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Abstract

The aim of this article is to investigate fixed point problem, maximal monotone operators and
generalized mixed equilibrium problems by considering the generalized f— projection technique.
We propose a modified inertial based algorithm for finding a common solution in respect of
this problem. Also, we prove a strong convergence of the sequence generated by the proposed
modified inertial iterative algorithm in uniformly smooth and uniformly convex Banach spaces.
Finally, we give some applications of our theorem.
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1 introduction

The fixed point theory has played an important role in the field of Mathematics, especially in
the area of nonlinear analysis and other related areas in pure and applied mathematics. Due
to its importance, many researchers have considered it as one of the most interesting area in
mathematics. Many authors have developed several iterative processes for approximating fixed
points of nonexpansive mappings including their generalizations: for more detail see [I-13] and the
reference therein.

Let E a real Banach space with its dual as E*, R denote the set of real numbers and ) be a
nonempty closed convex subset of E. We consider GM EP [1] as the generalized mixed equilibrium
problem: find w € @ such that

B(w,?) + (Aw, ¥ — w) + b(w,¥) — b(w,w) > 0,V € Q,
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where B,b : @ x Q@ — R are bifunctions and A : Q — E* is a nonlinear mapping. The set of
solutions of generalized mixed equilibrium problem is denoted by

GMEP(B,A,b) ={w € Q: Bw,?¥) + (Aw, ¥ — w) + b(w, ) — b(w,w) > 0,V € Q}.

Furthermore, if A = 0 and b = 0, then the generalized mixed equilibrium problem (GM E P) reduces
to equilibrium problem, denoted by EP [141] which is defined as to find an element w € @ such that

B(w,d) > 0,V¥ € Q.
The solutions set of equilibrium problems is given by
EP(B)={weQ: B(w,9) >0,V9 € Q}.

Generalized mixed equilibrium problems have been considered as a cornerstone for research in the
field of science and engineering. Also, it is used in structural analysis, physics, economics and other
science and social sciences. More so, it is found in optimization problems, Nash equilibrium problem
in non cooperative game, variational inequality problem, variational inclusion problem, fixed point
problem etc (for details see [1,3,8]).

For the purpose of fast convergence of the iterative algorithm, an inertial- type extrapolation tech-
nique was first introduced by Polyak [15] as a process of accelerating the rate of convergence of the
sequence. Due to the importance of this technique along this direction, many authors have been
studied this techniques extensively (for details see [4,5,16,17]).

Consider E as a Banach space and S as a maximal monotone operator then the problem for solving
a zero point of a maximal monotone operator: u* € E such that

0€ Su).

5710 denotes the set of all point u* € E such that 0 € S(u*). This considered as efficient tool for
solving problems arising in optimization, analysis and other related field of research.

By considering w € E and w* € E*, then (w,w*) is the set valued of w* at w. Therefore J : B —» 25
denoted as the normalized duality mapping and defined by

J(w) = {w* € E": (ww") = Hw||2, llw*|l = ||w||},Vw c k.

For FE as a Hilbert space, we observe that J = I, where I denote the identity map. The Lyapunov
functional ¢ : E x E — R defined by

$(0,w) = [0]% — 209, Jw) + |||, Ve, 9 € E. (1.1)

An operator S C E x E* is called monotone if (w — 9, w* — 9*) > 0, whenever (w,w*), (¢,9*) € S.
A monotone S is called maximal if its graph G(S) is not properly contained in the graph of
any other monotone operator. A mapping T : @ — @ is said to be nonexpansive [2, 18] if
| Tw—-TY |<||w—"1|,Vw,¥ € Q, we denote F(T) = {w € Q : Tw = w} as the set of fixed point of
T. A point p € @ is said to be an asymptotic fixed point of T, if @ contains a sequence {w,, } which
converges weakly to p such that nl;rrgo | wn — Tw, ||= 0. F(T) denote the set of asymptotic fixed

point of T', and a mapping T is said to be L — Lipschitz continuous if there exists a constant L > 0
such that || Tw —TY |< L || w— 9 ||,Vw, ¥ € Q. S is called closed if for any sequence {w,} C Q
with w,, — w and Sw,, — ¥ then ¥ = Sw.

Definition 1.1. Let {T;}2, : @ — Q be a sequence of mapping. Then {T;}5°, is said to be:

(1) A family of uniformly quasi-¢-asymptotically nonexpansive [2, 18], if T := N2, F(T;) # 0 and
there exists a sequence {ky,} C [1,00) with k, — 1 as n — oo such that for each i > 1

o(p, Tj'w) < kpo(p,w), Ywe,pel,n>1;
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(2) A family of uniformly total quasi-¢-asymptotically nonexpansive [2, 18], if T := N2, F(T;) # 0
and there exists nonnegative real sequences Cp, pn with ¢, — 0, @, — 0 as n — oo and
strictly increasing continuous function 1 : RT™ — RT with 1(0) = 0 such that for each i > 1

o(p, T'w) < ¢(p,w) + Cath(¢(p,w)) + pin,Vw € Q,p €T, n > 1.

(8) A mappings T : Q — Q is said to be uniformly L- Lipschits continuous, if there exists a
constant L > 0 such that

|Trw —T™" || L||w—179],Vw, ¥ € Q,Vn > 1.

Alber [19] introduced and studied that the generalised projection Ilg : E — @ is a map assigns to
an arbitrary point w € E the minimum point of the functional ¢(¢,w); that is, IIg(w) = w*, where
* is the solution to the minimization problem
w*,w) = min ¢(¥,w).
Bl w) = min¢(0, )
Existence and the uniqueness of the operator Il follows from the strict monotonicity of the mapping

J and properties of the functional ¢(9,w) . If E is a real Hilbert space H, then d)(t? w) = ||¥ —wl?
and IIg become the metric projection of E onto @ ( for details see [5, 20,

In 2006, using the technique of generalized f— projection in Banach space, Wu and Huang [22]
established properties of the generalized f— projection operator as well as extended the definition
of generalized projection operator which was proposed and studied by Alber [19]

Consider the functional G : Q x E* — R U {+o0} defined by:

G(W,q) =l 9 |1 ~2(9,q) + lq |* +2wf(¥), (1.2)

where ¢ € Q,q € E*, @ is positive number and f : Q — R U {+oo} is proper, convex and lower
semi continuous. By considering the definitions G and f, the following properties studied by Wu
and Huang [22] hold:

i) G(¥,q) is convex and continuous with respect to ¢ when ¥ is fixed;

i) G(¥,¢q) is convex and lower semicontinuous with respect to ¢ when ¢ is fixed.

Definition 1.2. Let Q be a nonempty closed convex subset of a real Banach space E with E* as
its dual. Then an operator Hé : B* — 29 s called generalized f- projection if

ng ={ve@:Gv,q) = inf G{W,q),Yq € E*}.
yeQ

In 2010, Li et al [23] proposed generalized f— projection operator and proved the strong convergence
theorem for relatively nonexpansive mapping. Later Siwaporn and Kumam [24] introduced hybrid
algorithm of generalized f— projection operator for finding the solution of generalized Kly Fan
inequalities and fixed point problem in Banach space.

In 2013, Siwaporm et al [18] consider the following Mann type iterative algorithm for approximating
the totally quasi -¢- asymptotically nonexpansive maps by the method of hybrid generalized f—
projection.

Qi;=Q, Vji>1

Yn,j = J_l(ﬁnt]wn + (1 - Bn)JTjan);

Qnt1,j = {u € Qn : G(u, Jyn ;) < G(u, Jwpn) + 6, };
Qnt1 = ﬁ(]?ilQn+1,j§

Wpt1 = Hgnﬁwl,Vn > 1.

They proved that {w,} converges strongly to Hrwl
In 2014, Jingling et al [1 1] considered the following algorithm for approximating the common element
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of generalized mixed equilibrium problem, maximal monotone operator and relatively nonexpansive
map in Banach space.

x € Cy, arbitrarily;

Zn = J_l(’Yann + (1 - ’Yn)JJTnyn);

up € C such thatf(un,,y) +¥(y) — Y(uyn) + (Aun, y — up)
(Y = tn, Jup — J2,) > 0,¥y € C;

Crni1 ={u € Cy : G(u, Juy) < 1nGu, Jx,) + (1 — vn)G(u, Jyn) < Glu, Jzyn) };
Tpgl = Héyﬂﬁxoﬁn > 0.

It has been proved that {x,,} generated by the scheme above converges strongly to Héxo.

In 2021, Hammad et al [6] constructed a hybrid iterative algorithm for solving maximal monotone
operators and fixed point problem in Banach space. From the notion of generalized f— projection,
Siwaporn Soewan [25] proposed and studied hybrid algorithm for finding a maximal monotone op-
erator in Banach space, using the following iterative algorithm:

x1€C, C; =C,

2n = J Y mdzy + (1 = 30) I, 20),
Croy1={2€C:G(z,Jz,) <Gz, Jxy),
T+l = Hénﬂxl,Vn > 1.

The authors proved that {x, } converges strongly to H{le.

Motivated by the results Siwaporm et al [18], Jingling et al [11], In this article, we propose and
study a modified inertial iterative algorithm for approximating a common fixed point of total
quasi -¢- asymptotically nonexpansive mappings, maximal monotone operators and a system of
generalized mixed equilibrium problems. We prove a strong convergence theorem of the proposed
modified inertial iterative algorithm in Banach spaces. The results presented in this work, extend
and improve the results of Siwaporm et al [18], Jingling et al [11] and many other results in the
literature.

2 Preliminaries

In this section, we consider some preliminary definitions and Lemmas that led to the proving of our
main result.

Let E be a real Banach space with || . || and E* as the norm and dual space of E respectively,
[w+td || —|lw|

K :={w € E : |w|| = 1} be the unit sphere of E. F is said to be smooth if the tlirr(l)
—

exists for all w, ¥ € K, it is also said to be uniformly smooth if the limit exists uniformly in w, ¥ € K.

The modulus of smoothness of E is the function pg : [0,00) — [0, 00) defined by

Fllw=d] _

2

w+ Y
pit) = supt 12V 1ol = 1, 19] < ¢}.

)
Tt 4 for atl w, 0 € K with Jw]] = 9] = 1
and w # ¢ and F is said to be uniformly convex if for each e € (0, 2], there exists § > 0 such that
9
lwtdl <1-96 for all w,¥ € K with |w|| = [|9]| = 1 and |jw — ¥|| > e. The modulus of convexity

of E is the function § : [0, 2] — [0, 1] defined by

A Banach space E said to be strictly convex if

w+ Y
2

d(e) =inf{1—| w9 € K, Jwl = 9] =1, [lw - 9] = }.
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It follows from (1.1) that

(191 = lwl)? < ¢w, 9) < (19| + llw]))?, Ve, d € E; (2.1)
P(w, V) = d(w, z) + d(2,9) + 2(w — 2z, Jz — JI), Yw,9,z€ E; (2.2)

and
p(w, V) < |lw|[llJw =TI + [I|lw =9I, Vw,d, € E. (2.3)

Remark 2.1. We observe from the basic properties of E, E* and J that the following holds [25]:

i) If E is a smooth, then J is single valued and semi continuous;

it) If E is uniformly smooth, then E is smooth and reflexive;

i11) If E is an arbitrary Banach space, then J is monotone and bounded;

) If E is uniformly smooth, then J is uniformly norm-to-norm continuous on bounded subset of
E.

v) E is uniformly smooth if and only if E* is uniformly convex;

vi) If E is a strictly convez, then J is strictly monotone;

vii) If E is reflexive, smooth and strictly convez, then the normalized duality mapping J is single
valued, one-to-one and onto.

Remark 2.2. If E is a reflexive, strictly convexr and smooth Banach space, for each w,9 € FE,
d(w,9) = 0 if and only if w = V. It is enough to conclude that for ¢p(w,d) = 0, then we have w = 9.
By (i), we notice that || w ||?=|| ¥ ||? . This gives {w, JU) = ||w|* = ||JI||®. Observe by definition of
J that Jw = JY. Hence, this lead to w = ( see for example [25,51] and therein)

Lemma 2.3. (see [20]) Let E be a smooth and uniformly convex Banach space and let {wy,} and
{Un} be sequences in E such that either {wn} or {9,} is bounded. If 1i_>m d(wn,¥,) = 0, then
n—oo

lim || wy, — Y, ||=0.
n—oo

Remark 2.4. If {w,} and {9,} are bounded, from (2.3) it is obvious that the converse of Lemma
2.3 1s also true.

Lemma 2.5. (see [2]) Let Q be a nonempty closed and convex subset of a uniformly convex and
uniformly smooth Banach space E. Let T : Q — Q be a closed and total quasi-¢-asymptotically
nonezrpansive mapping with sequences {Cn}, {1n} of nonnegative real numbers with ¢, — 0, i, —
0 asn — oo and a strictly increasing continuous function v : RY — RY with (0) = 0. If u1 = 0,
then the fized point set F(T) is a closed convex subset of Q.

Lemma 2.6. (see [22]) Let E be a reflexive Banach space with its dual E* and @Q be a nonempty
closed convex subset of E. The following statements hold:
i) ng 1s mnonempty closed convex subset of Q for all ¢ € E*;

it) If E is smooth, then for all ¢ € E*,w € ng if and only if
(w—9,q— JO) + @f(0) — @f(w) > 0,99 € Q;

iii) If E is strictly convex and f : Q@ — R U {+oo} is positive homogeneous (i.e.,f({w) = & f(w)
for all £ > 0 such that w € Q where w € Q ), then Hé 1s single valued mapping.

Lemma 2.7. (see [27]) Let Q be nonempty closed convex subset of a reflexive Banach space E and
E* be the dual space of E. If E is strictly convex, then ng 1s single valued.

Recall that if ' is a smooth Banach space, then J is single valued mapping. Therefore, there exists
a unique element ¢ € E* such that ¢ = Jw for w € E. Now, by substituting ¢ = Jw in (1.2), we
obtain

G, Jw) =|| 9 ||* =209, Jw) + ||Jw]||* + 2w f (D). (2.4)
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It follows from the definition of G that
G, Jw)=G,Jz) + ¢(z,w) + 2(¢ — 2z, Jz — Jw),Vw, ¥,z € E. (2.5)
Also, by the notion of the second generalized f- projection in Banach spaces,

Definition 2.8. (see [23]) Let Q be a nonempty closed convex subset of a real smooth Banach space
E. An operator Hg : E — 29 is said to be generalized f- projection if

o= . —
Mpw={veQ: G, Jw) = 1;relfQG(19’ Jw),Yw € E}.

Lemma 2.9. (see [25]) Let E be a Banach space and f : E — RU{+o0} be a lower semicountin-
uous convex functional. There exists z* € E*, n € R such

fw) > (w,z") +n,Vw € E.

Lemma 2.10. (see [23]) Let Q be a nonempty closed convex subset of a reflexive smooth Banach
space E. Then, the following statements hold:
i) Héw is nonempty closed convex subset of Q for all w € F;

it) forallw € E, & € Hé if and only if
(W—9,Jw—J0)+wf() —wf(®) >0,VI € Q;
it1) If E is strictly convez, then Hg is single valued mapping.

Lemma 2.11. (see [23]) Let Q be a nonempty closed convex subset of a reflexive smooth Banach
space E. and @ € Hé for allw e E. Then

6(9,0) + G(&, Jw) < G0, Jw), Y9 € Q.

Remark 2.12. Let E be a uniformly smooth and uniformly convex Banach space, f(w) = 0,Vw € E.
It follows from Alber [19] that Lemma 2.11 reduces to the property of the generalized projection
operator.

If f(¥9) > 0,¥9 € C and f(0) = 0, then it follows from the definition of totally quasi-¢-asymptotically
nonexpansive mapping 7T that T is equivalent to the following:

If F(T) # () and there exists nonnegative real sequences {(,}, {pn} with {, — 0, u, —> 0 as
n —» oo and a strictly increasing continuous function 1 : Rt — RT with 1 (0) = 0 such that

G(p, JT"w) < G(p, Jw) + (G (p, Jw)) + i, Yw € Q,p € F(T),n > 1.

Lemma 2.13. (see [25]) Let E be a Banach space and f : E — R U {+o0} be a proper, convex
and lower semicountinuous mapping with domain D(f). If {w,} C D(f) such that w, — & € D(f)
and G(wny, JU) — G(©, J9) (asn — o0), then || wy ||—| @ || (as n — o0).

Lemma 2.14. (see [29]) Let @ be a nonempty closed convex subset of strictly convex, smooth
and reflexive Banach space E, let S C E x E* be a monotone operator satisfying D(S) C Q C
J Y NesoR(J +7S)). Let J. and Sy, for all 7 > 0 be the resolvent and the Yosida approximation
of S, respectively. The following statements hold:

i) ¢(v, Jyw) + ¢(Jow,w) < ¢(v,w),Vw € Q,v € STL0;

it) (Jyw, Syw) € S,Vw € Q, where (w,w*) € S denotes the value of w* at w(w* € Sw) i) F(J,) =
S=10.

Lemma 2.15. (see [25]) Let E be a strictly convex, smooth and reflexive Banach space, S C E x E*
be a monotone operator with S~10 # 0, and for each r > 0, J. = (J +rS)~1J. Then

G(q, JJ,w) + ¢(Jrw,w) < G(q, Jw),Yw € E,q € S7*0.
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Lemma 2.16. (see [1/,21]) Let E be a smooth, strictly convex and reflexive Banach space, and
Q@ be a nonempty closed convexr subset of E. Let B : Q x Q — R be a bifunction satisfying the
conditions (B1) — (By). Let r > 0 be any given number and w € E be any given point. Then, there
exists z € Q) such that

1
B(z,9) + ;(1972,[]27 Jw) >0,V € Q.

By replacing w with J~1(Jw — rAw), where A is a monotone mapping from Q into E*, then there
exists z € Q) such that

B(z,9) + (¥ — z,Az) + 1(19— z,Jz — Jw)y > 0.VY € Q.
r

Assumption B: Consider the bifunction B : Q X Q — R satisfies the following assumptions:
1) B(w,w) =0,Vw € Q;

) B is monotone, 1.e, B(w,?¥) + B(9¥,w) <0, Yw, ¥ € Q;

3) for each w,d,z € @, hmsupB(ﬂz +(1- 7r)w 9¥) < B(w,);

)

for each w € Q,9 — B(w 9) is convex and lower semicontinuous.

Assumption b: Also considerb: QxQ — R as a bifunction satisfying the following assumptions:
(b1) b is skew-symmetric, i.e., b(w,w) — b(w, V) — b(¥, w) + b(¥, ) > 0,Vw, ¥ € Q;

(be) b is convex in the second argument;

(b3) b is continuous.

Lemma 2.17. (see [10, 30]) Let Q be a nonempty closed convex subset of a uniformly smooth,
strictly convexr and reflexive Banach space E . Let A : Q — E* be a continuous and monotone
mapping, B : Q x Q@ — R be a bifunction satisfying Assumptions (B1) —(B4) andb: Q@ x Q — R
be a bifunction satisfying Assumptions (b1) — (b3). For any given number r > 0 and w € E, define
a mapping T, : E — Q by

T.(w)={2€Q:B(z,9)+ (9 — 2z, Az) + %(19 —z,Jz— Jw) +b(2,9) — b(z,2) > 0,V9 € Q},

Vw e E.

The mapping T, has the following properties:

(p1) Ty is single-valued;

(p2) Ty is a firmly nonexpansive - type mapping, for all w,9 € E

(Trw — T, JTrw — JT.9) < (Thw — T8, Jw — J8)

(p3) F(Tr) = GMEP(BvA7b))
(ps) GMEP(B, A,b) is a closed convex set of Q.
(p5) (b(pa ’r‘w) +¢( rW, W) < ¢(p7 )7 Vp € F(T’r‘)> wekFE.

3 Main result

Theorem 3.1. Let Q be a nonempty closed and convex subset of a uniformly smooth and uniformly
convez real Banach space E. Let f : E — R be a convex and lower semicontinuous function with
Q C int(D(f)), where D(f) is the domain of f and S; C E x E*;i = 1,2,3,... be a sequence
of mazimal monotone operators satisfying D(S;) C Q and J,, = (J + rpS;)~*J, for all r,, > 0
and i = 1,2,3,... Let B; : Q@ x Q@ — R,i = 1,2,3,... be a sequence of bifunctions satisfying
assumptions (B1) — (Ba4), b; : Q@ x Q@ — R,i = 1,2,3,... be a sequence of bifunctions satisfying
assumptions (by) — (bs) and A; : Q — E*,i = 1,2,3,... be a sequence of continuous monotone
maps. Let {T;}3°2, : Q@ — Q be an infinite family of closed uniformly L- Lipschitz continuous
and uniformly total quasi -p-asymptotically nonexpansive mappings with nonnegative real numbers
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sequences Cpn, pn Ssuch that {, — 0, pu, — 0 as n — oo and stricly increasing continuous
function 1 : RY — RT with 1(0) = 0. Assume that T == (N2, F(T;)) N (N2, 5;710) N (N2,
GMEP(Bi,Ai,bi)) # 0 Let {z,,} be a sequence defined as follows:

w) € Q1= E;
Wy = Wp + an(wn - wn—l);

1971 = J_l(pO,ann + Zpi,nJTi”wn);

i=1
un € C such that B;(upn,d) + (Ajtn, ¥ — up)
1
+7" <19 — Up, JUp — JZ7L> + bi(u7L>19) - bi(un;un) > O,V’ﬂ € Q;
Qn_;l ={u € Qn: Gu, Ju,) < G(u, Jwy,) + 0, };
Wpt1 = Hgnﬂwl, Vn > 1,

where a, C (0,1), {vn} and {pin} C [0,1] such that Zpi,n =1, {rn} is a sequence in (0,00) with
=0
{rin} C [a,00) for some a >0, Vi =1,2,3,.... and J,, = Qﬂ/}(G(ﬁ, an)) + iy, p € L. Assume
that liminfpg pp; n, > 0,Vi > 1, liminf(1—-y,) > 0 and lim r, = co. Then {w,} converges strongly
n—oo n—oo n—o0

to Hfiwl, where HJFC is the generalized f- projection of E onto T.
Proof. Consider Q; : Q@ x Q@ — R and T;, : E — @ as functions defined by
Q(2,9) = Bi(2,9) + (Aiz, 9 — 2), V2,9 € Q

and

1
(0 =z, Jz— Jw) + bi(2,9) —bi(z,2) >0, VIeQ},

Tin

Tir(w)={z€Q:Q(z79)+

Vi>1, weE,

respectively. We present the functions §2; which satisfies Assumptions (B1)—(B4) and the functions
T;.» which satisfies properties (p1) — (ps) of Lemma 2.17 (see [10,21] for more details).

We present the proof in the following steps:

Step 1 : we show that for all n > 1, @, is closed and convex. Clearly Q1 = @ is closed and
convex. Supposed that @, is closed and convex for all n € N. For any u € @,,, the inequality below
is from definition of Q1 :

G(u, Juy) — G(u, Jwy,) < o,
which implies that
Il [1* =2(u, Jun) + llunl* + 2 f (w) = [l u [I* +2(u, Jwn) — wn|* = 2w () < 6.
which gives
2(u, Jwn) — 2(u, Jun) + [lun]|* = [Jwn]* < 6,
hence, we have
2(u, Jwn = Jun) <[l wn [I* = || un [|* +65.

Therefore, 41 is closed and convex, ¥n > 1. Which lead to Hén+1w1 is well defined.
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Step 2 : We show by induction that I' C Q,,Vn > 1. It obvious that I' C @1 = Q. Suppose that
I' C @y, for some n > 1. Assume that u, = T; ., 2, for all ¢ > 1 and v, = J,, ¥, for all n > 1. Let
p C I and by Lemma 2.11, we get the following estimate:

G(ﬁ7 Jun) = G(ﬁ, JTi,rnZn)

IN

G(p, Jzn)

G(P, ynJwn + (1 — vn)Jvs)

¥z ”2 =20, YnJwn + (1 — vn)Jvp)

vnJwn + (L = y5)Jvy, H2 +2w f(p)

15117 =27 (B, Jwn) = 2(1 = 72) (B, Jvn) + Y || Jwn |
(L =) || Jon [I* +2wf (D)

+ IN +

= GO, Jw,) + (1 = 7)G (D, Jvn)
= GO, Jw,) + (1 —7,)G(p, JJrnﬁn)
< 'YnG(ﬁa an) + (1 - ’Yn)G(ﬁ7 Jﬁn) (32>

Now, from the fact that {T;},Vi > 1 is total quasi-¢-asymptotically nonexpansive maps, then we

obtain

G(p, JUn)

IN

IN

G(ﬁa pO,ann + Z pz,nJT;nwn)
i=1

[e @] o0
151> =25, ponTwn + D pin T wn) + || ponJwn + Y pin I Ty wy >
=1 1=1

2w f(p)

151> =2p0.n (B Twn) =2 pin(B, JT wn) + pin

i=1

> pimll IT ws | + 2 f ()
1=1

pinG (B, Jwn) + ) pinG(p, I T} wy)

i=1

PimG (D, Jwn) + D pin [G(B, Jwn) + Ctp (G(B, Jwn)) + fin]

i=1

i=1 i=1

i=1

| Jwn||*

pi,nG(ﬁa an) + Z Pz‘,nG(ﬁ’ an) + Cn’l/) (G(ﬁ, an)) + tn

i=1

G(p, Jwn) + an(G(ﬁa an)) + pn- (3.3)
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Therefore, putting (3.3) in (3.2), we get

G, Jun) < G(D; Jwn) + (1= 7) [G(B, Jwn) + Cuth (G(B, Jwn)) + fin]
= GO Jwn) + (1 = v)G (P, Jwn) + (1 — ) [Cn¢(G(ﬁv an)) + /~Ln]
G(p, Jwn) + (1 —7n) [Cn¢(G(ﬁa an)) + ,Un]
G, Jwn) + Cn"/}(G(ﬁv an)) + Hn
= G(p, Jwy) + on. (3.4)

IN

Which lead to p € Qy41, gives that I' C Qy,41, therefore I' C @Q,,Vn > 1.

Step 3 : we show that the sequence {w,} is cauchy and w,, — & as (n — o).
Now, since f : E — R is convex and lower semi continuous mapping, then, by Lemma 2.9 there
exists z* € E* and 1 € R such that

flw) > {w,z*) +n,Vw € E.

Therefore, for w, € E, we have

Glwn, Jw1) = [lwn I =2(wn, Jwi) + lwi]|* + 20 f (wn)
> lwn I? =2{wn, Jwr) + llwi]? + 20 (wn, 2%) + 21
= w1 ~2{wn, Jor — w2") + wr]|* + 21
> Jwn I* =2l wn Il Jwr = @2" | + [l w1 |* +2am

(lwn I = I Jwr —2® [)*+ [ wr I = || Jor — @2” |* +2wn.  (3.5)

Hence, from the definition of @,, and (3.5), since p € T and w,, = Hgnwl, then we obtain

G, Jw1) > Gwy,Jwr)
> (flwn | = | Jwr — w2 [)*+ | w1 I = || Jwy — wz* || +20om.

Implies {w,} is bounded and so are {u,}, {zn}, {Un}, {wn}, and {G(wy,, Jw1)}.
Therefore, since w11 = Hén+1w1 € Qnt1 CQp, wy = Hgnwl, then by Lemma 2.11, we obtain

0 < (| wars —wa [l)?
< dlwnt1,wn)
< Glwpt1, Jwi) — Glwp, Jwr). (3.6)

Which implies that {G(wy,, Jw1)} is non decreasing. Therefore nh_)n(%o G(wp, Jw) exists. Now, since
Wy, = Hgnwl, W = Hgmwl € Qm C Qp, for any m > n, then from (3.6) we get
O (wimywn) < G(Wim, Jw1) — G(Wn, Jwr).
By taking m,n — oo, we conclude that
nan;o¢(wm,wn) =0.
Then, by Lemma 2.3, we have

lim || wm —wy, ||=0.
n—oo

This shows {wy} is cauchy. Therefore using the fact @) is closed subset of Banach space E and Q,,
is closed and convex, we can assume that there exists an element w € @ such that

lim w, = &. (3.7

n—oo
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Step 4 : we show that @ € I'.  Now, since lim G(w,, Jw;) exists from Step 3 then, it follows from
n— oo

(3.6) that

lim ¢(wn+1ywn) =0.
n—oo

Using Lemma 2.3, we get

nll)n;o | wnt1 —wy [|=0.

(3.8)

(3.9)

Taking advantage of J as uniformly norm-to-norm continuous on bounded subsets of E, we conclude

that

lim || Jwn41 — Jwy, ||= 0.
n— oo

Observe that, by the definition of w, from (3.1), we get

| wn = wy [[=[ (W — wn—1) [|<]| wn — wn—1 || -
Gives
lim || wy, —wy, ||=0.
n— oo

Notice that (3.7) and (3.11), we get

lim w, = ®.
n—oo

Since {wy,} is bounded, by considering Remark 2.4 and (3.11), we obtain

lim ¢(wp,wy) = 0.

n— oo

From (3.9) and (3.11), we have

lim || wp41 — wy ||=0.
n— oo

Also, since J is uniformly norm-to-norm continuous on bounded subsets of E, we obtain

nh_)rrgo | Jwpt1 — Jwy, ||=0.

By Remark 2.4 and (3.14), we obtain
nll)ngoqb(wnﬂ,wn) =0.

Also, by (3.12) and (3.14), we conclude that

lim wy, 1 = .
n—oo

Observe that from the definition of Q41 in (3.1) and wy41 = Hénﬂwl, we get
G(wnJrl, Jun) < G(wn+17 an)
Which lead to

| Wnt1 ”2 - 2wny1, Jun) + ”un”2 + 2w f(wWnt1)
| wngr P =2(wnt1, Jwn) + [[wn]® + 2 f (Wpt)-

IN
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This gives

| wnt1 H2 - 2wn1, Jun) + ”UnH2
< wngr 7 =2wnga, Jwn) + [lwa|?,

which implies that
P(wn+1,Un) < P(wnt1, wn).
By considering (3.16), we observe that
nlLrI;O¢(wn+1,un) =0.
Now using Lemma 2.3, we obtain

nh_)rrgo | wnt1 — un ||=0. (3.18)

Following from the fact that J is uniformly norm-to-norm continuous on bounded subsets of E, we
obtain

lim || Jwp41 — Ju, [|=0. (3.19)

n—oo

By triangular inequality, we have
| wn = un [|<|| wn —wnir [| + | wngr —un || - (3.20)

Now. putting (3.9) and (3.18) in (3.20), we get

nl;rrgo | wp — uy, ||=0. (3.21)
Using (3.7) and (3.21), we obtain
lim u, = ®. (3.22)
n—oo

We also observe that from (3.11) and (3.21), we get

lim || wy, —uy [|=0. (3.23)

n—oo

From J is uniformly continuous on bounded subset of E, we conclude that

lim || Jw, — Ju, ||=0. (3.24)

n—o0
Noticing that by definition of Q,,+1 and wy 11 = Héwlwl, we have

G(wn+1, Jzn) < G(wnt1, Jwy).
Equivalent to

| W1 ||2 = 2{wnt1,Jz0) + HZn”2 + 2@ f(Wnt1)
lmsn 2 ~2(emsr, Jun) + Jwnl? + 260 f(wns),

IA

gives

[ wntt 2 = 2wnt1, T2a) + |20
<l wngr 1P =2(wng1, Jwn) + [Jw]?,
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implies that

¢(wn+17 Zn) S (b(wnJrla wn)

By (3.16), we get

lim ¢(wn+17 Zn) =0.
n—oo

Using Lemma 2.3, we obtain

lim || wpt1 — 20 ||=0. (3.25)

n—oo

By considering J as uniformly norm-to-norm continuous on bounded subsets of E, we conclude
that

lim || Jwny1 — Jz, ||= 0. (3.26)
n—oo
Taking into account that
| wn = zn [|[<]| wn = wpgr | + | wngr — 2n || - (3.27)

Using (3.9) and (3.25) in (3.27), we have
nhﬁn;o | wn — 2n ||=0. (3.28)
From (3.7) and (3.28), we conclude that
lim z, = . (3.29)
n—oo

Also, since J is uniformly norm-to- norm continuous on bounded subsets of E and by (3.28), we
have

lim || Jw, — Jzy ||= 0. (3.30)
n—oo
We also observe that by (3.19) and (3.26), we get

lim || Ju, — Jzy, ||=0. (3.31)

n=oo
Also, from wy41 = Hén+1w1 and by definition of @,,+1, we have

G(Wnt1, JU) < Glwpi1, Jwy).
Then, we get that

| W1 ||2 = 2(wnt1, JIn) + ||19nH2 + 2@ f(wnt1)
lmin I? =i, Jun) + fwnl? + 260 fwns),

IN

therefore, we have

| wnt1 H2 = 2Awn+1, Jn) + ”ﬁnnz

S || wn-}-l H2 _2<wn+1a an> + Hwn||2a

hence

¢(wn+1a ﬂn) S (b(wn—i-la wn)
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By (3.16), we have

lim ¢(wn+17 79n) =0.

n—oo

Also by Lemma 2.3, we conclude that

nh_go | wnt1 = [|=0.

(3.32)

From the fact that J is uniformly norm-to-norm continuous on bounded subsets of E, we get that

We also notice that

lim || Jwpy1 — JY, ||= 0.

n—oo

| wn = On [|[<]| wn = wWngr | + | wngr = || -

Now, using (3.9) and (3.32) in (3.34), we get

lim || w, — ¥, ||=0.
n—oo

We observe that by (3.7) and (3.35), we conclude that

lim ¥, = .

From (3.1), we have the following estimate:

| Jwnt1 — JOy ||

this implies that

| Jwni1 — JT wy [|<

v

| Jwny1 — (PO,ann + Zpi,nJTz‘nwn) I

=1

oo
| Jwnt1 — pondwn — Zpi,nJTinwn I
i=1

9] 9]
|| anJrl + Zpi,njwnJrl - Zpi,annJrl + pO,ann+1
=1 i=1

pO,nJWn+1 - pO,ann - Z pz,njnnwn H
i=1

o oo
” Z pi,an7L+1 - Z pz’,nJ,Tinwn + pO,nJWn+1 - pO,ann H
i=1 1=1

1> pi (Jwngr = JTwn) + pon (Jwni1 — Jw) |
i=1

|| sz,n (an+1 - JTann) — Po,n (an - an+1) H
i=1

o0
Zpi,n || Jwnyr — JT wy, || —Po,n || Jwy — Jwn1 ||7
i=1

1

o

Z Pin
1=1

+ pon | Jwn — Jwngr || ]

[H Jwpyr — JUy H
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Using (3.15), (3.33) and lim ianpi,n > 0 in (3.37), we obtain

n—oo 4
i=1

lm || Jwny1 — JTw, =0, ¥i>1. (3.38)

n—oo

Since J~! is uniformly norm-to-norm continuous on bounded subsets of E, we get

lim || wpe1 — 1wy, ||=0, Vi>1. (3.39)

n— oo

From the triangular inequality that for each ¢ > 1, we have
| wn = T wy [|[<]| wn = wnpir || 4[] wngr = Twn || - (3.40)
Putting (3.14) and (3.39) in (3.40), we obtain

lim || w, —T/'w, ||=0, Vi>1. (3.41)

n— oo

Taking into account that for each i > 1, we have
| T'wn — @ |<|| T'wn —wn || + | wn =@ ] - (3.42)
Using (3.12) and (3.41) in (3.42), we conclude that
nhHH;O | T/ wy, — @ ||=0, Vi>1. (3.43)
Furthermore, using assumption that 7T; is uniformly L;- Lipschitz continuous for each ¢ > 1, lead to

1T wn = T wy, | 177w, = T w4+ 1 T g = i |

| Wny1 — wp || + || wp — T wy ||
(Li + 1) [ wngr —wn || + | T wngs — wogr || + || wn — T w)(344)

IN 4+ IA

Therefore, by using (3.9) and (3.41) in (3.44), we obtain

lim || 77w, — T w, |=0, Vi> 1.

n—oo

Hence, from (3.43), it yield that

lim || 7/ w, —& |=0, Vi>1.

n—oo

Implies that T;T]'w, — @& as n — oo. Therefore, in view of the Closedness of T;, we conclude
that T;w = w, Vi > 1. Hence,

&€ N2 F(T}).

Taking the advantage of (3.2) that

G(ﬁvjun) = G(ﬁv‘]Ti,rnzn)v Vi > 1.
< G Jzn)
< WGP, Jwn) + (1 = )G (B, Jvn),
gives
G, Tvn) 2 3= (G(p, Jun) = mG(p. Jwn))
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Moreover, by Lemma 2.15, we observe that

¢(vn7wn) = ¢(Jrnwnawn)
S G(ﬁa an) - G(ﬁ? JJT‘nwn)
= Gp,Jw,) — G(p, Jvy)
N 1 N .
< GO, Jw,) — 1 (G(pa Jun) — G (P, an))
1 R .
= 15 (G, Jwn) — G(B, Juy))
1 R
1 ( ” W, ”2 - H Un ”2 —2<p, Jwp, — Jun>)
— Tn
1 A
< g (eon I = T [P 4266, Jun = Jun)])
1 R
S 15 (I wn = wa DT wn |+ ) +2 05l Jwn = Jun [|) - (3.45)
Since lirr_1>inf(1 — v,) > 0, now by using (3.23) and (3.24) in (3.45), we obtain
n o0
It follows from Lemma 2.3 that
nl;rrgo | wy, — vy, ||=0. (3.47)
Since J is uniformly norm-to- norm continuous on bounded subsets of E, we have
lim || Jw, — Ju, ||=0. (3.48)
n— oo
It also follows from (3.12) and (3.47) that
lim v, = @.
n—oo
Now, since r, > a, v, = J., w, and by (3.47), we get
. 1
lim — || Jw, — Ju, ||= 0. (3.49)

n—oo T,

Then

nlggo | Si w0 ||

1
lim — || Jw, — JJ,, wy ||

n—oofr,

1
lim — || Jw, — Jo, ||
n—00 T,

0, Vi> 1.

Consider (o,0*) € S;, monotonicity of S; and by Lemma 2.14, we get

(0 — U, 0"

— Sir W) >0, ¥Yn>0, i>1

Now, taking the limit as n — oo, we have (o — &, 0*) > 0. It follows from the maximality of .S;

that @ € Si_l(), Vi > 1. Hence

@ e ne,s;to.
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Next, we show that & € (ﬁg’ilGMEP(Bi,Ai,bi)). From the equation w,, = T;,, 2z, (3.31) and
{rin} C la,00) for some a > 0, we observe that

lim | M |=0, ¥i>1. (3.50)

n—oo in

By u,, = T; ., 2n, We obtain

1
Qi (un, V) + f<19 — Up, Jup — Jzp) + b (9, up) — bi(up,u,) >0, VO €Q, i > 1.

rzn

Where
Qi(un, 19) = Bl(un,ﬁ) -+ <Azun,19 — Un>,

We also observe that by the assumption Bs, we get

1
7<79 — Un, Jun - Jzn> > _Qi(unaﬁ) - bi(’lg; un) + bi(unaun)

o > (0, un) — by (9, un) + by (up, up)
By taking n — oo, (3.50) and the lower semicontinuity of 4 — f(¢, .), we conclude that
Q;(9,0) — b;(9,0) + by (0,0), Yy e Q, i>1.
Consider 9, := 79 + (1 — m)®, Vr € (0,1], then ¥, € Q, hence
Qi (0, @) — b (O, @) + by (0,0) <0, ¢ > 1.

Also, by the assumptions (By) — (By) for all i > 1, we obtain

0 = Qi0x,0x)
< 700, 9) + (1 — 1) (0, @)
< 7 (W0r,0) + (1 — 1) [bi(0r, @) — bi(, )]
< w00, 0) + (1 — ) [bi(0, @) — bi(@, )]

Letting 7 > 0, it follows from the assumption (Bs) that
(@, 0) + bi(9,&) — by(@,&) >0, V0 € Q, i > 1.
This implies that
@ € (GMEP(B;, Ay b)), i>1.
Hence
& € (N2, GMEP(B;, Ai,by)).
Therefore

wel

Step 5 : we show that @ = Hf:wl. Since T is closed and convex set, by Lemma 2.10, we have that

Hfiwl is single-valued denoted by z*. Also from the definition of w,, = Hgnwl and z* € I' C @, we
get that

G(wWn, Juw1) < G(z", Jwy), VYn > 1.
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From the definition of G and f, we note that for any given w € E, G(¢, Jw) is convex and lower
semi continuous with respect to ©¥. Then

G, Jw) < lirginfG(wn,le)
< limsupG(wy, Jw1)
n—oo
< G(z*, Jwy).

By definition of wal and w € I', we conclude that x* =& = Hfjwl and w, — @w asn — co. This
completes the proof. O

4 APPLICATION

Some applications of theorem 3.1 are to be present in this section as follows:

4.1 Countable family of total quasi-phi-asymptotically nonexpansive maps,
maximal monotone operator and system of generalized equilibrium
problems.

We observe that {w,} defined in theorem 3.1 converges strongly to H{:wl by setting A = 0 in
theorem 3.1, where T' := (N2, F(T;)) N (N2, S;7'0) N (N2, GEP(B;,b;)) and GEP(B,b) is the
set of solutions of the generalized equilibrium problem for B and b.

4.2 Countable family of total quasi-phi-asymptotically nonexpansive maps,
maximal monotone operators and system of variational inequalities
problems.

We observe that {w,} defined in theorem 3.1 converges strongly to Hfiwl by setting B =0, =0
in theorem 3.1, where I' := (N2, F(T;)) N (N2, S;10) N (N2, VIP(4;)) and VIP(Q, A) is the
set of solutions of variational inequality problem for A over Q.

Application in Hilbert space
We also present the application of theorem 3.1 in Hilbert space as follows:

Theorem 4.1. Let Q be a nonempty closed and convex subset of a Hilbert space H. Let S; C
E x E*i = 1,2,3,... be a sequence of mazimal monotone operators satisfying D(S;) C @Q and
Jy = (J +1.8)7 Y, for all v, > 0,4 = 1,2,3,... Let B; : Q x Q — R,i = 1,2,3,... be
a sequence of bifunctions satisfying assumptions (B1) — (Ba), b; : Q@ x Q@ — R,i = 1,2,3, ...
be a sequence of bifunctions satisfying assumptions (by) — (b3) and A; : Q@ — E*,i = 1,2,3, ...
be a sequence of continuous monotone maps. Let {T;}2, : @ — @ be an infinite family of
closed uniformly L- Lipschitz continuous and uniformly total quasi-asymptotically nonexpansive
mappings with the sequences (,, pn of nonnegative real numbers with ¢, — 0, p, — 0 as
n — oo and stricly increasing continuous function ¢ : RY — RY with ¢(0) = 0. Assume that
I':=(NX, F(T)) N (N2, 8;710) N (N2 GMEP(B;, Ai, b;)) # 0. Let {w,,} be a sequence defined
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as follows:

w1 €Q1=FE;
Wy, = Wr, + O (Wn — Wp—1);
o0

1971 = Jﬁl(po,njwn + sz,nJTznwn)a
i=1
2n = J Yy Jw, + (1 —30)J Ty 00);
Un, € Q such that B;(up,9) + (Aitn, ¥ — up)
1
+ (9 = tup, Jup — Jzn) + bi(un, 9) — bi(un, uy) > 0,V € Q;

Tin
Qni1 = {u € Qn:f| u—up |P<[ u—wy [|> +6n};
Wny1 = Pg, w1, Vn > 1,

where a, C (0,1), {vn} and {pin} C [0,1] such that Zpi)" =1, {rn} is a sequence in (0, 00) with

=0

{rin} C[a,00) for some a >0, Vi=1,2,3,.... and 6, = (b (|| wn — P ||* ) + ptn, P €T. Assume
that liminfpg npin > 0,Vi > 1, liminf(l —~,) > 0 and lim r, = co. Then, {w,} converges
n—o00 n—0oo

n—oo

strongly to Prwy, where P is the metric projection of H onto C.
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