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Abstract

Diphtheria is a severely infectious respiratory disease which transmits through droplets and
preventable by periodic vaccine programs. In this paper, A six (6) Compartmental model (S,
E, IA, IS , Q, R) is presented to undersee the behaviour of diphtheria disease transmission
within a group of people with low or zero vaccine coverage and immunity gaps. This research
explores epidemiology and mathematically well-posed model. The reproduction number was
analysed using the Next Generation Matrix, we underscored that a single infected individual
can trigger an outbreak, and further investigation indicates that the disease will subside if the
reproduction number (R0) is less than 1, and vice versa if R0 exceeds 1. The model captures
disease mitigating strategies like maternally derived immunity, vaccination, Quarantine, and
asymptomatic carriers to assess how contagious the disease is and what interventions might be
most effective. To validate theoretical model predictions, we conducted numerical simulations
using MATLAB 2021a software. Relevant and informative model Simulations are displayed in
the full text.

Keywords: Gronwalls-Bellman inequality, Integrating factor, Routh-Hurwitz, Gaussian Elimina-
tion.
MSC2010: 00A71.

1 Introduction
Diphtheria is a deadly infectious respiratory disease caused by Corynebacterium diphtheriae [1],
the disease is highly contagious, it transmits through coughing, sneezing, or close contact with
infected fluid and can be fatal especially in children [2]. Diphtheria symptoms include breathing
problems, swallowing difficulty, and potential paralysis. Despite the availability of vaccines, Diph-
theria remains a global health concern. Vaccination with DTaP is the most effective way to prevent
diphtheria [3], Interestingly, this vaccine combination also protects against pertussis (whooping
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cough) and tetanus [4]]. According to the study of [5], [6], [11] resurgence of vaccine-preventable
infectious diseases continues to pose formidable challenges, particularly due to disruptions in ba-
sic immunization programs induced by the recent COVID-19 Pandemic. For instance, WHO and
UNICEF reported that millions of children missed out of essential vaccines-preventable diseases
including Diphtheria.

Recently, The Nigerian Ministry of Health declared a diphtheria outbreak in January 2023 [7],
Kano and Lagos were the most affected states with several cases of zero vaccinated children. As
of January 14, 2024, the World Health Organization (WHO) reports concern in the surge of sus-
pected and fatality cases of diphtheria across African countries, with Nigeria bearing the brunt of
outbreak [8]. Mathematical models offer valuable insights for analysing diphtheria transmission,
evaluating control strategies, and predicting outbreaks. This review explores the diverse mathe-
matical frameworks employed to study diphtheria transmission dynamics and its likes.

For instance, [9], [10], [11], [12] focused on diphtheria transmission in Indonesia, [9] proposed a
five (5) compartmental model that captures natural immunity alongside low vaccination coverage
as a major concern. Stability analysis of the model was done, results show that reducing the basic
reproduction number R0 to less than 1 via high vaccination and natural immunity is crucial to mit-
igating outbreaks. [10] proposed an optimal control for diphtheria outbreaks using the Pontryagin
Minimum Principle and numerical methods on SEIQR (Susceptible-Exposed-Infected-Quarantined-
Recovered) model of [9]. The optimal control strategy was essential in determining the most effective
intervention combination for minimizing both the outbreak size and associated costs. Whereas, [11]
linked post COVID-19 disruptions to increased diphtheria cases in West Java, Indonesia. Explor-
ing the SIR (Susceptible-Infected-Recovered) model to estimate R0 for diphtheria, concluded that
while spatial analysis reveals hotspots and case cluster diffusion patterns, these findings can inform
prevention and intervention strategies. Also, [12] assumed natural recovery for diphtheria with a
simplified SIR model analysis. The model focuses on endemic and non-endemic conditions using
the Basic Reproduction Number R0, and Proposed an open discussion for model expansion with
more complex parameters for a better and realistic representation of the disease. Similarly, [13]
proposed an SEIQR model with quarantine controller to examine the impact of isolation measures,
underscored that most diphtheria infections are asymptomatic or having a relatively slight clinical
course. In same vein to examine the impact of quarantine on diphtheria disease, [14] developed A
5-group model SEQIR explored the effect of quarantining on exposed individuals. Results suggests
prioritizing quarantine of exposed individuals is key in mitigating disease transmission.

The study of [2], [15] referred to the asymptomatic as silent infectious reservoir. For example, [2]
explored imperfect vaccination coverage and its impact on transmission dynamics using a SVEAIR
(Susceptible-Vaccinated - Exposed- Asymptomatic Infected - Symptomatic Infected-Recovered)
diphtheria model. The study shows that the disease is eradicable with sufficient vaccination and
highlighted that asymptomatic infection influence control strategies. However, [15] highlighted
the two types of asymptomatic infectious carriers as Genetic carriers and infectious disease carri-
ers. Focused on disease infectious carriers using the SIcIR (Susceptible-Carrier-Symptomatically
infectious-Removed) model. Incorporating carriers that is contagious but asymptomatic into the
analysis of infectious diseases. Emphasized the model’s possibility to Evaluate carriers transmission
impact through simulations and the basic reproduction number.

Furthermore, [16] built a mathematical model for diphtheria based on disease epidemiology. The
total population (N) at any time t was subdivided into eight (8) sub-population; Susceptible (S),
Exposed (E), Symptomatic infected (I), Asymptomatic infected (A), Vaccinated individuals with
complete childhood immunization (V1), Vaccinated individuals with booster vaccine (V2), vacci-
nes/ Recovery Wanes (W) and Recovered humans (R). The model analyses illustrate how booster
shots and a contaminated environment affects diphtheria spread. In order for optimal control of
diphtheria outbreaks, [16] underlines the significant role of booster shots alongside environmental
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sanitation and treatment strategies. [17] presented a six compartmental model to examine the dy-
namics in COVID-19 transmission. The impact of quarantine disease controller on the symptomatic
infected, asymptomatic infected and Reproduction number R0 within a given population was stud-
ied. Normalized forward sensitivity was done on quarantine parameters to check its tangibility on
the reproduction number. Results shows that reducing reproduction number will significantly re-
duce or eradicate disease spread. [18] built on the SEIR-type model with Treatment (T) to mitigate
pertussis (whooping cough) resurgence in the post-covid-19 era. In efforts to address Tuberculosis
(TB), [19] and [20] have undertaken measures aimed at reducing the burden of the disease. [19]
extended the SEIR model to S1S2EIRHR which captured two different susceptible classes and
drug resistance RH to the first line of tuberculosis mitigation. The study significantly highlighted
the influence of age groups on TB control. Also, [20] proposed a SIQRM model to assess the impact
of immunity sponsored by vaccines or treatment, quarantine effectiveness, and the waning effect of
immunity within a population subjected to proper disease education without restrictions.

2 Model Formulation
In this study, a Diphtheria mitigating model is formulated base on disease epidemiology, poor vac-
cination facility and self quarantining due to social status. in a defined population. Therefore, total
population is represented by N and sub-divided into six compartments: Susceptible compartment
S, Exposed compartment E, Asymptomatic infected compartment IA , Symptomatic infected com-
partment IS , Recovered compartment R and Quarantine compartment Q, respectively, therefore
the Total population at time t is given by

N(t) = S(t) + E(t) + IA(t) + IS(t) +R(t) +Q(t) (2.1)

We assume that the mixing pattern of the population is homogeneous, which infers that everybody
in the population can contact disease due to diphtheria vaccines recommendations for all ages. We
also assume that Individuals who do not get vaccinated flows into the Susceptible compartment (S)
at rate κ = bN(1− V ), while those who are vaccinated are immune against disease and flows into
the recovered compartment (R) at rate V bN respectively. A susceptible individual who have close
contact with an infected individual is exposed but might not be able to transmit disease yet. The
formulated model considers strong immunity of exposed individuals which is accorded to Maternally
Derived Immunity MDI at rate ξ While the exposed individuals with weak MDI could get infected.
In other words, Exposed individuals with maternally derived immunity are likely not to be infected
by diphtheria and are assumed to flow back into the susceptible compartment. It is assumed that
the potency of MDI is due to periodic vaccination during pregnancy The reservoir of diphtheria
carriers is usually the Asymptomatic infected class [2]. Therefore, Susceptible population increases
by influx of zero vaccinated individuals, MDI and decreases with infection force and natural death
rate µ. where the infection force is represented by

Φ =
βS(αIA + IS)

N
(2.2)

Here β and α represents the interaction of IA and IS with the susceptible compartment. There-
fore, the Susceptible compartment can be mathematically written as

dS

dt
= κ+ Eξ − βS(αIA + IS)

N
− µS (2.3)

The exposed compartment increases by the infection force Φ, due to symptomatic and asymptomatic
interaction with susceptible individuals. The compartment decreases by diphtheria incubation
parameter ϕ, maternal derived immunity ξ and natural death rate µ respectively.

dE

dt
=
βS(αIA + IS)

N
− (ξ + ϕ+ µ)E (2.4)
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After disease incubation period, it is assumed that some individuals who does not show clinical
symptoms of disease but are able to transfer disease flows into the asymptomatic class with a
proportion (1 − ρ)ϕ. The Asymptomatic infected class decrease by natural recovery rate η due to
MDI against diphtheria, natural death rate µ. or decreases by yielding self for quarantined ψ.

dIA
dt

= (1− ρ)ϕE − (η + ψ + µ)IA (2.5)

We also assume that the disease-induced death rate only occurs in symptomatic infected individuals
with rate ϖ. The Symptomatic Infected compartment increases by a proportion of individuals who
shows clinical symptoms of diphtheria with ρϕ after incubation in the exposed compartment. While,
the symptomatic infected compartment decreases by MDI with rate γ, Quarantined and treated
rate θ natural death µ and the diphtheria induced death rate ϖ.

dIS
dt

= ρϕE − (γ + θ +ϖ + µ)IS (2.6)

Quarantine/Isolation compartment increases by individuals from the symptomatic and asymp-
tomatic compartment for treatments and immune boosting at the rates θ and ψ respectively. The
Quarantined class decreases by cure rate of diphtheria Disease σ, natural mortality death µ. Also,
it is assumed that some infected individuals in this compartment might decide to quarantine self
due to social status or other conditions. They recover at rate Ω.

dQ

dt
= ψIA + θIS − (σ +ϖ + µ)Q (2.7)

The recovered compartment increases by individuals who have received vaccination from birth
V bN , also the compartment increases by recovery of Symptomatic and asymptomatic compartment
due to MDI with rates η and γ respectively. Recovery compartment increases by cure rate of
individuals after quarantine process and recovery by self isolation quarantine due to certain social
status conditions or others at rate σ and Ω. The recovered compartment decreases by natural death
rate µ.

dR

dt
= V bN + ηIA + γIS + (σ +Ω)Q− µR (2.8)

2.1 Other Model Assumptions
The following assumptions is also considered:

1. Diphtheria has constant transmission rates over time.

2. No immunity waning after vaccination, the duration for immunity is fixed.

3. The death rate in the symptomatic class is not only due to natural death but also, as a result
of the disease infection.

4. The population structure or specific age bracket is not considered.

5. all parameter used are assumed to be non-negative

Based on the model description and assumptions above, the model of the diphtheria infection
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transmission dynamics is giving by the systems of non-linear differential equations. Equations (1-8).

dS

dt
= bN(1− V ) + ξE − β(αIA + IS)

N
S − µS

dE

dt
=
β(αIA + IS)

N
S − (ξ + ϕ+ µ)E

dIA
dt

= (1− ρ)ϕE − (η + ψ + µ)IA

dIS
dt

= ρϕE − (γ + θ +ϖ + µ)IS

dQ

dt
= ψIA + θIS − (σ +Ω+ µ)Q

dR

dt
= V bN + ηIA + γIS + (σ +Ω)Q− µR

(2.9)

S(0) > 0, E(0) > 0, IA(0) > 0, IS(0) > 0, R(0) > 0, and Q(0) > 0

The Dynamic flow of the model is presented diagrammatically in Fig.1. Below

Fig.1 Schematic Diagram of Diphtheria-Quarantine Model
And the minor parameter description of model is represented in the Tab. 2. below

3 Model Analysis

3.1 Existence and Uniqueness of Solution

For this diphtheria transmission model, to be mathematically and epidemiologically well pose, the
dynamic system must be non-negative and bounded ∀ t .We will show the boundedness and non-
negativity of the system of equation (9) in the subsequent lemmas.

Lemma 1 (non-negativity). If the initial value conditions for S(0) > 0, E(0) > 0, IA(0) >
0, IS(0) > 0, R(0) > 0, Q(0) > 0 and t(0) > 0∀tϵ[0, t0] then, S(t), E(t), IA(t), IS(t), R(t), Q(t) stays
positive through out in ℜ6

+
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Table 1: Parameters Description of Diphtheria-Quarantine Model
S/N Parameter Description

1 β Interaction rate of IA with S.
2 α Interaction rate of IS with S.
3 ρ Proportion of symptomatic infected population.
4 ϕ Incubation period of diphtheria.
5 Ω Self Quarantine
6 γ Recovery rate of symptomatically infected popu-

lation.
7 η Recovery rate of asymptomatically infected pop-

ulation.
8 µ Natural death rate.
9 κ In flux of zero vaccinated population.
10 ϖ Diphtheria-induced death rate.
11 σ Cure rate of Quarantine.
12 ψ Asymptomatic Quarantine rate.
13 θ Symptomatic Quarantine rate.
14 V Vaccinated.
15 b Birth rate.

Proof: Since we are dealing with human populations, it is assumed that all the parameter
used are positive. using the first equation of equation (9) that is the Susceptible compartment, we
have

dS

dt
= κ− Φ− µS = −(Φ + µ)S

separating variables and applying the integrating factor method on equation (9), we obtain∫ S

0

dS

S
= −

∫ t

0

(Φ + µ)dt

ln |S(t)| > −(Φ + µ)S(t) + C

S(t) > Ce−(Φ+µ)S(t)

Hence, S(t)≥ 0 ∀t > 0 Similarly, we can show that E(0) > 0, IA(0) > 0, IS(0) > 0, R(0) >
0, Q(0) > 0.

Lemma 2 (Boundedness). The closed set B∗ given by
B∗ = (S,E, IA, IS , R,Q)ϵℜ6

+ : S + E + IA + IS +R+Q ≤ κ
µ is positively invariant with respect to

the dynamic system model equation (9).

Proof adding equation (9) that is the rate of change in the total population of equation (1)
gives,

dN

dt
=
dS

dt
+
dE

dt
+
dIA
dt

+
dIS
dt

+
dQ

dt
+
dR

dt
(3.1)

Adding Equation (10) and equating it to zero at time t=0 gives,

dN

dt
= κ− µ(S + E + IA + IS +Q+R)− ISϖ (3.2)

Putting The Equations (11) into (10) gives

dN

dt
≤ κ− µN(t)− ISϖ (3.3)
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At the initial instance of outbreak, ISϖ = 0, it was assumed that there was no diphtheria disease
induced death , solving and taking the like terms.

dN

dt
+ µN(t) ≤ κ (3.4)

by applying the integrating factor method to equation (13) and using Gronwalls-Bellman inequality,
then simplifying we obtain

N(t) ≤ κ

µ
+ (N(0)− κ

µ
)e−µt,⇒ N(t) ≤ κ

µ

as t → ∞ therefore, the system equation (8) has the solution in B∗. thus the system is positively
invariant.

Lemma 3 (Existence and uniqueness) From the Initial values of the Equation (9), which is
S(0) > 0, E(0) > 0 IA(0) > 0, IS(0) > 0 Q(0) > 0, R(0) > 0 and t0 > 0, then t ∈ ℜ the solutions
S(t), E(t), IA(t), IS(t), Q(t), R(t) (t).∃ in ℜ6

+.

Proof provided we can express model equation (8) in the form ẋ = f(x) where,

ẋ =


S
E
IA
IS
Q
R

 , f(x) =


κ+ ξE − βS(αIA+IS)

N S − µS
βS(αIA+IS)

N S − (ξ + ϕ+ µ)E
(1− ρ)ϕE − (η + ψ + µ)IA
ρϕE − (γ + θ +ϖ + µ)IS
ψIA + θIS − (σ +Ω+ µ)Q
ηIA + γIS + (σ +Ω)Q− µR

 (3.5)

then by the fundamental existence and uniqueness theorem, Equation (14) is proved, since f has
a continuous first derivative in R6

+ then it is locally Lipschitz, therefore ,ȷ a unique, positive and
bounded solution for the system of differential Equation (9) in R6

+.

3.2 Equilibrium Point Analysis

We consider two equilibrium points which are the Disease-Free Equilibrium Point and Endemic
Equilibrium points respectively. To generate the disease-free equilibrium point, all compartments
in Equation (9) are equated to zero.

N0 = (S0 + E0 + IA0 + IS0 +Q0 +R0) =

(
bN(1− V )

µ
, 0, 0, 0, 0,

bNV

µ

)
(3.6)

The second steady state is the Endemic Equilibrium Point (EEP).

N∗ = (S∗ + E∗ + I∗A + I∗S +Q∗ +R∗)

Denoted as,
S∗ = bN(1−V )

β(αI∗A+I∗S)+µ , E
∗ =

βS(αI∗A+I∗S)
(ξ+ϕ+µ) , I∗A = (1−ρ)ϕE∗

(η+ψ+µ) ,

I∗S = ϕρE
(γ+θ+ϖ+µ) , Q

∗ =
ψI∗S+θI∗A
(σ+ϖ+µ) , R

∗ =
V bN+ηI∗A+γI∗S+(σ+Ω)Q∗

µ

In the course of this study, Other endemic points will be shown in scenarios.
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3.3 Next Generation Matrix
The Basic reproduction number denoted as R0 which is the determining parameter to whether
diphtheria disease will spread or not was calculated using the Next Generation Matrix (NGM)
giving by R0 = FV −1. Which gives us the necessary conditions for the stability of the system.
Equation (16) is diphtheria transmission compartments i.e., the disease classes.

dE
dt = β(αIA+IS)

N S − (ξ + ϕ+ µ)E

dIA
dt = (1− ρ)ϕE − (η + ψ + µ)IA

dIS
dt = ρϕE − (γ + θ +ϖ + µ)IS

dQ
dt = ψIA + θIS − (σ +Ω+ µ)Q

(3.7)

Now, let a = (E, IA, IS , Q) denote the initial state variable of model then, Equation (9) for the
infective class becomes

da

dt
= Fi(a)− Vi(a) (3.8)

where Fi(a) is the rate of new infection and Vi(a) is the in and out rate of diphtheria disease
infection transfer.

Fi(a) =


β(αIA+IS)

N
0
0
0

 ,

Vi(a) =


−(ξ + ϕ+ µ)E

(1− ρ)ϕE − (η + ψ + µ)IA
ρϕE − (γ + θ +ϖ + µ)IS
ψIA + θIS − (σ +Ω+ µ)Q


(3.9)

Where The transition and transmission matrix are denoted by Fi(a) and Vi(a) at N0 Respectively.
Now let

k1 = −(ξ + ϕ+ µ), k2 = −(η + ψ + µ), k3 = −(γ + θ +ϖ + µ), k4 = (1− ρ)ϕ, k5 = −(σ +Ω+ µ), k6 = (σ +Ω)
(3.10)

taking the Jacobian matrix at (DFE),

Fi =


∂F1

∂E
∂F1

∂IA
∂F1

∂IS
∂F1

∂Q
∂F2

∂E
∂F2

∂IA
∂F2

∂IS
∂F2

∂Q
∂F3

∂E
∂F3

∂IA
∂F3

∂IS
∂F3

∂Q
∂F4

∂E
∂F4

∂IA
∂F4

∂IS
∂F4

∂Q

 , Di =


∂V1

∂E
∂V1

∂IA
∂V1

∂IS
∂V1

∂Q
∂V2

∂E
∂V2

∂IA
∂V2

∂IS
∂V2

∂Q
∂V3

∂E
∂V3

∂IA
∂V3

∂IS
∂V3

∂Q
∂V4

∂E
∂V4

∂IA
∂V4

∂IS
∂V4

∂Q

 (3.11)

then Equation (20) becomes,

DFi(a) = F =


0 βαS βS 0
0 0 0 0
0 0 0 0
0 0 0 0

 , DVi(a) = V =


k1 0 0 0
−k4 k2 0 0
−ϕρ 0 k3 0
0 −ψ −θ k5

 (3.12)

Calculating V inverse matrix via Gaussian Elimination method, the augmented matrix becomes

V −1 =


k1 0 0 0 1 0 0 0

−k4 k2 0 0 0 1 0 0
−ϕρ 0 k3 0 0 0 1 0

0 −ψ −θ k5 0 0 0 1


86
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V −1 =


1 0 0 0 1

k1
0 0 0

0 1 0 0 k4
k1k2

1
k2

0 0

0 0 1 0 ϕρ
k1k3

0 1
k3

0

0 0 0 1 ψm4+θϕρ
k1k3k5

ψ
k2k5

+ θ
k3k5

1
k5


We obtain,

V −1 =



1
k1

0 0 0

k4
k1k2

1
k2

0 0

ϕρ
k1k3

0 1
k3

0

ψk4+θϕρ
k1k3k5

ψ
k2k5

θ
k3k5

1
k5


(3.13)

Finding FV −1 becomes,

FV −1 =


0 βαS βS 0
0 0 0 0
0 0 0 0
0 0 0 0

×



1
k1

0 0 0

k4
k1k2

1
k2

0 0

ϕρ
k1k3

0 1
k3

0

ψk4+θϕρ
k1k3k5

ψ
k2k5

θ
k3k5

1
k5


(3.14)

The Reproduction number is the largest first eigenvalue,

FV −1 =


βαSk4
k1k2

+ βϕρS
k1k3

βαS
k2

βS
k3

0

0 0 0 0
0 0 0 0
0 0 0 0

 (3.15)

The eigenvalues λ of FV −1 can be derived using characteristic Equation (25).∣∣FV −1 − λI
∣∣ = 0 (3.16)

FV −1 =


R0 − λ βαS

k2

βS
k3

0

0 0− λ 0 0
0 0 0− λ 0
0 0 0 0− λ


R0 =

βb(1− v)k4
µk1k2

+
βb(1− v)ϕρ

µk1k3
(3.17)

Equation (27) represents the initial reproduction number at DFE. That is R0 × S0 we know that
S0 = κ

µ = b(1−v)
µ then

R0 =
βb(1− v)α(1− ρ)

µ(ξ + ϕ+ µ)(η + ψ + µ)
+

βb(1− v)ϕρ

µ(ξ + ϕ+ µ)(γ + θ +ϖ + µ)
(3.18)

Therefore, the Equation (26) is the reproduction number and can be manually calculated, the two
terms of the reproduction number with zero vaccination can be represented by

R0 = Rasymptomatic +Rsymptomatic (3.19)

The formula for R0 with substituted values is:
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R0 =
(0.57)(0.019)(1− 0)(0.3)(1− 0.55)

(0.006)(0.23 + 0.2 + 0.006)(0.1 + 0 + 0.006)
+

(0.57)(0.019)(1− 0)(0.2)(0.55)

(0.006)(0.23 + 0.2 + 0.006)(0 + 0.1 + 0.05 + 0.05)
(3.20)

Calculating the R0 terms:
First Term =R1 = Rasymptomatic

First Term =
(0.57)(0.019)(0.3)(0.45)

(0.006)(0.436)(0.106)

=
0.0032565

0.00260416
≈ 1.25

Second Term = R2=Rsymptomatic

Second Term =
(0.57)(0.019)(0.2)(0.55)

(0.006)(0.436)(0.256)

=
0.0020211

0.0053056
≈ 0.3811

After computation, we get:

R0 ≈ 1.6311

4 Stability Analysis
The stability analysis of the disease free and the endemic equilibrium points was carried out in this
section.

4.1 Local Stability Analysis of DFEP and EEP

Theorem

Theorem 4.1. The diseases free equilibrium point is locally asymptomatic stable if R0< 1 and
unstable if R0 > 1,

Proof: Jacobian matrix of the dynamic model (9) was estimated at the disease-free equilibrium
which yields

Jdfe =



∂F1

∂S
∂F1

∂E
∂F1

∂IA
∂F1

∂IS
∂F1

∂Q
∂F1

∂R
∂F2

∂S
∂F2

∂E
∂F2

∂IA
∂F2

∂IS
∂F2

∂Q
∂F2

∂R
∂F3

∂S
∂F3

∂E
∂F3

∂IA
∂F3

∂IS
∂F3

∂Q
∂F3

∂R
∂F4

∂S
∂F4

∂E
∂F4

∂IA
∂F4

∂IS
∂F4

∂Q
∂F4

∂R
∂F5

∂S
∂F5

∂E
∂F5

∂IA
∂F5

∂IS
∂F5

∂Q
∂F5

∂R
∂F6

∂S
∂F6

∂E
∂F6

∂IA
∂F6

∂IS
∂F6

∂Q
∂F6

∂R


=


−µ ξ −βα −β 0 0
0 k1 βα β 0 0
0 k4 k2 0 0 0
0 ϕρ 0 k3 0 0
0 0 ψ θ k5 0
0 0 η γ k6 −µ

 (4.1)

Then characteristic |Jdfe − λI| = 0 is expanded and determined as,

Jdfe =


−µ− λ1 ξ −βα −β 0 0

0 k1 − λ2 βα β 0 0
0 k4 k2 − λ3 0 0 0
0 ϕρ 0 k3 − λ4 0 0
0 0 ψ θ k5 − λ5 0
0 0 η γ k6 −µ− λ6

 (4.2)
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A characteristic polynomial is obtained,

(−µ− λ1)(k1 − λ2)(k2 − λ3)(k3 − λ4)(k5 − λ5)(−µ− λ6) = 0

Thus, from equation (31) the eigenvalues are all negative.
λ1 = −µ, λ2 = k1, λ3 = k2, λ4 = k3, λ5 = k5, λ6 = −µ
the three most obvious negative eigenvalues of the Jacobian matrix are λ1 = λ6 = −µ twice and
k5 = −(σ + Ω + µ) Hence, Routh-Hurwitz Stability criteria will be to ascertain the necessary and
sufficient conditions of the negative real parts of the eigenvalues. The first three eigenvalues are
the first, fifth and sixth columns. Therefore a (3×3) sub matrix emerges without the first, fifth and
sixth rows and columns of system of equation (31) we get

J∗
dfe =

 k1 βα β
k4 k2 0
ϕρ 0 k3

 (4.3)

Taking the determinants
|J∗

dfe − λI| = 0

|J∗
dfe − λI| =

∣∣∣∣∣∣
 k1 βα β
k4 k2 0
ϕρ 0 k3

 λ 0 0
0 λ 0
0 0 λ

∣∣∣∣∣∣
=

∣∣∣∣∣∣
k1 − λ βα β
k4 k2 − λ 0
ϕρ 0 k3 − λ

∣∣∣∣∣∣
k1 − λ

∣∣∣∣ k2 − λ 0
0 k3 − λ

∣∣∣∣− βα

∣∣∣∣ k4 0
ϕρ k3 − λ

∣∣∣∣+ β

∣∣∣∣ k4 k2 − λ
ϕρ 0

∣∣∣∣ = 0

−λ3 − λ2(k1 + k2 + k3) + λ(k1k2 + k1k3 + k2k3 − βαk3k4 + λβαk4 − βϕρk2 + λβϕρ

simplifying gives

(k1 − λ)(k2 − λ)(k3 − λ)− βα(k4(k3 − λ)− βαρ(k2 − λ) = 0

−(λ3 − λ2(k1 + k2 + k3) + λ(k1k2 + k2k3 + k1k3 − βαk4 − βϕρ)− k1k2k3 + βαk3k4 + βϕρk2) = 0
(4.4)

comparing Equation (33) with Routh-Hurwitz Stability criteria Equation (34) gives:

f(λ) = λ3 + c2λ
2 + c1λ+ c0 (4.5)

c2 = −(k1 + k2 + k3)
c1 = k1k2 + k2k3 + k1k3 − βαk4 − βϕρ
c0 = −k1k2k3 + βαk3k4 + βϕρk2

Necessary condition: R0, is positive Since both R1 and R2 are positive then from the characteristics
equation (34) c2 > 0 and

c1 = k1k2(1−R1) + k1k3(1−R2) + k2k3 > 0

Then
−k1k2k3 + βαk3k4 + βϕρk2 = k1k2k3(R0 − 1) > 0 ⇔ R0 < 1

Sufficient condition: for R0 < 1, R1 < 1, R2 < 1, by Routh-Hurwitz stability criteria, all the
eigenvalues have a negative real part. hence the necessary and sufficient conditions of the disease-
free equilibrium point N0 is locally asymptotically stable ⇔ R0 < 1
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Theorem 4.2. The Endemic equilibrium points of (10), N∗ = (S∗ + E∗ + I∗A + I∗S +Q∗ + R∗) is
locally asymptomatically stable ⇔ R0 < 1

Proof: The Jacobian matrix J∗
eep of system (9) at EEP is

Jeep =



∂F1

∂S∗
∂F1

∂E∗
∂F1

∂I∗A

∂F1

∂I∗S

∂F1

∂Q∗
∂F1

∂R∗

∂F2

∂S∗
∂F2

∂E∗
∂F2

∂I∗A

∂F2

∂I∗S

∂F2

∂Q∗
∂F2

∂R∗

∂F3

∂S∗
∂F3

∂E∗
∂F3

∂I∗A

∂F3

∂I∗S

∂F3

∂Q∗
∂F3

∂R∗

∂F4

∂S∗
∂F4

∂E∗
∂F4

∂I∗A

∂F4

∂I∗S

∂F4

∂Q∗
∂F4

∂R∗

∂F5

∂S∗
∂F5

∂E∗
∂F5

∂I∗A

∂F5

∂I∗S

∂F5

∂Q∗
∂F5

∂R∗

∂F6

∂S∗
∂F6

∂E∗
∂F6

∂I∗A

∂F6

∂I∗S

∂F6

∂Q∗
∂F6

∂R∗


=


−k8 − µ ξ −αk7 −k7 0 0
k8 k1 αk7 k7 0 0
0 k4 k2 0 0 0
0 ϕρ 0 k3 0 0
0 0 ψ θ k5 0
0 0 η γ k6 −µ


(4.6)

Then characteristic |Jeep − λI| = 0 is expanded and determined as,

Jeep =


−k8 − µ− λ ξ −αk7 −k7 0 0

k8 k1 − λ −αk7 k7 0 0
0 k4 k2 − λ 0 0 0
0 ϕρ 0 k3 − λ 0 0
0 0 ψ θ k5 − λ 0
0 0 η γ k6 −µ− λ

 (4.7)

Let k7 = βS∗

N , k8 =
αI∗A+I∗S

N

Similarly, the first two negative eigenvalues are −µ and −k5, the sign of the remaining part is
deduced from characteristics equation (36),

J∗
eep =


−k8 − µ ξ −αk7 −k7
k8 k1 αk7 k7
0 k4 k2 0
0 ϕρ 0 k3

 (4.8)

The Determinant |J∗
eep − λI| = 0 gives

|J∗
eep − λI| =

∣∣∣∣∣∣∣∣


−k8 − µ ξ −αk7 −k7
k8 k1 αk7 k7
0 k4 k2 0
0 ϕρ 0 k3

 −


λ 0 0 0
0 λ 0 0
0 0 λ 0
0 0 0 λ


∣∣∣∣∣∣∣∣

−k8−µ−λ

 k1 − λ αk7 k7
k4 k2 − λ 0
ϕρ 0 k3 − λ

−ξ
 k8 αk7 k7

0 k2 − λ 0
0 0 k3 − λ

−αk7
 k8 k1 − λ k7

0 k4 0
0 ϕρ k3 − λ


+k7

 k8 k1 − λ αk7
0 k4 k2 − λ
0 ϕρ 0


= (−k8 − µ− λ)(−λ3 − λ2(k1 + k2 + k3) + λ(k1k2 + k1k3 + k2k3)) + (−k8 − µ− λ)(−αk7)(k4k3 − k4λ)+

(−k8 − µ− λ)k7(λϕρ− k2ϕρ)λ
2ξk8 + λξ(k8k2 + k8k3)− ξk8k3k2 − αk3k4k7k8 + λαk4k7k8+
λk7k8ρϕ− ρϕk2k7k8 = 0

(4.9)
= λ3k8 + λ2k8(k1 + k2 + k3)− λk8(k1k2 + k1k3 + k2k3) + λ3µ+ λ2µ(k1 + k2 + k3)− λµ(k1k2 + k1k3 + k2k3)

+λ4 + λ3(k1 + k2 + k3)− λ2(k1k2 + k1k3 + k2k3) + αk8k7k4k3 − λαk8k7k4 + µαk7k4k3
−λµαk7k4 + λαk7k4k3 − λ2αk7k4 − λk8k7ϕρ+ k8k7k2ϕρ− λµk7ϕρ+ µk7k2ϕρ
−λ2k7ϕρ− λk7k2ϕρ+ λ2k7ϕ− λ2ξk8 + λξ(k8k2 + k8k3)− ξk8k3k2 − αk3k4k7k8

+λαk4k7k8 + λk7k8ρϕ− ρϕk2k7k8 = 0
(4.10)
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f(λ) = λ4 + d3λ
3 + d2λ

2 + d1λ+ d0 (4.11)

comparing the polynomials Equation (39) and Equation (40) we apply Routh-Hurwitz criteria.
d3 = µ− (k1 + k2 + k3) + k8

d2 = k1k2 + k2k3 + k1k3 − k1k8 − k2k8 − k3k8 − µk1 − µk2 − µk3 − ϕρk7 − αk4k7 − ξk8

d1 = µ(k1k2 + k2k3 + k1k3) − k1k2k3 + k1k2k8 + k1k3k8 + k2k3k8 − ϕρµk7 − αµk4k7 + ϕρk2k7 +
αk3k4k7 − ξk8k2 − ξk8k3

d0 = µϕρk2k7 − µk1k2k3 − k1k2k3k8 + αµk3k4k7

Necessary condition: The coefficient d3 is positive and d2, d1, d0 can be shown to be positive
as follows:

d2 = k1k2R2+k1k3R1

R0
+ k2k3 − k1k8 − k2k8 − k3k8 − µk2 − µk3 > 0

d1 = µk1k2
R2

R0
+ µk1k3

R1

R0
+ µk2k3 − 2k1k2k3 + k1k2k8 + k1k3k8 + k2k3k8 > 0

d0 = µϕρk2k7 − µk1k2k3 − k1k2k3k8 + αµk3k4k7 = −k1k2k3k8 > 0

Sufficient condition: Furthermore, by Routh-Hurwitz stability criteria all the eigenvalues of the
characteristic equation of (40) have negative real part since it can be shown that d0d23d21−d1d2d3 > 0
, Hence, EEP

N∗ = (S∗ + E∗ + I∗A + I∗S +Q∗ +R∗)

is locally asymptotically stable ⇔ R0 > 0

4.2 Global Stability Analysis of DFEP and EEP

In this subsection, we will use Lyapunov function method to show the global asymptotic stability
of DFE and EEP respectively. by the following theorems

Theorem 4.3. The DFE is globally asymptotically stable ⇔ R0 ≤ 1 then the DFE giving by

N0 = (S0 + E0 + IA0 + IS0 +Q0 +R0) =

(
κ

µ
, 0, 0, 0, 0, 0

)
(4.12)

is stable in the positive invariant region B∗ discussed in previous subsection. now we show that
equation (9) is globally asymptotically stable in the positive invariant region B∗ for initial zero
vaccination and maternally derived immunity.

Proof: Consider a Lyapunov function candidate,

V (SEIAISQR) =

(
S − S0 − S0 ln

S

S0

)
+ E + IA + IS +Q+R (4.13)

Differentiating V (SEIAISQR) with respect to time in the direction of the solution of (9) gives

V̇ =

(
1− S

S0

)
+ Ė + ˙IA + İS + Q̇+ Ṙ (4.14)

putting Equation (9)
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V̇ =
(
1− S

S0

)(
κ− βS(αIA+IS)

N − µS
)
+ βS(αIA+IS)

N

−(ϕ+ µ) + (1− ρ)ϕE − (η + ψ + µ)IA + ρϕE

−(γ + θ +ϖ + µ)IS + ψIA + ϕIS − (σ +Ω+ µ)Q

+ηIA + γIS − (σ +Ω)Q− µR

(4.15)

Expanding and collecting like terms of Equation (44) gives

κ− βS(αIA+IS)
N − µS − κ S

S0
+ βS(αIA+IS)

N
S
S0

+ µS S
S0

−µ(E + IA + IS +Q+R)

(4.16)

Simplifying

κ− κ
S

S0
− κ

S0

S
+
βS(αIA + IS)

N

S0

S
− µ(E + IA + IS +Q+R)

κ

(
2− S

S0
− S0

S

)
+Π

S0

S
− µ(E + IA + IS +Q+R) (4.17)

from Equation (1),

Π = β (αIA+IS)
N and since ΠS0

S is non-negative we have that

V̇ ≤ κ

(
2− S

S0
− S0

S

)
+Π

S0

S
− µ(E + IA + IS +Q+R) (4.18)

By the inequality of arithmetic and geometric means we have,

κ

(
2SS0 − (S2

0 + S2)

SS0

)
− µ(E + IA + IS +Q+R) (4.19)

thus, V̇ ≥ 0 When V̇ = 0 ⇔ E = IA = IS = Q = R = 0. therefore, it follows that the largest
invariant set in (E + IA + IS + Q + R) ∈ B∗ : V̇ = 0 is N0

(
κ
µ , 0, 0, 0, 0, 0

)
Thus, by Lasalle’s

invariance principle the DFE, is globally asymptotically stable.

Theorem 4.4. If R0 > 1, then the equation (9) is globally asymptotically stable if S∗ = S, E∗ =
E, I∗S = IS , I

∗
A = IA, Q

∗ = Q, R∗ = R and X1 < X2 Also, unstable when R0 ≤ 1.

Proof: Applying the constructed Lyapunov function, suppose the basic reproductive number
R0 > 1, then the EEP. constructing a Lyapunov function candidate L defined by,

L(SEIAISQR) =
(
S − S∗ − S∗ ln S

S∗

)
+
(
E − E∗ − E∗ ln E

E∗

)
+
(
IA − I∗A − I∗A ln IA

I∗A

)
+
(
IS − I∗S − I∗S ln

IS
I∗S

)
+

(
Q−Q∗ −Q∗ ln Q

Q∗

)
+

(
R−R∗ −R∗ ln R

R∗

)
(4.20)

Differentiating L in the direction of the solution Equation (9).

dL

dt
=

(
S − S∗

S

)
Ṡ+

(
E − E∗

E

)
Ė+

(
I∗A − I∗A
IA

)
˙IA+

(
I∗S − I∗S
IS

)
İS+

(
Q−Q∗

Q

)
Q̇+

(
R−R∗

R

)
Ṙ

92

 https://doi.org/10.5281/zenodo.10966277


International Journal of Mathematical Sciences and
Optimization: Theory and Applications

10(2), 2024, Pages 79 - 106
https://doi.org/10.5281/zenodo.10966277

can be rewritten as

dL
dt =

(
S−S∗

S

)(
κ− βS(αIA+IS)

N − µS
)
+

(
E−E∗

E

)(
βS(αIA+IS)

N − (ϕ+ µ)E
)
+
(
I∗A−I∗A
IA

)
((1− ρ)ϕE

−(η + ψ + µ)IA) +
(
I∗S−I∗S
IS

)
(ρϕE − (γ + θ +ϖ + µ)IS) +

(
Q−Q∗

Q

)
(ψIA + θIS − (σ +Ω+ µ)Q)

+
(
R−R∗

R

)
(ηIA + γIS − (σ +Ω)Q− µR)

(4.21)
Using the Approach of [15] and Substitution the Equation (53) into Equation (52)

S = S − S∗, E = E − E∗, IS = IS − I∗S , IA = IA − I∗S ,

Q = Q−Q∗, R = R−R∗
(4.22)

dL
dt =

(
S−S∗

S

)(
κ− βS(αIA+IS)

N − µS
)
+
(
E−E∗

E

)(
βS(αIA+IS)

N − (ϕ+ µ)E
)
+

(
I∗A−I∗A
IA

)
((1− ρ)ϕE

−(η + ψ + µ)IA) +
(
I∗S−I∗S
IS

)
(ρϕE − (γ + θ +ϖ + µ)IS) +

(
Q−Q∗

Q

)
(ψIA + θIS − (σ +Ω+ µ)Q)

+
(
R−R∗

R

)
(ηIA + γIS − (σ +Ω)Q− µR)

(4.23)

dL
dt =

(
S−S∗

S

)(
κ− β(S−S∗)(αIA+IS)

N − µ(S − S∗)
)
+
(
E−E∗

E

)(
β(S−S∗)(αIA+IS)

N − (ϕ+ µ)(E − E∗)
)

+
(
I∗A−I∗A
IA

)
((1− ρ)ϕE − (η + ψ + µ)(IA − I∗A)) +

(
I∗S−I∗S
IS

)
(ρϕE − (γ + θ +ϖ + µ)

(IS − I∗S)) +
(
Q−Q∗

Q

)
(ψIA + θIS − (σ +Ω+ µ)(Q−Q∗)) +

(
R−R∗

R

)
(ηIA + γ(IS)

−(σ +Ω)Q)− µ(R−R∗)
(4.24)

dL
dt = (S−S∗)2

S

(
βS(αIA+IS)

N − µ
)
κ+

(
βS(αIA+IS)

N − µ
)
S∗

S − κS
∗

S + βS(αIA+IS)
N − µS∗

− (E−E∗)2

E (ϕ+ µ) + βS(αIA+IS)
N − (ϕ+ µ)E∗ − E∗2

E (ϕ+ µ)− (I∗A−I∗A)2

IA
(η + ψ + µ)

+(1− ρ)ϕE − I∗

IA
(1− ρ)ϕE − (η + ψ + µ)I∗A +

I∗2A

IA
(η + ψ + µ)− (IS−I∗S)2

IS
(γ + θ +ϖ + µ)

+ρϕE − I∗S
IS
ρϕE − (γ + θ +ϖ + µ)I∗S +

I∗2S

IS
(γ + θ +ϖ + µ)− (Q−Q∗)2

Q (σ +Ω+ (ψIA + θIS)

−Q∗

Q (ψIA + θIS)− (σ +Ω+ µ)Q∗ + (σ +Ω+ µ)Q
∗2

Q − (R−R∗)2

R µ+ ηIA + γIS + (σ +Ω)Q

−R∗

R (ηIA + γIS + (σ +Ω)Q)− µR∗ + R∗2

R µ
(4.25)

Re-arranging the positive terms and negative terms in the form,

dL

dt
= X1 −X2 (4.26)
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X1 = κ+
(
βS(αIA+IS)

N − µ
)
S∗

S + βS(αIA+IS)
N +−E∗2

E (ϕ+ µ) + ρϕE +
I∗2A

IA
(η + ψ + µ) +

I∗2S

IS
(γ + θ +ϖ + µ)

+(ψIA + θIS) + ηIA + γIS + (σ +Ω+ µ)Q
∗2

Q (σ +ΩR∗2

R µ

(4.27)
dL
dt = (S−S∗)2

S

(
βS(αIA+IS)

N − µ
)
+
(
κS

∗

S + βS(αIA+IS)
N − µS∗

)
− (E−E∗)2

E (ϕ+ µ)− (ϕ+ µ)E∗ − E∗

E
βS(αIA+IS)

N

+
(I∗A−I∗A)2

IA
(η + ψ + µ) + (1− ρ)ϕE − I∗

IA
(1− ρ)ϕE − (η + ψ + µ)I∗A +

(IS−I∗S)2

IS
(γ + θ +ϖ + µ) + ρϕE

+
I∗S
IS
ρϕE − (γ + θ +ϖ + µ)I∗S + Q∗

Q (ψIA + θIS) + (σ +Ω+ µ)Q∗ + (R−R∗)2

R µ+ R∗

R (ηIA + γIS

+(σ +Ω)Q) + µR∗

(4.28)
Hence, if X1 < X2 then dV

dt ≤ 0. It is worthy of note that at

dV

dt
= 0 ⇔ S∗ = S, E∗ = E, I∗S = IS , I

∗
A = IA, Q

∗ = Q, R∗ = R

The we conclude that the Endemic Equilibrium Point EEP is globally asymptotically stable applying
the LaSalle’s invariance principle.

5 Numerical Simulation
Tab.2 Value of The Model Parameters Corresponding for Diphtheria-Quarantine model.

Table 2: Parameters Description of Diphtheria-Quarantine Model
S/N Parameter Description Values References

1 β Interaction rate of IA with S 0.57 Assumed
2 α Interaction rate of IS with S 0.7 [2]
3 ρ Proportion of symptomatic infected population 0.55 [2]
4 ϕ Incubation period of diphtheria 0.3 [calculated]
5 Ω self Quarantine rate 0.1-0.9 Assumed
6 γ Recovery/cure rate of symptomatically infected Population 0.1 Assumed
7 η Recovery/cure rate of asymptomatically infected Population 0.1 Assumed
8 µ Natural death rate 0.006 [2,10]
10 θ Quarantined rate of symptomatically infected Population 0.1/day Assumed
9 V Vaccination 0.1-1.2 Assumed
11 ϖ Diphtheria induced death rate 0.05 [2,10]
12 b Birth rate 0.019 [10]
13 ξ maternal derived immunity 0.34 [10]
14 σ rate of recovery 0.34 [10]
15 ψ Quarantine rate of asymptomatic infected 0.1-0.9 Assumed

5.1 Sensitivity Analysis
In this subsection, the normalized forward sensitivity index of R0 will be explored to determine
the strength and weakness of each parameter in the models prediction. Therefore, The Normalized
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forward sensitivity index of R0 differentiable with respect to a given parameter β defined as

ΥR0

β =
β

R0

∂R0

∂β
(5.1)

where
R0 =

βb(1− v)α(1− ρ)

µ(ξ + ϕ+ µ)(η + ψ + µ)
+

βb(1− v)ϕρ

µ(ξ + ϕ+ µ)(γ + θ +ϖ + µ)
(5.2)

Manual calculation of the sensitivity to parameter β

β

R0
= β(

µ(ξ + ϕ+ µ)(η + ψ + µ)

βb(1− V )α(1− ρ)
+
µ(ξ + ϕ+ µ)(γ + θ + ω + µ)

βb(1− V )ϕρ
)

∂R0

∂β
=

b(1− V )α(1− ρ)

µ(ξ + ϕ+ µ)(η + ψ + µ)
+

b(1− V )ϕρ

µ(ξ + ϕ+ µ)(γ + θ + ω + µ)

sensitivity to parameter b

ΥR0

b =
b

R0

∂R0

∂b
(5.3)

b

R0
= b(

µ(ξ + ϕ+ µ)(η + ψ + µ)

βb(1− V )α(1− ρ)
+
µ(ξ + ϕ+ µ)(γ + θ + ω + µ)

βb(1− V )ϕρ
)

∂R0

∂b
=

β(1− V )α(1− ρ)

µ(ξ + ϕ+ µ)(η + ψ + µ)
+

β(1− V )ϕρ

µ(ξ + ϕ+ µ)(γ + θ + ω + µ)

sensitivity to parameter α

ΥR0
α =

α

R0

∂R0

∂α
(5.4)

α

R0
= α(

µ(ξ + ϕ+ µ)(η + ψ + µ)

βb(1− V )α(1− ρ)
+
µ(ξ + ϕ+ µ)(γ + θ + ω + µ)

βb(1− V )ϕρ
)

∂R0

∂α
=

βb(1− V )(1− ρ)

µ(ξ + ϕ+ µ)(η + ψ + µ)

sensitivity to parameter ρ

ΥR0
ρ =

ρ

R0

∂R0

∂ρ
(5.5)

ρ

R0
= ρ(

µ(ξ + ϕ+ µ)(η + ψ + µ)

βb(1− V )α(1− ρ)
+
µ(ξ + ϕ+ µ)(γ + θ + ω + µ)

βb(1− V )ϕρ
)

∂R0

∂ρ
=

βαb(V − 1)

µ(ξ + ϕ+ µ)(η + ψ + µ)
+

βb(1− V )ϕ

µ(ξ + ϕ+ µ)(γ + θ + ω + µ)

Sensitivity to parameter V

ΥR0

V =
V

R0

∂R0

∂V
(5.6)

V

R0
= V (

µ(ξ + ϕ+ µ)(η + ψ + µ)

βb(1− V )α(1− ρ)
+
µ(ξ + ϕ+ µ)(γ + θ + ω + µ)

βb(1− V )ϕρ
)

∂R0

∂V
=

βαb(ρ− 1)

µ(ξ + ϕ+ µ)(η + ψ + µ)
+

βbϕρ

µ(ξ + ϕ+ µ)(γ + θ + ω + µ)

Sensitivity to parameter ϕ
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ΥR0

ϕ =
ϕ

R0

∂R0

∂ϕ
(5.7)

ϕ

R0
= ϕ(

µ(ξ + ϕ+ µ)(η + ψ + µ)

βb(1− V )α(1− ρ)
+
µ(ξ + ϕ+ µ)(γ + θ + ω + µ)

βb(1− V )ϕρ
)

∂R0

∂ϕ
= −βb(1− V )α(1− ρ)(µη + µψ + µ2)

(µ(ξ + ϕ+ µ)(η + ψ + µ))2

+
µ(ξ + ϕ+ µ)(γ + θ + ω + µ)(βb(1− V )ρ)− (βb(1− V )ϕρ)(µγ + µθ + µω + µ2)

(µ(ξ + ϕ+ µ)(γ + θ + ω + µ))2

ΥR0
µ =

µ

R0

∂R0

∂µ
(5.8)

Sensitivity to parameter µ

µ

R0
= µ(

µ(ξ + ϕ+ µ)(η + ψ + µ)

βb(1− V )α(1− ρ)
+
µ(ξ + ϕ+ µ)(γ + θ + ω + µ)

βb(1− V )ϕρ
)

∂R0

∂µ
= − (βb(1− V )ϕρ)(ξγ + ξθ + ξω + 2µξ + ϕγ + θϕ+ ωϕ+ 2µϕ+ 2µγ + 2µθ + 2µω + 3µ2)

(µ(ξ + ϕ+ µ)(γ + θ + ω + µ))2

− (βb(1− V )α(1− ρ)(ξη + ξψ + 2µξ + ϕη + ψϕ+ 2µϕ+ 2µη + 2µψ + 3µ2)

(µ(ξ + ϕ+ µ)(η + ψ + µ))2

Sensitivity to parameter ξ

ΥR0

ξ =
ξ

R0

∂R0

∂ξ
(5.9)

ξ

R0
= ξ(

µ(ξ + ϕ+ µ)(η + ψ + µ)

βb(1− V )α(1− ρ)
+
µ(ξ + ϕ+ µ)(γ + θ + ω + µ)

βb(1− V )ϕρ
)

∂R0

∂ξ
= −βb(1− V )α(1− ρ)µ(η + ψ + µ)

(µ(ξ + ϕ+ µ)(η + ψ + µ))2
− (βb(1− V )ϕρ)µ(γ + θ + ω + µ)

(µ(ξ + ϕ+ µ)(γ + θ + ω + µ))2

Sensitivity to parameter η

ΥR0
η =

η

R0

∂R0

∂η
(5.10)

η

R0
= η(

µ(ξ + ϕ+ µ)(η + ψ + µ)

βb(1− V )α(1− ρ)
+
µ(ξ + ϕ+ µ)(γ + θ + ω + µ)

βb(1− V )ϕρ
)

∂R0

∂η
= − (βb(1− V )α(1− ρ)µ(ξ + ϕ+ µ)

(µ(ξ + ϕ+ µ)(η + ψ + µ))2

Sensitivity to parameter ψ

ΥR0

ψ =
ψ

R0

∂R0

∂ψ
(5.11)

ψ

R0
= ψ(

µ(ξ + ϕ+ µ)(η + ψ + µ)

βb(1− V )α(1− ρ)
+
µ(ξ + ϕ+ µ)(γ + θ + ω + µ)

βb(1− V )ϕρ
)

∂R0

∂ψ
= − (βb(1− V )α(1− ρ)µ(ξ + ϕ+ µ)

(µ(ξ + ϕ+ µ)(η + ψ + µ))2
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Sensitivity to parameter γ

ΥR0
γ =

γ

R0

∂R0

∂γ
(5.12)

γ

R0
= γ(

µ(ξ + ϕ+ µ)(η + ψ + µ)

βb(1− V )α(1− ρ)
+
µ(ξ + ϕ+ µ)(γ + θ + ω + µ)

βb(1− V )ϕρ
)

∂R0

∂γ
= − (βb(1− V )ρϕµ(ξ + ϕ+ µ)

(µ(ξ + ϕ+ µ)(γ + θ + ω + µ))2

Sensitivity to parameter θ

ΥR0

θ =
θ

R0

∂R0

∂θ
(5.13)

θ

R0
= θ(

µ(ξ + ϕ+ µ)(η + ψ + µ)

βb(1− V )α(1− ρ)
+
µ(ξ + ϕ+ µ)(γ + θ + ω + µ)

βb(1− V )ϕρ
)

∂R0

∂θ
= − (βb(1− V )ρϕµ(ξ + ϕ+ µ)

(µ(ξ + ϕ+ µ)(γ + θ + ω + µ))2

Sensitivity to parameter ω

ΥR0
ω =

ω

R0

∂R0

∂ω
(5.14)

ω

R0
= ω(

µ(ξ + ϕ+ µ)(η + ψ + µ)

βb(1− V )α(1− ρ)
+
µ(ξ + ϕ+ µ)(γ + θ + ω + µ)

βb(1− V )ϕρ
)

∂R0

∂ω
= − (βb(1− V )ρϕµ(ξ + ϕ+ µ)

(µ(ξ + ϕ+ µ)(γ + θ + ω + µ))2

Fig. 2. illustrates the sensitivity bar chart of R0 with increase in the maternal derived immu-
nity of the exposed individual and vaccination at birth. That is increase in parameters ξ and V
respectively.

Fig.2. Sensitivity Bar chart of R0 with increase in Maternally derived immunity and Vaccination
at birth.

Furthermore on sensitivity indices, quarantine rate of the asymptomatic and symptomatic infected
individuals was increased to observe parameter tangibility on reproduction number. Fig. 3., shows
the sensitivity bar chart changes as regards increase in ψ and θ respectively..
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Fig.3. Sensitivity Bar chart of R0 with increase in Quarantine of asymptomatic and symptomatic
individuals..

From equation ( ) the changes in two terms of R0 accounting for asymptomatic and symptomatic
are represented in Fig. 4, Fig. 5 and Fig. 6. It is therefore vital to visualize behavioural value of in-
crease in disease controller parameter on R0 against the asymptomatic and symptomatic infectious
individuals. For instance, Fig. 4 bar chart illustrates the corresponding results of the reproduction
number against the asymptomatic and symptomatic infected individuals with increase in maternal
derived immunity parameter at ξ = 0.3, 0.6, 0.9 respectively.

Fig.4. Impact of increase in maternally derived immunity parameter in R0 on Asymptomatic and
Symptomatic Infectious Individuals
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In same vein, Fig. 5 displays a combo increase bar chart of maternally derived immunity and
vaccination.

Fig.5. Combo impact of increase in Maternally derived immunity and vaccination at birth.

Furthermore, Fig. 6 illustrates simultaneous increase in quarantine parameters, that is V, ψ and
ξ respectively. It was observed that the combination of this three disease controller on reproduc-
tion number representing Asymptomatic term tended towards zero, which infers that disease in the
Asymptomatic term almost died out.
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Fig.6. Combo impact of increase in Maternally derived immunity, vaccination at birth and Quar-
antine rate parameter

In the quest to examine the most appropriate diphtheria disease controller, the parameters of
vaccination at birth was increased for both Symptomatic and Asymptomatic infectious individuals.
Fig. 7. illustrates the impact of increase in by V = 0, 0.1, 0.3, 0.6, 0.9 (different levels of Vaccination
at birth).

Fig.7. Improved Vaccination impact on asymptomatic and symptomatic infectious individual.

Also, Fig. 8., shows increase in quarantine control measure on IS and IA for parameter ψ =
0, 0.1, 0.3, 0.6, 0.9.
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Fig.8. Improved Quarantine impact on asymptomatic and symptomatic infectious individual.

Furthermore, a combination of high and low diphtheria disease control rate was explored on
SEIAISQR model. At the initial instance of disease spread, the total population was N(0) =
10001, where the Susceptible compartment S(0) = 8000, Exposed compartment E(0) = 2000,
asymptomatic infected compartment IA(0) = 0, symptomatic infected compartment IS(0) = 1,
Quarantined compartment Q(0) = 0 and Recovered compartment R(0) = 0.

Fig.9 and Fig.10, displays the SEIAISQR dynamic model with low and high Vaccination at
birth.

Fig.9. Impact of Low vaccination at birth on SEIAISQR model
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Fig.10. Impact of High Vaccination at birth on SEIAISQR Model

Fig. 11 (i) displays the impact of High Vaccination at birth on the formulated diphtheria transmis-
sion model with improved quarantine rate of asymptomatic infectious compartment and Fig. (j)
shows the improved quarantine on symptomatic compartment.

Fig.11 Impact of High Vaccination at birth with increase in quarantine on Symptomatic and Asymp-
tomatic infectious individuals SEIAISQR

Since it has been highlighted that the reservoir of infection lies in the asymptomatic infectious
individuals, this infers that mitigating disease spread amongst the IA compartment will signifi-
cantly mitigate disease spread, there fore Fig. 12, Fig. 13, Fig. 14 and Fig. 15 shows the 3 D
sub plot (SEIA) effect of low/High asymptomatic quarantine rate in combination with low/High
vaccination at birth. Fig. 12 (k) shows no disease control and low quarantine impact while (l)
displays low quarantine impact on the sub model.
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Fig.12. Impact of no disease control and low quarantine on SEIA Sub-Model

Further experiment was carried out on the sub-plot with high quarantine rate on the SEIA sub-
model. Graphical results are displayed in Fig. 13 below.

Fig.13.. Impact of high quarantine on SEIA Sub-Model
The impact of high quarantine rate on IA with low vaccination at birth with no maternal derived
immunity was imputed for the sub plot. Fig. 14 displays results of changes in the graph.
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Fig.14. Impact of high quarantine on IA and low Vaccination at birth for SEIA Sub Model

Fig.15. Impact of high quarantine on IA and improved Vaccination at birth for SEIA Sub Model

6 Discussion of Results and Conclusion
The theoretical solutions indicates that the developed model is epidemiologically and mathemat-
ically well posed. Graphical Experiment was performed on the dynamics of disease transmission
using Equation (9) with MATLAB 2021a software.

The reproduction number was determined using the Next Generation Matrix method with initial
minor parameters value obtained from diphtheria disease outbreak in Thailand and Indonesia [2,12],
others were assumed or fitted. R0 representing two terms was derived to be approximately 1.6311
for the given scenario. The first term Rasymptomatic shows reservoir of infection with value approx.
1.25, bar chart plot of IA and IS illustrate that combination of vaccination and quarantine will
significantly die out the disease. The sensitivity analysis on R0 parameters was manually calculated
to gain a deeper understanding of the strengths and weaknesses of diphtheria predictive model.
similarly, The experimental results illustrated that increasing vaccination coverage at birth (V)
and implementing effective quarantine measures for both asymptomatic ( ψ) and symptomatic (θ
) individuals show promising results in limiting disease transmission.

Furthermore, A thorough analysis of different disease control combinations was done on SEIAISQR
model to evaluate their efficacy in curbing diphtheria spread. At the initial instance of disease
spread, the total population was N(0) = 10001, where the Susceptible compartment S(0) = 8000,
Exposed compartment E(0) = 2000, asymptomatic infected compartment IA(0) = 0, symptomatic
infected compartment IS(0) = 1, Quarantined compartment Q(0) = 0 and Recovered compartment
R(0) = 0. In same vein, due to the impact of asymptotic (silent disease spreader) to disease spread,
a 3D sub-plots was harnessed to visualize the effects of low and high asymptomatic quarantine rates
in combination with low and high vaccination at birth on the SEIA sub-model, highlighting the
importance of controlling disease spread among asymptomatic individuals

Our findings suggests that increase in vaccination rates at birth emerges as the most potent
disease mitigating strategy, leading to a higher number of recovered individuals. Also, Quarantine
measures demonstrated effectiveness, with maternal derived immunity showing promising results as
well (That is vaccination during pregnancy is key). However, the most impactful approach involves
a combination of all three strategies.

in a nut shell, These models offer valuable insights for public health professionals. Continued
research will refine existing models, incorporate additional complexities, and contribute to more
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effective diphtheria control strategies.
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