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Abstract

In this article, two new classes of pairs {T, f} consisting of an asymptotic quasi-contraction
T with respect to a map f are introduced. The existence and uniqueness of the common fixed
point of such pairs {T, f} is then established in the context of a quasi-metric space X, when
T and f are weakly compatible. The theorems obtained rely on some conditions on the orbit
OT,f (x,∞) of T at points x ∈ X with respect to f , and are in fact, improvements of previously
known results in the literature of metric-types. An example is given to validate the results
obtained.

Keywords: Asymptotic quasi-contraction, Meir-Keeler type mappings, Weakly compatible maps,
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1 Introduction
There are many generalizations of the fundamental contraction mapping theorem established by
Banach [1] which served as pivotal tool for solving problems in analysis and applied mathematics.
For instance see [2-6]. One of the most general contraction mapping was introduced by Ciric [7]
in 1971. In 2003, Kirk [8] introduced asymptotic contraction mapping which is a generalization of
Banach contraction mapping and established the fixed point of the operator in a complete metric
space under certain conditions. Asymptotic contraction map is for example, applied in dynamical
system to solve analytical problems. Several works have been carried out in this regard, see [9,10].
Meir-keeler [11] extended Banach contraction principle by proving the following result:∣∣∣∣∣∣∣∣

Let (X, d) be a complete metric space and f a self map of X.
Assume that for every ϵ > 0, there exists δ > 0 such that:
ϵ ≤ d(x, y) < ϵ+ δ implies d(fx, fy) < ϵ for all x, y ∈ X.
Then f has a unique fixed point.

This work is licensed under a Creative Commons Attribution 4.0 International License.
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Suzuki [12] combined the works of Kirk [8] and Meir-Keeler [11] to introduce a class of map called
asymptotic contraction of Meir-Keeler type ( for short, ACMK). In 2008, Singh and Pant [13]
extended the result of Suzuki [12] to more genaral maps. Our interest is in the result of Singh et
al. [14] on maps that are called generalized asymptotic contraction of Meir-Keeler type (for short,
GACMK).

Definition 1.1. Let (X, d) be a metric space, Y a subset of X, and T, f : Y → X two maps. The
map T is called a generalized asymptotic contraction of Meiler-Keeler ype (in short GACMK) with
respect to f if there is a sequence {ψn} of self-maps on [0,∞) such that:

(P1) lim sup
n→∞

ψn(ϵ) ≤ ϵ for all ϵ ≥ 0;

(P2) for each ϵ > 0, there exist δ > 0 and ν ∈ N such that ψν(t) ≤ ϵ for all t ∈ [ϵ, ϵ+ δ];

(P3) d(T
nx, Tny) < ψn(M(x, y)) for all n ∈ N and x, y ∈ X with M(x, y) > 0,

where M(x, y) = max
{
d(fx, fy), d(fx, Tx), d(fy, Ty), d(fx,Ty)+d(fy,Tx)

2

}
.

In the same reference, they stated the following result.

Theorem 1.2. Let (X, d) be a metric space and T, f : Y → X such that T (Y ) ⊆ f(Y ). Let T be
a GACMK with respect to f . If T (Y ) or f(Y ) is a complete subspace of X, then T and f have a
coincidence point. Further, if Y = X, then T and f have a unique common fixed point provided
that T and f commute at a coincidence point.

Recall that the following definitions of coincidence points and weakly compatible mappings:

Definition 1.3. [15] Let X be a set and T and f be two self maps of X. A point x in X is called
a coincidence point of T and f if and only if Tx = fx. We shall call z := Tx = fx a point of
coincidence of T and f .

Definition 1.4. [16] Two self maps T and f in a set X are said to be weakly compatible if they
commute at their points of coincidence, that is, if Tx = fx for some x ∈ X, then Tfx = fTx.

It should be noted that Definition 1.1 and Theorem 1.2 due to Singh et al. [14] pose a few problems:

1. for x ∈ X and n ∈ N, the point Tnx is not defined, except if Y = X;

2. the function f may not satisfy f(x) = x for all x ∈ Y . Therefore, a sequence1 {xn} such that
Txn = fxn+1 for all n ≥ 0, may not satisfy xn = Tnx0 for all n ≥ 0, an assumption which
seem to have been used in several lines of their proof.

In this paper, our aim is to provide an ammendment of the maps of Singh et al. [14] and establish
an ensing common fixed point theorem in the framework quasi-metric spaces. The following are
needed definitions in the setting of quasi-metric spaces:

Definition 1.5. [17] Let X be a non-empty set. A function d : X × X → [0,∞) is said to be a
quasi-metric on X if for any x, y, z ∈ X the following holds:

(i) d(x, y) = 0 if and only if x = y;

(ii) d(x, z) ≤ d(x, y) + d(y, z).

In such case, (X, d) is said to be a quasi-metric space.

Definition 1.6. [17–20] Let (X, d) be a quasi-metric space. A sequence {xn} in X is said to be:

(i) forward-convergent to some x ∈ X (called the forward limit) if ∀ϵ > 0 ∃Nϵ ∈ N: d(xn, x) < ϵ
∀n ≥ Nϵ; in other words, {xn} in X is forward-convergent to x if lim

n→∞
d(xn, x) = 0.

1The existence of such a sequence is discussed in subsection 2.1.
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(ii) backward-convergent to some x ∈ X (called the backward limit) if ∀ϵ > 0 ∃Nϵ ∈ N: d(x, xn) <
ϵ ∀n ≥ Nϵ; in other words, {xn} in X is backward-convergent to x if lim

n→∞
d(x, xn) = 0.

(iii) convergent to some x ∈ X if it is both forward-convergent and backward-convergent to x.

(iv) forward Cauchy (or left K-Cauchy) if ∀ϵ > 0 ∃Nϵ ∈ N: d(xn, xn+k) < ϵ ∀n ≥ Nϵ ∀k ∈ N.

(v) backward Cauchy (or right K-Cauchy) if ∀ϵ > 0 ∃Nϵ ∈ N: d(xn+k, xn) < ϵ ∀n ≥ Nϵ ∀k ∈ N.

(vi) Cauchy (or p-Cauchy) if ∀ϵ > 0 ∃Nϵ ∈ N: d(xn, xm) < ϵ ∀n ≥ Nϵ ∀k ∈ N. In other words,
{xn} is Cauchy if it is forward Cauchy and backward Cauchy.

Definition 1.7. [21] A quasi-metric space X is said to be complete if every Cauchy sequence in
X is convergent in X.

2 Generalized Asymptotic Contractions of Meir-Keeler type
with respect to some functions

In the next section, we give ammend the definition of a generalized asymptotic contraction of Meir-
Keeler type as proposed by Singh et al. [14], then prove a common fixed point theorem in complete
quasi-metric space.

2.1 Jungck sequence and orbits with respect to f

Suppose X is a non-empty set, Y is a non-empty subset of X, and T, f : Y → X such that
T (Y ) ⊆ f(Y ).

Choosing x0 ∈ Y , one can define a Jungck sequence {xn} of points in Y such that

Txn = fxn+1, n = 0, 1, 2, . . . . (2.1)

If f is the inclusion map, that is, such that f(x) = x for any x ∈ Y , then by repetitive application of
(2.1), the sequence {xn} is such that xn = Tnx0, or more generally, xn+k = Tnxk for any n, k ≥ 0,
with the convention that T 0 is the identity function on Y .

If f is not necessarily the inclusion map, and x ∈ X, the sequence of sets
{(Tf−1)n(x)}n≥0 is defined as follows:

(Tf−1)n(x) =


{x} if n = 0

{Tu : f(u) = x} if n = 1

{Tu : f(u) ∈ (Tf−1)n−1(x)} if n > 1.

(2.2)

Given that ∅ ≠ T (Y ) ⊆ f(Y ), each (Tf−1)n(x) is non-empty and for n > 1,

(Tf−1)n(x) =

{
Tu

∣∣∣∣ ∃u1, u2, · · · , un−1 ∈ Y, f(u) = Tu1, f(un−1) = x
and if n > 2, f(u1) = Tu2, . . . , f(un−2) = Tun−1,

}
(2.3)

The Jungck sequence {xn} defined in (2.1) is such that for all n, k ≥ 0, Txn+k ∈ (Tf−1)n(Txk),
and in particular, Txn ∈ (f−1T )n(Tx0) and Txn+1 ∈ (Tf−1)(Txn).

Notice that when f is a bijection on Y , each (Tf−1)n(x) is the singleton. In the special case
where f(x) = x for all x ∈ Y , (Tf−1)n(x) = {Tnx} for each n ≥ 0 and x ∈ Y .

In literature, orbits of self-maps and orbital completeness have been defined as follow:
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Definition 2.1. [22] Let T : X → X be a self mapping on a metric space. For each x ∈ X and
for any positive whole number n, define the sets:

OT (x, n) = {x, Tx, T 2x, T 3x, · · · , Tnx}

and
OT (x,∞) = {x, Tx, T 2x, T 3x, · · · , Tnx, · · · }.

The set OT (x,∞) is called the orbit of T at x and the metric space X is called T - orbitally complete
if every Cauchy sequence in OT (x,∞) is convergent in X.

The following definition is an extension of the concepts of orbits and orbital completeness for maps
for which Jungck sequences are defined:

Definition 2.2. Let T, f : Y → X be a two mappings defined on a subset Y of a set X, for which
T (Y ) ⊆ f(Y ). For each x ∈ X and for any positive whole number n, the set

OT,f (x, n) :=
{
z| z ∈ (Tf−1)i(x), 0 ≤ i ≤ n

}
=

n⋃
i=0

(Tf−1)i(x)

will be called the n-orbit of T at x with respect to f , while the set

OT,f (x,∞) :=
{
z| z ∈ (Tf−1)i(x), i ≥ 0

}
=

∞⋃
i=0

(Tf−1)i(x)

will be called the orbit of orbit of T at x with respect to f .

If X is endowed with a quasi-metric d, then X is called {T, f}-orbitally complete if every Cauchy
sequence in OT,f (x,∞) is convergent in X.

It immediately follows that the well-known concepts of orbits and orbital completeness of a map
T are obtained when f(x) = x for all x ∈ Y . Motre precisely, OT,f (x, n) becomes OT (x, n) and
OT,f (x,∞) becomes OT (x,∞).

2.2 GACMK re-introduced
We can then re-introduce the definition of Generalized Asymptotic Contraction of Meir-Keeler type
(GACMK) with respect to a function f :

Definition 2.3. Let (X, d) be a quasi-metric space, Y a subset of X, and T, f : Y → X two
mappings. The map T is called generalized asymptotic contraction of Meir - Keeler type (GACMK,
simply) with respect to f if there exists a sequence {ψn} of functions from [0,∞) into itself satisfying
the following:

(G1) lim sup
n→∞

ψn(ϵ) ≤ ϵ for all ϵ > 0;

(G2) for each ϵ > 0 there exist δ > 0 and ν ∈ N such that ψν(t) ≤ ϵ for all t ∈ [ϵ, ϵ+ δ];

(G3) For all n ∈ N, and x, y ∈ Y such that M(x, y) > 0,

d(u, v) < ψn(M(x, y)), (2.4)

for all u ∈ (Tf−1)n−1(Tx), v ∈ (Tf−1)n−1(Ty), where:

M(x, y) = max

{
d(fx, fy), d(fx, Tx), d(fy, Ty),

d(fx, Ty) + d(fy, Tx)

2

}
. (2.5)
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Remark 2.4.

1. It should be noted that Definition 2.3 differs with Definition 1.1 proposed by Singh et al.
[14] in that the inequality (2.4), d(u, v) < ψn(M(x, y)), holds for any u ∈ (Tf−1)n−1(Tx) and
v ∈ (Tf−1)n−1(Ty) rather than for u = Tnx and v = Tny (which would only exist if Y = X).

2. Suppose f(x) = x for all x ∈ Y , then for any x, y ∈ Y , we have that

M(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)

2

}
and (u, v) = (Tnx, Tny) for all n ∈ N, u ∈ (Tf−1)n−1(Tx), and v ∈ (Tf−1)n−1(Ty). Under this
condition, for any n ∈ N, d(Tnx, Tny) < ψn(M(x, y)) for x, y ∈ Y such that M(x, y) > 0, and

(i) if max{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)} = d(x, y) in (iii) of Definition 2.3, T be-
comes an asymptotic contraction of Meir-Keeler type (or simply, ACMK) discussed in by
Suzuki [12];

(ii) the case where M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty)} for all x, y ∈ X is discussed by
Singh and Pant [13].

2.3 A fixed point theorem
Now we prove the following theorem on the existence and uniqueness of the common fixed point of
a pair {T, f} where T is a GACMK with respect to f .

Theorem 2.5. Let (X, d) be a quasi-metric space and T, f : Y → X such that T (Y ) ⊆ f(Y ). Let
T be a GACMK with respect to f , i.e., such that for all n ∈ N and x, y ∈ Y such that M(x, y) > 0,

d(u, v) < ψn(M(x, y))

for any u ∈ (Tf−1)n−1(Tx) and v ∈ (Tf−1)n−1(Ty), where

M(x, y) = max

{
d(fx, fy), d(fx, Tx), d(fy, Ty),

d(fx, Ty) + d(fy, Tx)

2

}
.

and {ψn} is a sequence of self-maps on [0,∞) such that:

(G1) lim sup
n→∞

ψn(ϵ) ≤ ϵ for all ϵ ≥ 0;

(G2) for each ϵ > 0, there exist δ > 0 and ν ∈ N such that ψν(t) ≤ ϵ for all t ∈ [ϵ, ϵ+ δ].

Suppose further that:

(G4) any two distinct elements z1, z2 in OT,f (x,∞), d(z1,z2)
2 < d(z2, z1).

If T (Y ) or f(Y ) is a complete subspace of X, then T and f have a coincidence point. Further,
if Y = X, then T and f have a unique common fixed point provided that T and f commute at a
coincidence point.

Proof. Let x0 ∈ Y be arbitrary chosen. Since T (Y ) ⊂ f(Y ), we can define a Jungck sequence {xn}
of points in Y , and a sequence {yn} in X such that

yn = Txn = fxn+1, n = 0, 1, 2, . . . .

This means that
Txn+k ∈ (Tf−1)n(Txk) ∀n, k ≥ 0, (2.6)
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and that

d(Txn+i, Txn+j) < ψn+1(M(xi, xj)) for all n ≥ 0 and i, j with M(xi, xj) > 0. (2.7)

First step: We prove by cases that T and f have a coincidence point if T (Y ) or f(Y ) is complete.

If there is n ≥ 0 such that Txn = Txn+1, then xn+1 is a coincidence point of T and f , since
fxn+1 = Txn+1. Suppose now that Txn ̸= Txn+1 for all n ≥ 0.

For any n ≥ 0, we have d(fxn+1, Txn+1) = d(Txn, Txn+1) > 0, hence M(xi, xj) > 0 for any
distinct i, j ≥ 0.

For any n ≥ 1,

d(Txn, Txn+1) < ψ1(M(xn, xn+1))
≤ M(xn, xn+1)

= max
{
d(Txn−1, Txn), d(Txn, Txn+1),

d(Txn−1,Txn+1)
2

}
≤ max {d(Txn−1, Txn), d(Txn, Txn+1)} ,

(2.8)

hence for all n ≥ 1, {
M(xn, xn+1) = d(Txn−1, Txn)
d(Txn, Txn+1) < d(Txn−1, Txn).

(2.9)

Thus, the sequence {d(Txn, Txn+1)}n≥0 is decreasing and bounded below hence converges to some
α ≥ 0, and d(Txn, Txn+1) > α for all n ≥ 0.

Suppose α > 0. Since 0 < α < d(Tx0, Tx1), there are δ1 > 0 and µ1 ∈ N such that ψµ1(t) ≤ α for
all t ∈ [α, α+ δ1]. By definition of α, there is µ2 ∈ N such that M(xµ2 , xµ2+1) = d(Txµ2−1, Txµ2) <
α + δ1. Therefore, d(Txµ2+µ1−1, Txµ2+µ1

) < ψµ1
(M(xµ2

, xµ2+1)) ≤ α, a contradiction. Thus
α := lim

n→∞
d(Txn, Txn+1) = 0.

Next we show that {Txn} is forward-Cauchy sequence. Assuming {yn} is not a forward-Cauchy
sequence, there exists β > 0 and increasing sequences {mk} and {nk} of positive integers such that
for all k ∈ N, mk < nk, d(Txmk

, Txnk
) ≥ β and d(Txmk

, Txnk−1) < β. By the triangle inequality,

d(Txmk
, Txnk

) ≤ d(Txmk
, Txnk−1) + d(Txnk−1, Txnk

),

and as k → ∞, d(Txmk
, Txnk

) → β. We also have that:

d(Txmk
, Txnk

) < ψ1(M(xmk
, xnk

))

= ψ1

(
max

{
d(Txmk−1, Txnk−1), d(Txmk−1, Txmk

)

d(Txnk−1, Txnk
),

d(Txmk−1,Txnk
)+d(Txnk−1,Txmk

)

2

})
,

hence as k → ∞, β ≤ ψ1(β) < β, a contradiction. Thus {Txn} is a forward-Cauchy sequence.

We may prove similarly that {Txn} is a backward-Cauchy sequence. Indeed, for any n ≥ 0,
we have d(Txn+1, fxn+1) = d(Txn+1, Txn) > 0, hence M(xi, xj) > 0 for any distinct i, j ≥ 0. For
any n ≥ 1,

d(Txn+1, Txn) < ψ1(M(xn+1, xn))
≤ M(xn+1, xn)

= max
{
d(Txn, Txn−1), d(Txn+1, Txn),

d(Txn+1,Txn−1)
2

}
≤ max {d(Txn, Txn−1), d(Txn+1, Txn)} ,

(2.10)

hence for all n ≥ 1, {
M(xn+1, xn) = d(Txn, Txn−1)
d(Txn+1, Txn) < d(Txn, Txn−1).

(2.11)

120

 https://doi.org/10.5281/zenodo.10810643


International Journal of Mathematical Sciences and
Optimization: Theory and Applications

10(1), 2024, Pages 115 - 127
https://doi.org/10.5281/zenodo.10810643

The sequence {d(Txn+1, Txn)}n≥0 is decreasing and bounded below hence converges to some γ ≥ 0,
and d(Txn+1, Txn) > γ for all n ≥ 0. In fact, γ = 0 and lim

n→∞
d(Txn+1, Txn) = 0. To see this,

assume γ > 0. Since 0 < γ < d(Tx1, Tx0), there are η1 > 0 and ζ1 ∈ N such that ψζ1(t) ≤ γ for all
t ∈ [γ, γ+η1]. By definition of γ, there is ζ2 ∈ N such thatM(xζ2+1, xζ2) = d(Txζ2 , Txζ2−1) < γ+η1.
Therefore, d(Txζ2+ζ1 , Txζ2+ζ1−1) < ψζ1(M(xζ2+1, xζ2)) ≤ γ, a contradiction.

If one assumes {Txn} is not a backward-Cauchy sequence, there would exist ϵ > 0 and increasing
sequences {mk} and {nk} of positive integers such that for all k ∈ N, mk < nk, d(Txnk

, Txmk
) ≥ ϵ

and d(Txnk−1, Txmk
) < ϵ. By the triangle inequality,

d(Txnk
, Txmk

) ≤ d(Txnk
, Txnk−1) + d(Txnk−1, Txmk

),

and as k → ∞, d(Txnk
, Txmk

) → ϵ. Therefore, letting k → ∞ in the following

d(Txnk
, Txmk

) < ψ1(M(xnk
, xmk

))

= ψ1

(
max

{
d(Txnk−1, Txmk−1), d(Txnk−1, Txnk

)

d(Txmk−1, Txmk
),

d(Txnk−1,Txmk
)+d(Txmk−1,Txnk

)

2

})
,

hence as k → ∞, β ≤ ψ1(β) < β, a contradiction. Thus {Txn} is a backward-Cauchy sequence.

The sequence {Txn} is both forward and backward Cauchy hence it is a Cauchy sequence.

If f(Y ) is complete, then the Cauchy sequence {Txn} as a Cauchy sequence in f(Y ) converges
to some element f(u), where u ∈ Y . If there is n0 ≥ 0 such that M(xn0

, u) = 0, then fu = Tu.
Otherwise, for each n ∈ N,

d(Txn, Tu) < ψ1(M(xn, u))

= ψ1

(
max

{
d(fxn, fu), d(fxn, Txn), d(fu, Tu),

d(fxn,Tu)+d(fu,Txn)
2

})
.

Taking n → ∞, d(fu, Tu) ≤ ψ1 (max {d(fu, Tu)}), hence d(fu, Tu) = 0 and fu = Tu. The same
conclusion is easily obtained if T (Y ) is assumed to be complete.

Second step: We prove that if Y = X, then T and f have a unique common fixed point provided
T and f are weakly compatible.

Tu = fu and T and f are weakly compatible, hence Tfu = fTu and in fact, TTu = Tfu =
fTu = ffu.

Suppose TTu ̸= Tu. ThenM(u, Tu) > 0 and since Tu ∈ (Tf−1)0(Tu) and T (Tu) ∈ (Tf−1)0(T (Tu)),

d(Tu, TTu) ≤ ψ1(M(u, Tu))

= ψ1

(
max

{
d(fu, fTu), d(fu, Tu), d(fTu, TTu), d(fu,TTu)+d(fTu,Tu)

2

})
= ψ (max {d(Tu, TTu)}) .

Thus d(Tu, TTu) = 0, so Tu = TTu = fTu. Theorefore, z := Tu is a common fixed point of T
and f .

To prove the uniqueness of the common fixed point of T and f , we assume v to be another common
fixed point of T and f such that Tu ̸= v. Then:

d(z, v) = d(Tz, Tv) ≤ ψ1(M(z, v))

≤ ψ1

(
max

{
d(fz, fv), d(fz, Tz), d(fv, Tv), d(fv,Tz)+d(fz,Tv)

2

})
= ψ1

(
max

{
d(z, v), d(v,z)+d(z,v)

2

})
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which implies that

d(z, v) <
d(v, z) + d(z, v)

2
. (2.12)

Similarly,

d(v, z) = d(Tv, Tz) ≤ ψ1(M(v, z))

≤ ψ1

(
max

{
d(fv, fz), d(Tv, fv), d(Tz, fz), d(Tv,fz)+d(Tz,fv)

2

})
≤ ψ1

(
max

{
d(v, z), d(v,z)+d(z,v)

2

})
which implies that

d(v, z) <
d(v, z) + d(z, v)

2
. (2.13)

Combining inequalities (2.12) and (2.13), d(v, z) + d(z, v) < d(v, z) + d(z, v), a contradiction. Thus
z = v: the common fixed point is unique.

Note that Theorem 2.5 provides an erratum to the result of Singh et al. [14] in metric spaces:

Theorem 2.6. Let (X, d) be a metric space and T, f : Y → X such that T (Y ) ⊆ f(Y ). Let T be a
GACMK with respect to f , i.e., such that for all n ∈ N and x, y ∈ Y such that M(x, y) > 0,

d(u, v) < ψn(M(x, y))

for any u ∈ (Tf−1)n−1(Tx) and v ∈ (Tf−1)n−1(Ty), where

M(x, y) = max

{
d(fx, fy), d(fx, Tx), d(fy, Ty),

d(fx, Ty) + d(fy, Tx)

2

}
.

and {ψn} is a sequence of self-maps on [0,∞) such that:

(P1) lim sup
n→∞

ψn(ϵ) ≤ ϵ for all ϵ ≥ 0;

(P2) for each ϵ > 0, there exist δ > 0 and ν ∈ N such that ψν(t) ≤ ϵ for all t ∈ [ϵ, ϵ+ δ].

If T (Y ) or f(Y ) is a complete subspace of X, then T and f have a coincidence point. Further,
if Y = X, then T and f have a unique common fixed point provided that T and f commute at a
coincidence point.

Proof. The Theorem follows from Theorem 2.5. The condition (G4) is automatically satisfied in a
metric space given the symmetry of a metric.

A careful analysis of the proof of Theorem 2.5 reveals that condition (G4) is not necessary if M(x, y)
is replaced with max {d(fx, fy), d(fx, Tx), d(fy, Ty)} . Therefore, we have the following result:

Theorem 2.7. Let (X, d) be a quasi-metric space and T, f : Y → X such that T (Y ) ⊆ f(Y ).
Let T be a GACMK with respect to f , i.e., such that for all n ∈ N and x, y ∈ Y such that
{d(fx, fy), d(fx, Tx), d(fy, Ty)} ≠ {0},

d(u, v) < ψn(max {d(fx, fy), d(fx, Tx), d(fy, Ty)})

for any u ∈ (Tf−1)n−1(Tx) and v ∈ (Tf−1)n−1(Ty), where

M(x, y) = max

{
d(fx, fy), d(fx, Tx), d(fy, Ty),

d(fx, Ty) + d(fy, Tx)

2

}
.

and {ψn} is a sequence of self-maps on [0,∞) such that:

(G1) lim sup
n→∞

ψn(ϵ) ≤ ϵ for all ϵ ≥ 0;

(G2) for each ϵ > 0, there exist δ > 0 and ν ∈ N such that ψν(t) ≤ ϵ for all t ∈ [ϵ, ϵ+ δ].

If T (Y ) or f(Y ) is a complete subspace of X, then T and f have a coincidence point. Further,
if Y = X, then T and f have a unique common fixed point provided that T and f commute at a
coincidence point.
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3 A fixed point theorem for asymptotic quasi-contractions
In this section, we consider the case where there is a real number c ∈ (0, 1) such that ψn(t) = ct for
all t ∈ [0,∞) and every n ∈ N, albeit, M(x, y) is further relaxed.

Theorem 3.1. Let (X, d) be a quasi-metric space and T, f : Y → X such that T (Y ) ⊆ f(Y ).
Suppose also that there is c ∈ (0, 1) such that for all n ∈ N and x, y ∈ Y with M(x, y) > 0,

d(u, v) ≤ cM(x, y) (3.1)

for any u ∈ (Tf−1)n−1(Tx) and v ∈ (Tf−1)n−1(Ty), where

M(x, y) = max

{
d(fx, fy), d(fy, fx), d(fx, Tx), d(Tx, fx), d(fy, Ty),
d(Ty, fy), d(fx, Ty), d(Ty, fx), d(fy, Tx), d(Tx, fy)

}
. (3.2)

If T (Y ) or f(Y ) is {T, f}-orbitally complete, then T and f have a coincidence point. Further, if
Y = X, then T and f have a unique common fixed point provided that T and f commute at a
coincidence point.

Proof. Let x0 ∈ Y be arbitrary chosen. Since T (Y ) ⊂ f(Y ), we can define a Jungck sequence {xn}
of points in Y such that

Txn = fxn+1, n = 0, 1, 2, . . . .

Step 1: Suppose T (Y ) or f(Y ) is {T, f}-orbitally complete. We want to show that T and f have
a coincidence point. We distinguish two cases:

Case 1: If there is n ≥ 0 such that Txn = Txn+1, then xn+1 is a coincidence point of T and f ,
since fxn+1 = Txn+1.

Case 2: Suppose now that Txn ̸= Txn+1 for all n ≥ 0. For any n ≥ 0, we have d(fxn+1, Txn+1) =
d(Txn, Txn+1) > 0, hence M(xi, xj) > 0 for any distinct i, j ≥ 0.

If we let D(x, y) = max {d(x, y), d(y, x)} for all x, y ∈ X, the pair (X,D) is a metric space and
conditions (3.12) and (3.4) become for all x, y ∈ X such that N(x, y) > 0:

D(u, v) ≤ cN(x, y) (3.3)

for all u ∈ (Tf−1)n−1(Tx) and v ∈ (Tf−1)n−1(Ty), where

N(x, y) = max {D(fx, fy), D(fx, Tx), D(fy, Ty), D(fx, Ty), D(fy, Tx)} . (3.4)

Let n ≥ 2 and i, j ≥ 1 such that 1 ≤ i < j ≤ n.
Since Txi ∈ (Tf−1)i−1(Tx1), Txj ∈ (Tf−1)i−1(Txj−i+1), and M(x1, xj−i+1) > 0, we have that

D(Txi, Txj) ≤ cN(x1, xj−i+1)

≤ cmax

{
D(Tx0, Txj−i), D(Tx0, Tx1), D(Txj−i, Txj−i+1),
D(Tx0, Txj−i+1), D(Txj−i, Tx1)

}
≤ c diam(OT,f (Tx0, n)),

(3.5)

where
diam(OT,f (Tx0, n)) := sup {D(z1, z2) : z1, z2 ∈ OT,f (Tx0, n)} .

In particular, for all n ≥ 2,

D(Tx1, Txn) ≤ c diam(OT,f (Tx0, n)).

Given n ≥ 1, OT,f (Tx0, n)) is finite hence, there is m ∈ {2, 3, · · · , n} such that

D(Tx0, Txm) = diam(OT,f (Tx0, n)). (3.6)
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Now, for n ≥ 3,

D(Tx1, Txm) ≤ cN(x1, xm)

= cmax

{
D(Tx0, Txm−1), D(Tx0, Tx1), D(Txm−1, Txm),
D(Tx0, Txm), D(Txm−1, Tx1)

}
hence m > 2,

max

{
D(Tx0, Txm−1), D(Tx0, Tx1), D(Txm−1, Txm),
D(Tx0, Txm), D(Txm−1, Tx1)

}
= D(Tx0, Txm),

so D(Tx1, Txm) ≤ cD(Tx0, Txm) and

D(Tx0, Txm) ≤ D(Tx0, Tx1) +D(Tx1, Txm)
≤ D(Tx0, Tx1) + cD(Tx0, Txm).

Therefore,

D(Tx0, Txm) ≤ 1

1− c
D(Tx0, Tx1). (3.7)

From (3.6) and (3.7), the sequence {diam(OT,f (Tx0, n))}n≥3 is bounded above; since it is also
increasing, it converges to the positive number diam(OT,f (Tx0,∞)).

To show that {Txn} is a Cauchy sequence, let n,m ∈ N with n < m. Since Txn ∈ (Tf−1)0(Txn),
Txm ∈ (Tf−1)0(Txm), and M(xn, xm) > 0, we have that

D(Txn, Txm) ≤ cN(xn, xm)

≤ cmax

{
D(Txn−1, Txm−1), D(Txn−1, Txn),
D(Txm−1, Txm), D(Txn−1, Txm), D(Txm−1, Txn)

}
≤ c diam(OT,f (Txn−1,m− n+ 1)).

(3.8)

Repeating the argument that led to (3.6), there is m1 ∈ {2, 3, . . . ,m− n+ 1} such that

D(Txn−1, Txn−1+m1
) = diam(OT,f (Txn−1,m− n+ 1)). (3.9)

Thus, from (3.8),

D(Txn, Txm) ≤ c diam(OT,f (Txn−1,m− n+ 1))
= cD(Txn−1, Txn−1+m1

)
≤ c2diam(OT,f (Txn−2,m1 + 1))
≤ c2diam(OT,f (Txn−2,m− n+ 2))

(3.10)

Repeating the process, one obtains:

D(Txn, Txm) ≤ cndiam(OT,f (Tx0,m))
≤ cndiam(OT,f (Tx0,∞)).

Thus, as n,m → ∞, D(Txn, Txm) → 0, hence {Txn} is a Cauchy sequence in X. f(Y ) or T (Y )
being {T, f}-orbitally complete, {Txn} has a limit, say fu, where u ∈ X. Suppose that fu ̸= Tu;
then N(u, xn) > 0 for all n ≥ 1, and

D(Tu, Txn) ≤ cN(u, xn)

= cmax

{
D(fu, Txn−1), D(fu, Tu), D(Txn−1, Txn),
D(Txn−1, Tu), D(fu, Txn)

}
.

(3.11)

Thus, as n→ ∞, D(Tu, fu) ≤ cD(fu, Tu), a contradiction. Thus D(Tu, fu) = 0 and Tu = fu. u
is a coincidence point of T and f .
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Step 2: Now, we show that if Y = X, then T and f have a unique common fixed point.

Tu = fu, and T and f commute at their conicidence point u, hence TTu = Tfu = fTu = ffu.
Therefore, if one supposes that Tu ̸= TTu, then N(u, Tu) > 0 and

D(Tu, TTu) ≤ cN(u, Tu) = cD(Tu, TTu),

a contradiction. Therefore D(Tu, TTu) = 0 and TTu = Tu = fTu: Tu is a common fixed point of
T and f .

Step 3: To show that z := Tu is the only common fixed point of T and f , suppose v is an-
other a common fixed point of the pair {T, f}. We have that z ̸= u so N(z, v) > 0 and

D(z, v) = D(Tz, Tv) ≤ cN(z, v) = cD(z, v),

a contradiction. Thus D(z, v) = 0 and z = v.

The following corollary holds in metric spaces:

Corollary 3.2. Let (X, d) be a metric space and T, f : Y → X mappings such that T (Y ) ⊆ f(Y ).
Suppose also that there is c ∈ (0, 1) such that for all n ∈ N and x, y ∈ Y with M(x, y) > 0,

d(u, v) ≤ cM(x, y) (3.12)

for any u ∈ (Tf−1)n−1(Tx) and v ∈ (Tf−1)n−1(Ty), where

M(x, y) = max {d(fx, fy), d(fx, Tx), d(fy, Ty), d(fx, Ty), d(fy, Tx)} . (3.13)

If T (Y ) or f(Y ) is {T, f}-orbitally complete, then T and f have a coincidence point. Further, if
Y = X, then T and f have a unique common fixed point provided that T and f commute at a
coincidence point.

4 Example
To validate the results obtained, we construct the following example of the applicability of Theorem
2.5.

Example 4.1. Let X = [1, 2] be equipped with the usual metric d(x, y) = |x−y|. Let T, f : X → X

be defined by: Tx =
x+ 2

3
and fx =

x+ 1

2
for all x ∈ [1, 2]. Here, T (X) =

[
1, 43

]
and f(X) =

[
1, 32

]
hence T (X) ⊂ f(X). Here, f is bijective, and f−1(x) = 2x − 1 for all x ∈

[
1, 32

]
. Therefore,

(Tf−1)(x) =
2x+ 1

3
for all x ∈

[
1, 32

]
and for all n ≥ 0, (Tf−1)n(x) =

(
2
3

)n
(x − 1) + 1 for all

x ∈
[
1, 32

]
.

(Tf−1)n(x) =

{
1 if x = 1,(
2
3

)n
(x− 1) + 1 if x ∈

(
1, 32

]
,

One can check that for all n ≥ 1, and x, y ∈
[
1, 32

]
,

d((Tf−1)n(x), (Tf−1)n(y)) =

(
2

3

)n

|x− y|.

In particular, for all n ≥ 0 and x, y ∈ [1, 2],

d((Tf−1)n−1(Tx), (Tf−1)n−1(Ty)) =

(
2

3

)n−1 ∣∣∣∣x− y

3

∣∣∣∣ .
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Moreover, d(fx, fy) =
1

2
|x− y| for x ∈ [1, 2]. Therefore, for all x, y ∈ [1, 2] such that M(x, y) > 0,

d((Tf−1)n−1(Tx), (Tf−1)n−1(Ty)) =

(
2

3

)n

d(fx, fy) < ψn(M(x, y)),

where

ψn(t) = 2

(
2

3

)n

t ∀t ≥ 0.

One can check that {ψn} satisfies conditions (G1) and (G2) of Theorem 2.5 since for all ϵ ≥ 0,
lim sup
n→∞

ψn(ϵ) = 0 ≤ ϵ, and if ϵ > 0, δ = ϵ
8 , and ν = 2, then ψν(t) ≤ ϵ for all t ∈ [ϵ, ϵ+ δ].

In addition, T and f commute at their only coincidence point x = 1 hence all the conditions
of Theorem 2.5 hold. Therefore, T and f have a unique common fixed point. It is easily seen that
x = 1 is the only common fixed point of T and f . Given x0 ∈ [1, 2], consider the Jungck sequence
Txn = fxn+1. In the uninteresting case that x0 = 1, xn = 1 for any n ≥ 1. Now, let x0 ∈ (1, 2].
Then 3xn+1 = 2xn + 1 for all n ≥ 0. A quick computation gives the following formula for any
n ≥ 1:

xn =
(
2
3

)n
(x0 − 1) + 1

Txn = 1
3

(
2
3

)n
(x0 − 1) + 1.

Thus {Txn} converges to T (1) = 1, the common fixed point of the pair {T, f}.
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