0Ḡn) (3.5)

where
Ȳn+1 = (yn+u, yn+v, yn+w, yn+1, . . . , y

′′
n+1)

T ,

Ȳn−1 = (yn, yn−v, yn−w, yn−1, . . . , y
′′
n−1)

T ,

F̄n+1 = (fn, fn+v, fn+w, fn+1, . . . , f
′′
n−1)

T ,

Ḡn = (Gn, Gn+v, Gn+w, Gn+1, . . . , G
′′
n−1)

T ,
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and A0, A1, B0, B1, are matrices of coefficients
Noting that zero-stability of the derived OSFDBI implies the behaviour of (3.1) as h → 0. Thus

as h → 0, the scheme in (3.5) becomes

A1Ȳn+1 = A0Yn−1 (3.6)

where

A1 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , A0 =


1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0


, Hence, we compute the characteristic equation given by |ξA1 −A0| = 0. The OSFDBI in (3.5) is
said to be zero-stable if the roots ξj of the characteristic polynomial ρ(ξ) given as ρ(ξ) = |ξA1−A0|
satisfy |ξj | ≤ 1 and for those whose |ξj | = 1 have multiplicities which are not greater than 3, (see
Modebei et al. 2019). So that |ξA1 − A0| = ξ3(ξ − 1) = 0. In this case, we have ξj = 1 for j = 1
and ξj = 0 for j = 2, 3, 4. This shows that OSFDBI is zero stable. Condition for convergence for
linear multistep method, by Henrici states that, the method must be consistent with order q > 1
and at the same time zero stable. From the forgoing analysis, the OSFDBI is of order q = 8 and as
well, zero stable. Hence the OSFDBI is convergent.

3.2 Computational procedure
The OSFDBI is implemented in block form (3.5) by using MAPLE 18 to find at the beginning of
the process the function f and its derivative f ′ = g. this helps not to evaluate the higher derivatives
appearing in the method on each step. A simple but efficient algorithm codded in Maple software
for the implementation is show below: We begin by noting that the solution of the problem in
equation (1.1) is sought in the subintervals πN = a = x0 < x1 < . . . < xN = b, where h = b−a

N is a
constant step-size.
Step 1: Use the block method setting n = 0, to obtain V1 in the interval [y0, y1], similarly, for,
n = 1 so that V2 is obtained in the interval [y1, y2], and so on, so that we obtain V3, V4, . . . , VN .
Step 2: Solve the unified block given by the system V1

⋃
V2

⋃
, · · · , VN obtained in step 1. Step 3:

The solution of equation (1.1) is approximated by the solutions in step 2 as yn = [y(x1); y(x2) . . . y(xn)]
T

for n = 1, 2, . . . N .

Algorithm 1 Block Algorithm for OSFDBI
1 begin procedureENTER Partitions (a, b,N, h, variables) 2 For xn = xn−1 + h, n =

1, . . . , N , h = b−a
N 3 Generate block system 4 Solve [Sysytem, variables] 5 Obtain

yn 6 end procedure

4 Numerical Examples
In this part, we implement the OSFDBI using two popular problems in literature so as to substan-
tiate the high level of accuracy of this method. Here, two main numerical examples are presented
to show the accuracy of the developed OSFDBI. In the examples considered the absolute errors
were obtained as Err = |yi−y(xi), where yi is the approximate solution obtained using OSFDBI or
any other numerical approach used for comparisons, and y(xi) is the exact solution of the problem
considered at the grid points xi i = 1(1)N . The approximate solutions with the BHI are compared
with the approximate solutions obtained with different methods in the literature. For comparison
we have considered the Exponential spline method (ESN) in [2] which is of order 6, the Quintic
non-polynomial spline method (QNPSM) in [16] which is of order 4, Exponential quintic spline
(EQS) method in [7] with no explicitly stated order, Quartic spline (QS) method in [14] of order 4
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and Quartic B-spline QB-S method in [15] of order 5. We have not found any other higher order
methods as derived in this work in the literature for directly solving this singularly perturbed third
order BVP. It is also important to note that the comparison has been done based on accuracy and
ease of derivation of the method. Therefore, the results in the tables gives an idea of the good
performance of the proposed method.

Problem 1. Consider the following singularly perturbed problem

εy′′′(x) + y(x) = f(x); 0 ≤ x ≤ 1,

y(0) = 0, y(1) = 0, y′(0) = 9ε, .

where f(x) = 6εx3(1 − x)5 − 6ε2(6(1 − x)5 − 90x(1 − x)4 + 180x2(1 − x)3 − 60x3(1 − x)2). The
exact solution of the problem is y(x) = 6x3ε(1− x)5.

Table 1: Comparison of maximum absolute errors obtained for Problem 1.
ε N=10 N=20 N=40

OSFDBI
1/16 1.1623× 10−8 1.2542× 10−11 2.5754× 10−13

1/32 1.0232× 10−9 2.8357× 10−12 1.0777× 10−13

1/64 3.0114× 10−9 8.4523× 10−12 2.4143× 10−14

ESM
1/16 1.0028× 10−6 7.7262× 10−9 5.9445× 10−11

1/32 4.2762× 10−7 3.2959× 10−9 2.5316× 10−11

1/64 1.7929× 10−7 1.3211× 10−9 1.0236× 10−11

EQS
1/16 4.87× 10−4 1.86× 10−5 1.95× 10−5

1/32 1.95× 10−4 8.76× 10−6 8.63× 10−6

1/64 7.97× 10−5 4.00× 10−6 3.61× 10−6

EQ
1/16 2.90× 10−3 1.20× 10−4 6.40× 10−6

1/32 9.20× 10−4 3.80× 10−5 2.10× 10−6

1/64 1.40× 10−4 6.80× 10−6 4.60× 10−7

EB-S
1/16 4.70× 10−4 1.10× 10−4 2.60× 10−5

1/32 1.90× 10−4 4.70× 10−5 1.20× 10−5

1/64 8.00× 10−5 1.90× 10−5 4.80× 10−6
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Table 2: Comparison of maximum absolute errors obtained for Problem 1.
ε N=10 N=20 N=40 N=80 N=160

OSFDBI
10−1 2.54× 10−10 5.48× 10−13 6.65× 10−14 2.18× 10−13 2.71× 10−14

10−2 1.24× 10−10 2.14× 10−13 7.12× 10−15 1.47× 10−14 2.58× 10−15

10−3 5.51× 10−11 1.21× 10−13 1.54× 10−16 1.26× 10−16 4.16× 10−16

10−4 4.18× 10−12 1.31× 10−14 1.12× 10−16 5.14× 10−16 2.32× 10−18

10−5 1.11× 10−14 1.78× 10−15 3.21× 10−17 3.71× 10−18 3.41× 10−20

10−6 1.29× 10−15 6.25× 10−16 4.44× 10−19 9.12× 10−20 5.50× 10−22

10−7 1.47× 10−16 4.25× 10−17 2.15× 10−19 1.24× 10−21 2.01× 10−22

QNPSM
10−1 1.20× 10−5 2.02× 10−7 3.20× 10−9 4.76× 10−11 5.56× 10−13

10−2 6.68× 10−7 1.13× 10−8 1.78× 10−10 2.71× 10−12 3.66× 10−14

10−3 3.30× 10−8 5.24× 10−10 8.55× 10−12 1.32× 10−13 1.96× 10−15

10−4 1.20× 10−9 2.70× 10−11 3.89× 10−13 6.31× 10−15 9.68× 10−17

10−5 1.69× 10−11 8.96× 10−13 2.10× 10−14 2.85× 10−16 4.48× 10−18

10−6 1.76× 10−13 1.19× 10−14 6.26× 10−16 1.56× 10−17 2.20× 10−19

10−7 1.76× 10−15 1.23× 10−16 7.93× 10−18 4.21× 10−19 1.34× 10−20

The Table 1-2 shows the results obtained using OSFDBI and compared to the methods in [2]
and [16] respectively. The OSFDBI compared favourably with both methods.

Problem 2. Consider the following singularly perturbed problem

−εy′′′(x) + y(x) = f(x); 0 ≤ x ≤ 1,

y(0) = 0, y(1) = 3ε sin(3), y′(0) = 9ε, .

where f(x) = 81ε2 cos(3x) + 3ε sin(3x). The exact solution of the problem is y(x) = 3ε sin(3x).

Table 3: Comparison of maximum absolute errors obtained for Problem 2.
ε N=10 N=20 N=40

OSFDBI
1/16 3.2543× 10−10 4.4587× 10−13 1.4781× 10−14

1/32 2.1245× 10−10 2.1451× 10−13 2.1457× 10−15

1/64 1.2450× 10−10 2.1124× 10−13 1.2145× 10−15

ESM
1/16 4.4336× 10−8 2.0866× 10−10 1.0750× 10−12

1/32 1.8916× 10−8 8.8814× 10−11 4.5211× 10−13

1/64 7.9396× 10−9 3.5668× 10−11 1.8448× 10−13

EQS
1/16 2.32× 10−4 6.12× 10−5 1.52× 10−5

1/32 9.77× 10−5 2.59× 10−5 6.45× 10−6

1/36 3.78× 10−5 1.00× 10−6 2.50× 10−6

EB-S
1/16 2.40× 10−4 6.10× 10−5 1.50× 10−5

1/32 1.00× 10−4 2.60× 10−5 6.40× 10−6

1/36 4.00× 10−5 1.00× 10−6 2.50× 10−6
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Table 4: Comparison of maximum absolute errors obtained for Problem 2.
ε N=10 N=20 N=40 N=80 N=160

OSFDBI
10−1 1.78× 10−9 3.25× 10−10 2.48× 10−15 2.01× 10−14 1.98× 10−15

10−2 3.25× 10−9 2.22× 10−12 1.11× 10−15 1.28× 10−14 3.61× 10−15

10−3 2.77× 10−10 1.79× 10−12 2.57× 10−15 9.11× 10−16 5.17× 10−17

10−4 8.14× 10−12 9.48× 10−14 3.45× 10−15 2.74× 10−16 1.23× 10−19

10−5 2.54× 10−13 9.12× 10−15 4.12× 10−17 2.27× 10−19 3.24× 10−20

10−6 2.84× 10−15 8.27× 10−18 5.55× 10−19 6.67× 10−20 3.57× 10−22

10−7 1.10× 10−16 1.23× 10−19 2.79× 10−20 1.22× 10−21 2.54× 10−23

Method in [16]
10−1 5.45× 10−7 8.51× 10−9 1.27× 10−10 3.83× 10−12 2.56× 10−12

10−2 3.12× 10−5 4.82× 10−10 7.18× 10−12 1.00× 10−13 4.76× 10−14

10−3 1.66× 10−9 2.32× 10−11 3.53× 10−13 5.21× 10−15 4.02× 10−16

10−4 6.05× 10−11 1.30× 10−12 1.67× 10−14 2.56× 10−16 7.28× 10−18

10−5 9.57× 10−13 4.24× 10−14 9.58× 10−16 1.19× 10−17 1.34× 10−19

10−6 1.28× 10−14 6.89× 10−16 2.84× 10−17 6.93× 10−19 8.60× 10−21

10−7 1.15× 10−16 7.78× 10−18 4.59× 10−19 1.87× 10−20 4.99× 10−22

As observed in the exponential spline method (ESM) in [2] and the Quintic non-polynomial spline
method (QNPSM) in [16], the absolute errors shows a decrease as the perturbation parameter ε
decreases and as well the values of N increases. The results obtained in Tables 1-4 by the proposed
method have been compared with the numerical results obtained in [2] and [16]. It can be seen that
the proposed method performed better and shows more accuracy. .

5 Conclusion
In this paper, the One-step fourth derivative block integrator (OSFDBI) have been derived and
implemented on two most common problems in literature to obtain the numerical solution of sin-
gularly perturbed third-order boundary value problems. The one-step idea in this paper was to
economize the number of function evaluation so as to reduce the cost of implementation in terms of
CPU time. In the course of implementation, the perturbation parameter as well as the number of
subinterval have been varied in other to know the extents with which the proposed method can be
more accurate with the compared methods. The tables of absolute errors shows clearly established
the fact that the proposed method out performed the other two methods compared in literature.
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