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Abstract

In this article, two new classes of pairs {T’, f} consisting of an asymptotic quasi-contraction
T with respect to a map f are introduced. The existence and uniqueness of the common fixed
point of such pairs {7, f} is then established in the context of a quasi-metric space X, when
T and f are weakly compatible. The theorems obtained rely on some conditions on the orbit
Or,¢(x,00) of T at points z € X with respect to f, and are in fact, improvements of previously
known results in the literature of metric-types. An example is given to validate the results
obtained.
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1 Introduction

There are many generalizations of the fundamental contraction mapping theorem established by
Banach [1] which served as pivotal tool for solving problems in analysis and applied mathematics.
For instance see [2-6]. One of the most general contraction mapping was introduced by Ciric [7]
in 1971. In 2003, Kirk [8] introduced asymptotic contraction mapping which is a generalization of
Banach contraction mapping and established the fixed point of the operator in a complete metric
space under certain conditions. Asymptotic contraction map is for example, applied in dynamical
system to solve analytical problems. Several works have been carried out in this regard, see [9, 10].
Meir-keeler [11] extended Banach contraction principle by proving the following result:

Let (X,d) be a complete metric space and f a self map of X.
Assume that for every e > 0, there exists d > 0 such that:

e <d(z,y) < e+ 0 implies d(fx, fy) < e for all z,y € X.
Then f has a unique fixed point.
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Suzuki [12] combined the works of Kirk [8] and Meir-Keeler [11] to introduce a class of map called
asymptotic contraction of Meir-Keeler type ( for short, ACMK). In 2008, Singh and Pant [13]
extended the result of Suzuki [12] to more genaral maps. Our interest is in the result of Singh et
al. [14] on maps that are called generalized asymptotic contraction of Meir-Keeler type (for short,

GACMK).

Definition 1.1. Let (X, d) be a metric space, Y a subset of X, and T, f : Y — X two maps. The
map T is called a generalized asymptotic contraction of Meiler-Keeler ype (in short GACMK) with
respect to f if there is a sequence {¢n} of self-maps on [0,00) such that:

(Py) limsup ¢, (€) < € for all € > 0;
n—oo

(P2) for each € > 0, there exist 6 > 0 and v € N such that ¥, (t) < e for allt € [e,e + I];

(P3) d(T"z, T™y) < ¥p(M(z,y)) for alln € N and x,y € X with M(x,y) > 0,
where M(z,y) = max {d(fz, fy).d(fz, Tx),d(fy, Ty), L=T0EA0T0 Y,

In the same reference, they stated the following result.

Theorem 1.2. Let (X,d) be a metric space and T, f 1Y — X such that T(Y) C f(Y). Let T be
a GACMK with respect to f. If T(Y) or f(Y) is a complete subspace of X, then T and f have a
coincidence point. Further, if Y = X, then T and f have a unique common fixed point provided
that T and f commute at a coincidence point.

Recall that the following definitions of coincidence points and weakly compatible mappings:

Definition 1.3. [15] Let X be a set and T and f be two self maps of X. A point x in X is called
a coincidence point of T and f if and only if Tx = fx. We shall call z := Tx = fx a point of
coincidence of T and f.

Definition 1.4. [16] Two self maps T and f in a set X are said to be weakly compatible if they
commute at their points of coincidence, that is, if Tx = fx for some x € X, then T fx = fTx.

It should be noted that Definition 1.1 and Theorem 1.2 due to Singh et al. [14] pose a few problems:
1. for x € X and n € N, the point 7"z is not defined, except if Y = X

2. the function f may not satisfy f(x) = z for all x € Y. Therefore, a sequence' {z,,} such that
Tx, = fx,41 for all n > 0, may not satisfy x,, = T™xq for all n > 0, an assumption which
seem to have been used in several lines of their proof.

In this paper, our aim is to provide an ammendment of the maps of Singh et al. [14] and establish
an ensing common fixed point theorem in the framework quasi-metric spaces. The following are
needed definitions in the setting of quasi-metric spaces:

Definition 1.5. [17] Let X be a non-empty set. A function d : X x X — [0,00) is said to be a
quasi-metric on X if for any x,y,z € X the following holds:

(i) d(z,y) =0 if and only if x = y;
(ii) d(z,z) < d(z,y) +d(y, z).

In such case, (X,d) is said to be a quasi-metric space.

Definition 1.6. [17-20] Let (X,d) be a quasi-metric space. A sequence {z,} in X is said to be:
(i) forward-convergent to some x € X (called the forward limit) if Ve > 0 IN, € N: d(z,,,z) < €

Vn > N; in other words, {z,} in X is forward-convergent to z if lim d(z,,z) = 0.
n—oo

IThe existence of such a sequence is discussed in subsection 2.1.
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(ii) backward-convergent to some x € X (called the backward limit) if Ve > 0 3N, € N: d(z,z,) <
€ Vn > N¢; in other words, {x,} in X is backward-convergent to x if lim d(z,z,) = 0.
n—oo

iii) convergent to some x € X if it is both forward-convergent and backward-convergent to x.
tt X if it is both f d t and backward tt

(iv
(v

(vi) Cauchy (or p-Cauchy) if Ve > 0 3N, € N: d(zy,zm) < € Vn > N, Vk € N. In other words,
{z,} is Cauchy if it is forward Cauchy and backward Cauchy.

)
) forward Cauchy (or left K-Cauchy) if Ve > 0 3N, € N: d(xp, Zpyr) < € Vn > N, Vk € N.

) backward Cauchy (or right K-Cauchy) if Ve > 0 3N, € N: d(zp4r, zn) < € ¥n > N, Vk € N.
)

Definition 1.7. [21] A quasi-metric space X is said to be complete if every Cauchy sequence in
X 1is convergent in X.

2 Generalized Asymptotic Contractions of Meir-Keeler type
with respect to some functions

In the next section, we give ammend the definition of a generalized asymptotic contraction of Meir-
Keeler type as proposed by Singh et al. [14], then prove a common fixed point theorem in complete
quasi-metric space.

2.1 Jungck sequence and orbits with respect to f

Suppose X is a non-empty set, Y is a non-empty subset of X, and T, f : ¥ — X such that
T(Y) C f(Y).

Choosing zg € Y, one can define a Jungck sequence {z,} of points in Y such that
Tx, = frpy1, n=0,1,2,.... (2.1)

If f is the inclusion map, that is, such that f(x) = « for any « € Y, then by repetitive application of
(2.1), the sequence {z,} is such that z, = T™x(, or more generally, x,, = T"xy, for any n,k > 0,
with the convention that 7P is the identity function on Y.

If f is not necessarily the inclusion map, and x € X, the sequence of sets
{(Tf=1)"(x)}n>0 is defined as follows:

{z} ifn=0
(T ") =< {Tu: f(u)=x} ifn=1 (2.2)
{Tu: f(u) e (Tf~YHrY(z)} ifn>1.
Given that ) £ T(Y) C f(Y), each (Tf~1)"(z) is non-empty and for n > 1,

Juy,uz, - up—1 €Y, flu) =Tur, f(un—1) =2 }

(T (@) = {Tu ‘ and if n > 2, f(ur) = Tus, ..., fupn—2) = Tup_1, (2:3)

The Jungck sequence {x,} defined in (2.1) is such that for all n,k > 0, Tx,x € (Tf~1)"(Txy),
and in particular, Tz,, € (f~1T)"(Tx) and Tz, 41 € (Tf~ 1) (Tzy,).

Notice that when f is a bijection on Y, each (T f~!)"(z) is the singleton. In the special case
where f(z) =z forallz € Y, (Tf~1)"(z) = {T"x} for each n >0 and z € Y.

In literature, orbits of self-maps and orbital completeness have been defined as follow:
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Definition 2.1. [22] Let T : X — X be a self mapping on a metric space. For each x € X and
for any positive whole number n, define the sets:

Or(z,n) = {z, Tz, T?x, T3z, , T"z}

and
Or(x,00) = {z, Tz, T?x, T3z, -- ,T"x,---}.

The set Or(x,00) is called the orbit of T at x and the metric space X is called T- orbitally complete
if every Cauchy sequence in Op(x,00) is convergent in X.

The following definition is an extension of the concepts of orbits and orbital completeness for maps
for which Jungck sequences are defined:

Definition 2.2. Let T, f : Y — X be a two mappings defined on a subset Y of a set X, for which
T(Y)C f(Y). For each x € X and for any positive whole number n, the set

Org(z,n) ={z| z€(Tf")(z), 0<i<n}=|J@f ") (2)
=0

will be called the n-orbit of T at x with respect to f, while the set
Orp(w,00) :={z| 2z € (Tf ) (x), i >0} = JTf ") (x)
i=0

will be called the orbit of orbit of T at x with respect to f.

If X is endowed with a quasi-metric d, then X is called {T, f}-orbitally complete if every Cauchy
sequence in Or,¢(x,00) is convergent in X .

It immediately follows that the well-known concepts of orbits and orbital completeness of a map
T are obtained when f(z) = z for all x € Y. Motre precisely, Or ¢(z,n) becomes Or(z,n) and
Or,¢(z,00) becomes Op(z,00).

2.2 GACMK re-introduced

We can then re-introduce the definition of Generalized Asymptotic Contraction of Meir-Keeler type
(GACMK) with respect to a function f:

Definition 2.3. Let (X,d) be a quasi-metric space, Y a subset of X, and T,f :' Y — X two
mappings. The map T is called generalized asymptotic contraction of Meir - Keeler type (GACMK,
simply) with respect to f if there exists a sequence {1} of functions from [0, 00) into itself satisfying
the following:

(G1) limsup i, (e) <€ for all e > 0;
n—o0
(Gz) for each € > 0 there exist § > 0 and v € N such that ¥, (t) < € for all t € [e,e + §];
(Gs) Foralln e N, and z,y € Y such that M (z,y) > 0,
d(u,v) < ¥n(M(z,y)), (24)

for allu e (Tf~H""YTx), ve (TfH" YTy), where:

M(z,y) = max {d(fac7 fy),d(fx, Tx),d(fy, Ty), d(fz,Ty) —;— d(fy,Tx) } .
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Remark 2.4.

1. It should be noted that Definition 2.3 differs with Definition 1.1 proposed by Singh et al.
[14] in that the inequality (2.4), d(u,v) < ¥, (M(z,y)), holds for any u € (Tf~1)"~}(Tx) and
v e (Tf~1)"=1(Ty) rather than for u = T"x and v = T™y (which would only exist if Y = X).

2. Suppose f(x) =z for all x € Y, then for any x,y € Y, we have that

d(x,Ty) + d(y, Tx) }
2

M (z,y) = max {d(w, y),d(x, T),d(y, Ty),
and (u,v) = (T"z, T"y) for alln € N, u € (Tf~1)""1(Tx), and v € (Tf~1)"1(Ty). Under this
condition, for any n € N, d(T"z, T"y) < ¥n(M (z,y)) for x,y € Y such that M (z,y) > 0, and

(1) if max{d(z,y),d(z,Tx),d(y, Ty),d(z,Ty),d(y, Tx)} = d(z,y) in (iii) of Definition 2.3, T be-
comes an asymptotic contraction of Meir-Keeler type (or simply, ACMK) discussed in by
Suzuki [12];

(ii) the case where M(z,y) = max{d(z,y),d(z,Tx),d(y,Ty)} for all z,y € X is discussed by
Singh and Pant [13].

2.3 A fixed point theorem

Now we prove the following theorem on the existence and uniqueness of the common fixed point of
a pair {7, f} where T is a GACMK with respect to f.

Theorem 2.5. Let (X,d) be a quasi-metric space and T, f : Y — X such that T(Y) C f(Y). Let
T be a GACMK with respect to f, i.e., such that for alln € N and z,y € Y such that M(x,y) > 0,

d(u,v) < ¢Yn(M(z,y))

for any uw € (Tf~1)""1(Tz) and v € (Tf~1)""1(Ty), where

Ma,) = max {d( . ). d( o Ta) (g, ), W20 2 AT,

and {¥,} is a sequence of self-maps on [0,00) such that:

(G1) limsupp,(e) <€ for all e > 0;

n—r oo

(Gz) for each € > 0, there exist § > 0 and v € N such that ¥, (t) < € for all t € [e,e + §].
Suppose further that:
(Ga) any two distinct elements z1, z2 in Or 5(x,00), @ < d(z2,21).

If T(Y) or f(Y) is a complete subspace of X, then T and f have a coincidence point. Further,
if Y = X, then T and f have a unique common fixed point provided that T and f commute at a
coincidence point.

Proof. Let g € Y be arbitrary chosen. Since T'(Y') C f(Y), we can define a Jungck sequence {x,,}
of points in Y, and a sequence {y,} in X such that

yn:Txn:fxn—i-l, n=0,1,2,....

This means that
Tapir € (T )" (Txy) VYn, k>0, (2.6)
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and that
d(Txpti, Txng;) < Ypy1(M(z4,25)) for all n >0 and ¢, j with M (x;,2;) > 0. (2.7)

First step: We prove by cases that T" and f have a coincidence point if T(Y") or f(Y') is complete.

If there is n > 0 such that Tz, = Tx,4+1, then z,41 is a coincidence point of T and f, since
frnt1 =Txp41. Suppose now that Tz, # Tx,41 for all n > 0.

For any n > 0, we have d(fznt1,T%nt1) = d(Txn, T2yy1) > 0, hence M(z;,z;) > 0 for any
distinct 7,7 > 0.

For any n > 1,

d(Txn, Trne1) < UY1(M(zn,Tne1))
S M(l’n, In-&-l)
= max {d(T;En,l7 Txy), d(Txn, Tny1), w} (2.8)
< max{d(Tzp—1,Tzy), d(Txpn, Txni1)},
hence for all n > 1,
{ M(zp, Tni1) = d(Tzp-1,Txy) (2.9)
d(Tzy, Trpe1) < d(Tap—1,Txy,). ’

Thus, the sequence {d(T'zy, TZnt1) tn>0 is decreasing and bounded below hence converges to some
a >0, and d(Tx,, Txp1) > « for all n > 0.

Suppose o > 0. Since 0 < a < d(T'xo, Tx1), there are ; > 0 and py € N such that ¢, (t) < a for
all t € [, a4 61]. By definition of a, there is 1o € N such that M (z,,,z,41) = d(T2p,—1,Txy,) <
a + 01. Therefore, d(Txp,+p51—1,TZpptp1) < Yuy (M (2py, Tpp+1)) < @, a contradiction. Thus
a:= lim d(Tz,,Tz,41) =0.

n—oo
Next we show that {Tx,} is forward-Cauchy sequence. Assuming {y,} is not a forward-Cauchy

sequence, there exists 8 > 0 and increasing sequences {my} and {ny} of positive integers such that
for all k € N, my, < ng, d(Txm,,Tryn,) > B and d(Txm, , TTn,—1) < 8. By the triangle inequality,

ATxm,, Ten,) < d(Txm,, Ttn, 1)+ dTxn, -1, T2y, ),
and as k — oo, d(Txm,,, Txn, ) — 0. We also have that:

d(Tmmmenk) < ¢1(M($mk7xnk))
d(Tank—l) Txnk—l)a d(Txmk—la T-rnLk)
= ¢1 max d(TJjnk_l, T],‘nk)7 d(Ta:mkfl,TInk);d(TmnkthImk) ’

hence as k — oo, 8 < ¢1(8) < S, a contradiction. Thus {T'z,} is a forward-Cauchy sequence.

We may prove similarly that {Tz,} is a backward-Cauchy sequence. Indeed, for any n > 0,
we have d(TZn41, fTni1) = d(Tpy1, Txy) > 0, hence M (x;, x;) > 0 for any distinct 4, j > 0. For
any n > 1,

d(Txn+1aT-rn) < ’(/Jl (M(mn+1;xn))
< M(xn—i-la xn) 910
= max {d(Tmn, Txy 1), d(Txpsr, Txy), M} (2.10)
< max{d(Tz,,Trp_1),d(Txpi1, Tzn)},
hence for all n > 1,
M(Z‘n+1,$n) = d(TxnaTxn—l) (2 11)
d(Tzps1,Tx,) < d(Txy, Tan—1). ‘
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The sequence {d(Txp+1,Txy) tn>0 is decreasing and bounded below hence converges to some v > 0,
and d(Txps1,Txy) > v for all n > 0. In fact, v = 0 and lim d(T2,4+1,Tx,) = 0. To see this,
n—oo

assume 7 > 0. Since 0 < v < d(Tx1,Txo), there are n; > 0 and (; € N such that ¢, (t) < v for all
t € [y,v+m]. By definition of y, there is (» € N such that M(z¢,11,2¢,) = d(Tx¢,, Txc,—1) < y+n1.
Therefore, d(TxC2+C1’TxC2+C1—1) < e, (M(sz-‘rla sz)) <7, a contradiction.

If one assumes {Tx,} is not a backward-Cauchy sequence, there would exist € > 0 and increasing
sequences {my} and {ny} of positive integers such that for all k € N, my, < ng, d(Txp,, Txm,) > €
and d(Tzp, —1,T%m, ) < €. By the triangle inequality,

ATxpn,, Ttm,) < d(Txn,, Ttn,—1)+dTTn,—1,TTm,),
and as k — oo, d(Txp, , T%m, ) — €. Therefore, letting k — oo in the following

d(Txnlc7Txmk) < wl(M(Ink"rmk))

_ d(TxnkflvTxmkfl)vd(T‘/'anflaT'rnk)
= Y | max d(Txmrl’Txmk),d(Tznk,l,Txmk);d(Ta:mk,l,Txnk) )

hence as k — oo, 8 < 11(8) < 3, a contradiction. Thus {T'z,,} is a backward-Cauchy sequence.
The sequence {Tx,} is both forward and backward Cauchy hence it is a Cauchy sequence.

If f(Y) is complete, then the Cauchy sequence {Tz,} as a Cauchy sequence in f(Y) converges
to some element f(u), where u € Y. If there is ng > 0 such that M(zy,,u) = 0, then fu = Tu.
Otherwise, for each n € N,

ATz, Tu) < 1(M(zn,u))
= (max{d(fxn, fu),d(fxn, Txy), d(fu, Tu), d(fwn,Tu)‘gd(fu,Tzn) }) .

Taking n — oo, d(fu,Tu) < ¢; (max {d(fu,Tu)}), hence d(fu,Tu) = 0 and fu = Tu. The same
conclusion is easily obtained if T'(Y") is assumed to be complete.

Second step: We prove that if Y = X, then T and f have a unique common fixed point provided
T and f are weakly compatible.

Tu = fu and T and f are weakly compatible, hence T fu = fTwu and in fact, TTu = T fu =
fTu= ffu.
Suppose TTwu # Tu. Then M (u, Tu) > 0 and since Tu € (T f~1)°(Tu) and T(Tu) € (Tf~1)°(T(Tu)),

d(Tu, TTu) < Y1(M(u,Tu))
U1 (max {d(fu, fTw),d(fu, Tu),d(fTu, TTu), d(f“’TT“);d(fT“’Tu) })
= ¢ (max{d(Tu,TTu)}).

Thus d(Tu,TTu) = 0, so Tu = TTu = fTu. Theorefore, z := Tu is a common fixed point of T
and f.

To prove the uniqueness of the common fixed point of 7" and f, we assume v to be another common
fixed point of T" and f such that Tu # v. Then:

d(z,v) =d(Tz,Tv) < 1(M(z,v))
1 | max d(fz,fv),d(fz,Tz),d(fv,TU)7W})
1 (max d@mw»

VAN
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which implies that
d(v,z) +d(z,v)

d(z,v) < 5 (2.12)
Similarly,
d(v,z) =d(Tv,Tz) < P1(M(v,2))
< 4y (max<d(fu, f2),d(Tv, fv),d(Tz, fz), W})
< 4y (max{d(v, z), %‘i(z’v)})
which implies that
d(v,2) < w. (2.13)
Combining inequalities (2.12) and (2.13), d(v, 2) + d(z,v) < d(v, z) + d(z,v), a contradiction. Thus
z = v: the common fixed point is unique. O

Note that Theorem 2.5 provides an erratum to the result of Singh et al. [14] in metric spaces:

Theorem 2.6. Let (X,d) be a metric space and T, f: Y — X such that T(Y) C f(Y). Let T be a
GACMK with respect to f, i.e., such that for alln € N and x,y € Y such that M (z,y) > 0,

d(u,v) < Yn(M(z,y))
for any w € (Tf~ )" (Tz) and v € (Tf~1)""1(Ty), where

M (z,y) = max {d(fx, fy),d(fz, Tz), d(fy, Ty), d(fz, Ty) ;L d(fy, Tx) } |

and {¥,} is a sequence of self-maps on [0,00) such that:

(P1) limsup,(€) <€ for all e > 0;
n—oo

(P2) for each € > 0, there exist 6 > 0 and v € N such that ¥, (t) < e for all t € [e,e + ).

IfT(Y) or f(Y) is a complete subspace of X, then T and f have a coincidence point. Further,
if Y = X, then T and f have a unique common fized point provided that T and f commute at a
coincidence point.

Proof. The Theorem follows from Theorem 2.5. The condition (G,4) is automatically satisfied in a
metric space given the symmetry of a metric. O

A careful analysis of the proof of Theorem 2.5 reveals that condition (Gy4) is not necessary if M (x, y)
is replaced with max {d(fx, fy),d(fz,Tx),d(fy, Ty)} . Therefore, we have the following result:

Theorem 2.7. Let (X,d) be a quasi-metric space and T, f :' Y — X such that T(Y) C f(Y).
Let T be a GACMK with respect to f, i.e., such that for allm € N and z,y € Y such that

{d(fz, fy),d(fz,Tx),d(fy, Ty)} # {0},
d(u,v) < ¢y (max{d(fz, fy),d(fz,Tx),d(fy,Ty)})
for any u € (Tf~H)"=Y(Tz) and v € (Tf~1)"~Y(Ty), where

M(z,y) = max {d(f:v, fo), d(f2, T, d(fy, Ty), T TY + Ay Tz) } .

2
and {¥,} is a sequence of self-maps on [0,00) such that:

(G1) limsup ¢, (e) <€ for all e > 0;
n—oo

(Gga) for each € > 0, there exist § > 0 and v € N such that 1, (t) < € for allt € [e,e+ d].

IfT(Y) or f(Y) is a complete subspace of X, then T and f have a coincidence point. Further,
if Y = X, then T and f have a unique common fized point provided that T and f commute at a
coincidence point.
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3 A fixed point theorem for asymptotic quasi-contractions

In this section, we consider the case where there is a real number ¢ € (0, 1) such that ¢, (t) = ct for
all t € [0,00) and every n € N, albeit, M (z,y) is further relaxed.

Theorem 3.1. Let (X,d) be a quasi-metric space and T, f :' Y — X such that T(Y) C f(Y).
Suppose also that there is ¢ € (0,1) such that for alln € N and z,y € Y with M (z,y) > 0,

d(u,v) < cM(z,y) (3.1)
for any uw € (Tf~1)""1(Tz) and v € (Tf~1)""1(Ty), where

_ d(fm,fy>7d(fy>fm)vd(fxaT$>7d(vafx)vd(fvay)a
M(z,y) = ma"{ d(Ty, fy),d(fz,Ty),d(Ty, f),d(fy, ), d(Tx, fy) } (8:2)

If T(Y) or f(Y) is {T, f}-orbitally complete, then T and [ have a coincidence point. Further, if
Y = X, then T and f have a unique common fized point provided that T and f commute at a
coincidence point.

Proof. Let ¢ € Y be arbitrary chosen. Since T(Y) C f(Y), we can define a Jungck sequence {x,,}
of points in Y such that
Tz, = frpe1, n=0,1,2,....

Step 1: Suppose T'(Y) or f(Y) is {7, f}-orbitally complete. We want to show that 7" and f have
a coincidence point. We distinguish two cases:

Case 1: If there is n > 0 such that Tz, = T'x,,+1, then z,41 is a coincidence point of T" and f,
since frp41 =T Tpt1.

Case 2: Suppose now that T'z,, # Tz, foralln > 0. For any n > 0, we have d(fz,41,T2pnt1) =
d(Txy, Txyy1) > 0, hence M(z;, ;) > 0 for any distinct ¢, j > 0.

If we let D(z,y) = max{d(x,y),d(y,z)} for all z,y € X, the pair (X, D) is a metric space and
conditions (3.12) and (3.4) become for all z,y € X such that N(z,y) > 0:

D(u,v) < eN(z,y) (3.3)
for all w € (Tf~1)"~1(Tz) and v € (Tf~1)"~1(Ty), where
N(z,y) = max{D(fz, fy), D(fx, Tx), D(fy,Ty), D(fz, Ty), D(fy, Tx)} . (34)

Let n >2and 4,5 > 1such that 1 <i<j<n.
Since Tx; € (Tf~ )Y (Tx1), Txy € (Tf 1) Y (Twj—it1), and M(z1,2;_i11) > 0, we have that

D(Txi,ij) < CN(Il,l‘j_H_l)

D(TJZ(), ij—i)7 D(TJZ(), Txl)v D(ij—iv ij—i+1)7
S cmax D(Tﬁo,ij_i+1),D(TIj_i,TI1) (35>
< cdiam(Or ¢(Tzo,n)),
where
diam(Or ¢ (Txzo,n)) :=sup {D(z1,22) : 21,22 € O f(Txo,n)}.
In particular, for all n > 2,
D(Tx1,Tx,) < ¢ diam(Or ¢(T'xo,n)).
Given n > 1, O ¢(T'zo,n)) is finite hence, there is m € {2,3,--- ,n} such that
D(Txy, Txy,) = diam(Or, ;(Txo, n)). (3.6)
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Now, for n > 3,

D(Txl,Txm) < CN(-Tlaxm)

ma. D(Txo, Txm—1), D(Txo, Tx1), D(Txp—1, Txp,),
* D(Tzo,Txm), D(Txm—1, T1)

hence m > 2,

max{ D(T1'0>Txm71)7 D(Tib'(), T!I?l), D(TxmflaTxm)v

D<TmO7T-'L'm)7D(TSCm,1, Tajl) } = D(T‘T07T:Cm)7

so D(Tz1,Tx,,) < cD(Tzo, Tx,y,) and

D(Tzg, Tzy) < DTxo,Tz1)+ D(Tz1,TTi)
< D(Tzo,Tx1) + cD(Txo, Txpm,).
Therefore,
1
D(Txzy, Txm) < ED(TxO,Txl). (3.7

From (3.6) and (3.7), the sequence {diam(Or ¢(T'zo,n))}n>3 is bounded above; since it is also
increasing, it converges to the positive number diam(Or (T, 0)).

To show that {Tz,} is a Cauchy sequence, let n,m € N with n < m. Since Tz,, € (Tf~1)°(Tx,),
Tz, € (T H(Tx,,), and M(z,, z,,) > 0, we have that

D(Tzp, Txm) < cN(Tp,Tm)

D(Txn—h Txm—l)y D(T$n_1, Txn)a
<
- cmax D(Txm—hTxm)7D(Txn—lvTxm)aD(Tan—laTxn) (38)
< cdiam(Or f(Txp—1,m —n+ 1)).
Repeating the argument that led to (3.6), there is m; € {2,3,...,m —n + 1} such that
D(Tzp—1,TTpn—14m,) = diam(Or y(Tx,_1,m —n+1)). (3.9)
Thus, from (3.8),
D(Tz,,Tzy) < cdiam(Orp¢(Tzp—1,m—n+1))
= D(Tzp—1,TTp-14m,) (3.10)
< Adiam(Or, f(Txp—o,m1 + 1)) ’
< Adiam(Or f(Txp—2,m —n+2))
Repeating the process, one obtains:
D(Tzp, Tam) c"diam(Or, f(T'xg, m))

<
< c"diam(Or, f(Txg, 0)).

Thus, as n,m — oo, D(Txy, Txm) — 0, hence {T'z,} is a Cauchy sequence in X. f(Y) or T(Y)
being {7, f}-orbitally complete, {Tx,} has a limit, say fu, where u € X. Suppose that fu # Tu;
then N(u,x,) > 0 for all n > 1, and

D(Tu,Tz,) < cN(u,xy,)
B D(fu,Txp—1),D(fu,Tu), D(Txp_1,Tx,),

= Cmax{ D(Tz,_1, Tu), D(fu, Tzy) } 310

Thus, as n — oo, D(T'u, fu) < ¢D(fu,Tu), a contradiction. Thus D(T'u, fu) =0 and Tu = fu. u
is a coincidence point of 7" and f.

124


 https://doi.org/10.5281/zenodo.10810643

Cv! : INTERNATIONAL JOURNAL OF MATHEMATICAL SCIENCES AND
OPTIMIZATION: THEORY AND APPLICATIONS

JMSO 10(1), 2024, PAGEs 115 - 127
HTTPS://D0OI.0RG/10.5281/zENODO.10810643

Step 2: Now, we show that if Y = X, then T and f have a unique common fixed point.

Tu = fu, and T and f commute at their conicidence point w, hence TTu = T fu = fTu = f fu.
Therefore, if one supposes that Tu # TTu, then N(u,Tu) > 0 and

D(Tu,TTu) < eN(u,Tu) = cD(Tu, TTu),

a contradiction. Therefore D(Twu,TTu) = 0 and TTu = Tu = fTu: Tu is a common fixed point of
T and f.

Step 3: To show that z := Twu is the only common fixed point of T' and f, suppose v is an-
other a common fixed point of the pair {T, f}. We have that z # u so N(z,v) > 0 and

D(z,v) = D(Tz,Tv) < ¢N(z,v) = c¢D(z,v),
a contradiction. Thus D(z,v) =0 and z = v. O

The following corollary holds in metric spaces:

Corollary 3.2. Let (X,d) be a metric space and T, f : Y — X mappings such that T(Y) C f(Y).
Suppose also that there is ¢ € (0,1) such that for alln € N and x,y € Y with M (x,y) > 0,

d(u,v) < cM(x,y) (3.12)
for any u € (Tf~H)"=Y(Tz) and v € (Tf~H)"~1(Ty), where

M(x,y) = max {d(fﬂ?, fy)7 d(fvax)v d(fy7Ty)a d(fvay)a d(fyaTx)} . (313)

IfT(Y) or f(Y) is {T, f}-orbitally complete, then T and f have a coincidence point. Further, if
Y = X, then T and f have a unique common fized point provided that T and f commute at a
coincidence point.

4 Example

To validate the results obtained, we construct the following example of the applicability of Theorem
2.5.

Example 4.1. Let X = [1,2] be equipped with the usual metric d(z,y) = |z —y|. LetT, f: X — X
be defined by: Tx = IT—&-Q and fx = ac ;— ! forallz € [1,2]. Here, T(X) = [1,3] and f(X) = [1, 3]
hence T(X) C f(X). Here, [ is bijective, and f~'(z) = 2z — 1 for all x € [1,3]. Therefore,
(T H(z) = 2ot 1 for all z € [1,3] and for all n > 0, (Tf~1)"(z) = (%)n (x —1)+1 for all

g
T € [1,%].

_1n 1 ifr=1,
(Tf Hﬂ:{(g)"(xl)ﬂ ifee(1,3],

One can check that for alln > 1, and z,y € [1, 3],

d((Tf~1)"(2), (TF~)" ()

Il
A~
Wl N
~__

3

B

\
=

In particular, for alln >0 and z,y € [1,2],

d((Tffl)nfl(Tm)j(Tffl)nfl(Ty)) _ (3) —
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1
Moreover, d(fz, fy) = §|x —y| for x € [1,2]. Therefore, for all z,y € [1,2] such that M(x,y) > 0,

A(Ts ), (7 ) = (3) d ) < a1

where

Y (t) =2 (;)nt vt > 0.

One can check that {1} satisfies conditions (G1) and (G2) of Theorem 2.5 since for all € > 0,
limsup¢,(e) =0<¢, and if e >0, 6 = §, and v = 2, then ¢, (t) < € for all t € [e,e + J].

n—oo

In addition, T and f commute at their only coincidence point x = 1 hence all the conditions
of Theorem 2.5 hold. Therefore, T and f have a unique common fized point. It is easily seen that
x =1 is the only common fixed point of T and f. Given xg € [1,2], consider the Jungck sequence
Tz, = fepe1. In the uninteresting case that xg = 1, x, = 1 for any n > 1. Now, let xg € (1,2].
Then 3x,11 = 2z, + 1 for alln > 0. A quick computation gives the following formula for any
n>1:

e = (3)"(wo—-1)+1

Tz, = L(3)"(zo—-1)+1
Thus {Tx,} converges to T(1) =1, the common fized point of the pair {T, f}.
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