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Abstract

Aedes aegypti mosquitoes transmit important mosquito borne diseases that include dengue,
yellow fever, zika, chikungunya, rift valley, and west nile among others. The dynamics of
these diseases are influenced by various factors such as population dynamics of humans and
mosquitoes, mosquito behaviour, and transmission modes. This study focuses on multiple
transmissions, where both vertical and horizontal modes are considered with application to
dengue virus. We therefore present a model that incorporates vertical transmission within the
mosquito population. Threshold quantities for the model are computed, with the mosquito
extinction equilibrium being globally asymptotically stable when the basic offspring number
(N0) is less than one, also, the disease free equilibrium is shown to be locally asymptotically
stable when the basic reproduction number (R0) is less than one. The model is shown to
undergo backward bifurcation, and conditions under which the disease free equilibrium would
be globally asymptotically stable is presented. Type reproduction numbers are also computed.
Some results of numerical simulations, and sensitivity (both local and global) analysis of the
model parameters are shown and computed respectively.
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1 Introduction

Mosquito borne diseases (MBDs) are viral and parasitic infections that are primarily transmitted
through bites by different species of infected mosquitoes, most notably are the aedes (with two
specific species of aedes-aegypti and aedes-albopictus), culex (the house mosquitoes), and anopheles.
While the aedes transmit diseases such as the dengue, zika, chikungunya, yellow fever and rift valley,
the culex transmit diseases like Japanese encephalitis, west nile virus, and lymphatic filariasis. Even
though anopheles are known for the transmission of malaria, they also transmit lymphatic filariasis
[1, 2]. MBDs pose significant threats to humanity and global public health system, recently there
were multiple outbreaks of MBDs in different parts of the world, particularly malaria, zika, yellow
fever, and dengue.

Malaria is a parasitic infection that accounts for over 219 million infections and 400 thousand
deaths annually [1, 3, 4]. Although malaria is one of the most important MBDs, almost half the
population of our planet is exposed to dengue (the most common mosquito viral infection). It is
one of the world’s most threatening and widespread MBDs, in fact, it has recently accounted for
about 390 million new infections annually, with about 96 million of them being symptomatic, it is
estimated to cause between 40-50 million new cases annually [5, 6]. Yellow fever (YF) is another
viral infection that is endemic in South America, Asia, and Africa, with almost a billion individuals
from about 47 countries being exposed to it. YF is estimated to cause between 84,000-170,000
new cases with up to 29,000 mortality every year [7]. Likewise, zika virus was devastating between
2015-2016, it was attributed to the severe neurological defects that affected developing fetuses of
women who were infected with the virus [1, 8]. Although Chikungunya virus was first discovered in
tropical regions of Africa, it spread east into Asia and north into Europe, and by 2016 there were
more than 1.7 million suspected cases of infection in the Americas [1].

While modeling the transmission dynamics of MBDs with horizontal transmissions (through
mosquito bites) have been extensively studied as in [8, 9, 10, 11, 12, 13], vertical transmissions
(either in human or mosquito population) have received less attention. However, mosquitoes ver-
tical transmission (where they transmits infectious agent to their offspring) within aedes aegypti
and albopictus populations have been documented, and this mode of transmission may have sig-
nificantly influenced the spread and sustenance of the diseases [14, 15, 16, 17, 18]. In fact, vertical
transmissions within the mosquito population for some of the diseases is a probable means for their
persistence especially during periods that are not favorable for horizontal transmission to thrive
[16, 18, 19]. For dengue in particular, it has been a challenge to understand how the virus remain
endemic in humans even if there are long periods of extremely low, or zero, incidence [21], this
study aimed at broadening the understanding of the transmission dynamics of dengue with vertical
transmission.

Mathematical models for the transmission dynamics of dengue fever can be traced back from
1970 with well-known complex epidemiological dynamics, over the years, those models tried to
incorporate factors focusing on different aspects of the disease and vectors, which could provide rich
dynamical behavior even in the most basic models. The existing models are developed to evaluate,
for example, the effect of co-circulation of multiple strains (or variants), the immunological path
for disease severity, and the impact of vaccination [20]. The work of [22] incorporated aquatic
stage of mosquito development to investigate the impact of vaccination (alone) and in combination
with treatment and adulticides control on the population dynamics of dengue in Johor, Malaysia,
while [11] investigated the cause(s) of backward bifurcation in a dengue model with and without
vaccination. Also, [23] formulated a deterministic model that was used to gain insight into the
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effect of seasonal variations and vector vertical transmission (VT) on the dynamics of dengue, and
[24] incorporated VT both for the populations of mosquitoes and humans with a constant rate
of recruitment, it should be noted that, though VT of MBDs in humans have been reported and
attracted attention especially in zika, its impact is still negligible, as such, it is ignored in this
study. Furthermore, the work of [21] constructed and analyzed a mathematical model of dengue
with VT in the population of mosquitoes (with both aquatic and non-aquatic stages), however, the
model assumed a constant oviposition with a fraction of the laid eggs eventually getting infection.
In this work, similar to the work of [21], we would incorporate both horizontal and vertical (within
mosquito population) transmissions for dengue by extending the work of [21] with VT captured at
the point of oviposition (usually called transovarial transmission). Thus, fraction of eggs laid by
the reproductive but infected mosquitoes would acquire infection vertically. This is in addition to
assuming that oviposition is proportional to the total number of reproductive mosquitoes, some of
which are non-infected while others are infected.

2 Mathematical model

In this section, a thorough description of assumptions and methods involved in the model for-
mulation would be given.

2.1 Model assumptions
At any time t, the total population of humans is denoted by N(t), this is divided into non-

intersecting compartments of susceptible S(t), infected I(t), and recovered R(t) humans. Due
to the incorporation of vertical transmission, mosquito population would be considered at both
aquatic and non-aquatic stages, thus, at a time t, the development stage that includes eggs, larvae
and pupae (aquatic stage) is denoted by A(t). Some eggs are infected while others normal, this
stage is further sub-divided into infected Ai(t) and non-infected An(t) aquatic mosquitoes, such
that, a vertically infected egg would pass through the developmental stages as an infected aquatic
mosquitoes (the same applies to a non-vertically-infected). Also, the non-aquatic stage has a total
population denoted by Nv(t), which is sub-divided into susceptible Sv(t) and infected Iv(t) non-
aquatic mosquitoes.

Homogeneous mixing of the human and mosquito populations is assumed, thus, each bite of
a mosquito has an equal probability of either acquiring (as susceptible mosquitoes bite infected
humans) or transmitting (when infected mosquitoes bite susceptible humans) the disease.

2.2 Incidence function
There are different incidence functions that have been used in epidemiology, the density de-

pendent (mass action incidence), and the frequency dependent (standard incidence) functions have
been used more. Although no rule of choice exists in this regards, the standard incidence function
has often been preferred in modeling of mosquito borne and sexually transmitted diseases [15, 25].

Let the biting rate of an infected mosquito be bvh, while bhv be the rate at which suscep-
tible mosquitoes bite humans. Also, let ρvh denote the transmission probability from infectious
mosquitoes to susceptible humans, and that of infectious humans to susceptible mosquitoes be ρhv.
Donate βvh = ρvhbvh and βhv = ρhvbhv respectively be transmission rate from infectious mosquito
to susceptible humans, and transmission rate from infectious human to susceptible mosquitoes. It
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is a known fact that, for the total number of mosquito bites to be conserved in a community, the
total number of bites by mosquitoes at any given time must be equal to the total number of bites
received by humans [11, 15, 26, 27, 28]. Therefore,

βvh(Nh, Nv)Nh = βhv(Nh, Nv)Nv =⇒ Nv =
βvh(Nh, Nv)

βhv(Nh, Nv)
Nh, (2.1)

and as such, the human and mosquito incidences (force of infections) are

λh =
βvhIv
Nv

, and, λv =
βhvIh
Nh

, (2.2)

thus, substituting Nv from (2.1) in (2.2) gives,

λh =
βhvIv
Nh

, and, λv =
βhvIh
Nh

. (2.3)

Note that Iv
Nv

and Ih
Nh

in (2.2) represent probabilities that contact were made with infectious
mosquitoes and humans respectively.

2.3 Model formulation
Population of susceptible humans is generated through immigration and birth at a rate given

by rh. It decreases as a result of infection through contact with infectious mosquitoes at a rate βvh.
They naturally die at a rate µh. So that,

dSh

dt
= rh − βvhIv

Nv
Sh − µhSh.

Infected humans (Ih) increase through infection of susceptible humans. They recover at a rate ωh

and due to disease induced death at a rate δh, and naturally at the rate µh. Thus,

dIh
dt

=
βvhIv
Nv

Sh − δhIh + ωhIh + µhIh.

Recovered human population increase through the recovery of infected humans, and reduces due to
natural death. So that

dRh

dt
= ωhIh − µhRh.

Non-infected aquatic mosquitoes population (An) is generated via oviposition by susceptible (Sv)
or infectious (Iv) mosquitoes at ρv and ζvρv respectively, where ρv is the oviposition rate while ζv
is a proportion of non-infected eggs laid by infected mosquitoes. It decreases through maturation
at a rate bv, die naturally at µA and due to density death (growing logistically with K as their
carrying capacity). Similar to the assumptions in [13, 29], K ∝ Nh; K = mNh, thus,

dAn

dt
= ρv(1−

A

K
)(Sv + ζvIv)− bvAn − µAAn

Infected aquatic mosquitoes (Ai) are generated via laying of eggs by infectious mosquitoes, this
leads to transmission of the disease vertically at a rate 1− ζv. They mature at the rate bv and die
naturally at µA. This gives

dAi

dt
= ρv(1−

A

K
)(1− ζv)Iv − bvAi − µAAi.
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where, A = An +Ai.
Through maturation of non-infected aquatic mosquitoes, population of susceptible adult mosquitoes
(Sv) is generated, they decrease through infection at the rate λv, and natural death (at µv). So
that

dSv

dt
= bvAn − βhvIh

Nh
Sv − µvSv.

Infectious adult mosquitoes population (Iv) is generated by maturation of infected aquatic mosquitoes
and infection of susceptible mosquitoes. They decrease due to natural death, thus

dIv
dt

=
βhvIh
Nh

Sv + bvAi − µvIv.

2.4 Model equations
The following non-linear system of equations represent the model for the transmission of mosquito

borne diseases with vertical transmission in mosquito population.

dSh

dt
= rh − βvhIv

Nv
Sh − µhSh,

dIh
dt

=
βvhIv
Nv

Sh − (δh + ωh + µh)Ih,

dRh

dt
= ωhIh − µhRh,

dAn

dt
= ρv(1−

A

K
)(Sv + ζvIv)− bvAn − µAAn,

dAi

dt
= ρv(1−

A

K
)(1− ζv)Iv − bvAi − µAAi,

dSv

dt
= bvAn − βhvIh

Nh
Sv − µvSv,

dIv
dt

=
βhvIh
Nh

Sv + bvAi − µvIv.

(2.4)

The model variables are described in Table 1, while the model parameters are in Table 2 and
assumed to be positive with non-negative initial conditions.

3 Model analysis

Basic analysis of the model (2.4) with initial condition and non-negative parameters would be
conducted in this section.

Lemma 3.1. The following set denoted by Ω defines a biologically feasible region which is positively
invariant with respect to the model given by (2.4),

Ω =
{
Sh, Ih, Rh, An, Ai, Sv, Iv ∈ R7

+ :
rh

δh + µh
≤ Nh ≤ rh

µh
, An ≤ K, Ai ≤ K,

Sv + Iv ≤ Kbv
µv

}
.

(3.1)
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Table 1: Variables of the model given by (2.4) and their descriptions.
Variables Description

Sh Total number of susceptible humans
Ih Total number of infectious humans
Rh Total number of recovered humans
Nh Cumulative number of humans
An Total number of non-infected aquatic mosquitoes
Ai Total number of infected aquatic mosquitoes
Sv Total number of susceptible mosquitoes
Iv Total number of infectious mosquitoes
A Cumulative number of aquatic mosquitoes
Nv Cumulative number of adult female mosquitoes

Proof. Clearly, the system given by (2.4) is C1 in R7
+, therefore, the local existence and uniqueness

of solution follow. Likewise, since at any time, An(t) + Ai(t) ≤ K then An(t) ≤ K and Ai(t) ≤ K.
Let Nv = Sv + Iv, then by Gronwall’s lemma we have

Nh(0)e
−(δh+µh) +

rh
(δh + µh)

(1− e−lh) ≤ Nh(t) ≤ Nh(0)e
−µh +

rh
µh

(1− e−µh)

and

NV (t) ≤ NV (0)e
−µv +

Krh
µv

(1− e−µv ),

(3.2)

hence, from (3.2), the total populations are bounded and thus, solutions exist for all t ≥ 0. In
addition, Nh(t) ≥ rh

δh+µh
if Nh(0) ≥ rh

δh+µh
, Nh(t) ≤ rh

µh
if Nh(0) ≤ rh

µh
, and Nv(t) ≤ Kbv

µv
if Nv(0)

≤ Kbv
µv

. Consequently, the unique solution to the model given by (2.4) with initial conditions in Ω
remains in Ω for all t ≥ 0.
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Figure 1: Model diagram for the model given by (2.4).

3.1 Mosquito only population
Here, we analyse the sub-model obtained by removing human population (mosquito only compo-

nent) from the model given by (2.4). Therefore, in the absence of humans, the mosquito component
reduced to

dAn

dt
= ρv(1−

A

K
)(Sv + ζvIv)− bvAn − µAAn,

dAi

dt
= ρv(1−

A

K
)(1− ζv)Iv − bvAi − µAAi,

dSv

dt
= bvAn − λvSv − µvSv,

dIv
dt

= λvSv + bvAi − µvIv.

(3.3)

In the presence of abundant resources, and space (i.e. A < K), on average, throughout the lifespan
of a female mosquito, it would produce a certain number of offspring often called the basic offspring
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number and denoted by N0. Thus, N0 is given by,

N0 =
bvρv

(bv + µA)µv
. (3.4)

Interpretation of the basic offspring number: Aquatic female mosquitoes will mature to adulthood
with a probability given by bv

bv+µA
, where 1

bv+µA
represents an average period at the aquatic stage,

and bv is the maturation rate of aquatic mosquitoes to adulthood. The adult mosquito has an
average life expectancy of 1

µv
, with ρv being their rate of oviposition, so that, on average, a female

mosquito would lay ρv

µv
number of eggs. Therefore on average, equation (3.4) represents the number

of offspring that a susceptible female mosquito would produce during her life time, named the basic
offspring number.

On equating the right hand side of the sub-model given by (3.3) we obtained an extinction DFE
given by G0, and non-extinction DFE also denoted by G1 as follows

G0 = (A∗
n, A

∗
i , S

∗
v , I

∗
V ) = (0, 0, 0, 0), (3.5)

and
G1 = (A∗

n, A
∗
i , S

∗
v , I

∗
V ) = (K(1− 1

N0
), 0,

bvK
µv

(1− 1

N0
), 0). (3.6)

For stability of G0 and G1, the following Theorem from [30] and some references therein is essential.
Consider an autonomous dynamical system given by ẋ = k(x), where Ω∗ ⊆ Rn

+ and k : Ω∗ −→
Rn

+ is continuous [15, 30]. Then

Theorem 3.2. Let e, f ∈ Ω∗ be such that e < f , [e, f ] ⊆ Ω∗ and k(f) ≤ 0 ≤ k(e). Then the system
defines a (positive) dynamical system on [e, f ]. Moreover, if [e, f ] contains a unique equilibrium j,
then j is globally asymptotically stable on [e, f ] [15, 30].

The sub-model given by (3.3) can be written in form of ẋ = k(x), where k : Ω∗ −→ R4
+ and

Ω∗ ⊆ R4
+. Consequently, we have

Theorem 3.3. The extinction DFE given by G0 is GAS provided N0 ≤ 1 and unstable when N0 > 1.
The non-extinction DFE given by G1 exists and it is LAS whenever N0 > 1.

Proof. Consider [e, f ] = [0, f ] ⊆ R4
+, where f = (p, (bv+µA)p

ρv
) and p > 0. Thus, k(0) = 0, and

k(f) =

−(bv + µA)
p2

K

bvp(1− 1
N0

)

 therefore k(f) < 0 provided N0 ≤ 1. (3.7)

Thus, k(f) ≤ 0 ≤ k(0) provided that N0 < 1, and by Theorem (3.2) above, the mosquito only
model given by (3.3) is a positive dynamical system that is defined on [0, f ] and therefore, G0 is
globally asymptotically stable on [0, f ]. Moreover, because p is arbitrary, there is no restriction on
the choice of f , it can extend to any number bigger than x ∈ R2

+. Thus, the result stands on R2
+.

Through linearization, the second part follows.
Biologically, based on Theorem (3.3), provided N0 is less one, the mosquito population would

go extinct and both vertical and horizontal transmissions of MBDs can be avoided.
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3.2 Disease free equilibrium when N0 < 1

Denote by G2, the DFE of the model given by (2.4) which is obtained whenever N0 < 1, such
that,

G2 = (S∗
h, E

∗
h, I

∗
h, R

∗
h, A

∗
n, A

∗
i , S

∗
v , E

∗
V , I

∗
V ) = (

rh
µh

, 0, 0, 0, 0, 0, 0, 0). (3.8)

Using the next generation matrix approach as described by [31], local asymptotic stability of G2 is
established. The approach described by [10, 27, 31, 32] is used in computing the next generation
matrix (K).

The matrix for new infection is denoted by F , while that of transmission terms is denoted by
V . They are respectively given by,

F =


0 0 0 βhv

0 0 0 0

0 0 0 ρv(1−ζv)
N0

0 0 0 0

 , V =


S1 0 0 0
−ωh µh 0 0
0 0 S2 0
0 0 −bv µv

 , (3.9)

where, S1 = ωh + µh + δh, S2 = µA + bv.
The next generation matrix with large domain (KL) is

KL = FV −1 =


0 0 0 βhv

0 0 0 0

0 0 0 ρv(1−ζv)
N0

0 0 0 0

×


1
S1

0 0 0
ωh

S1µh

1
µh

0 0

0 0 1
S2

0

0 0 bv
S2µv

1
µv



=


0 0 βhvbv

S2µv

βhv

µv

0 0 0 0

0 0 ρv(1−ζv)bv
N0S2µv

ρv(1−ζv)
N0µv

0 0 0 0

 .

(3.10)

Therefore, using the method of [32] where Q is an auxiliary matrix, the next generation matrix (K)
is

K = QTKLQ = QTFV −1Q =

(
0 βhvbv

S2µv

0 ρv(1−ζv)bv
N0S2µv

)
, where Q =


1 0
0 0
0 1
0 0

 . (3.11)

Unlike KL (the next generation matrix with large domain), the next generation matrix (K) removes
unnecessarily information and hence, the threshold obtained can easily be given a detailed biological
interpretation [32]. For mosquito extinction DFE, the dominant eigenvalue of K denoted by R1 is
given by

R1 =
ρv(1− ζv)bv

N0(bv + µA)µv
= 1− ζv, with, 0 < 1− ζv < 1.
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Table 2: Parameters for the model given by (2.4) and their descriptions.
Parameter Description
ρv Rate of adult mosquitoes oviposition
µA Rate of natural death of aquatic mosquitoes
µv Adult mosquito population natural death
ζv Proportion of non-vertically transmitted laid eggs
K Carrying capacity of mosquito population
m Ratio of mosquitoes to humans
bv Rate at which mosquitoes mature
rh Rate of human recruitment
ωh Rate of recovery in human population
µh Rate of natural death in human population
δh Death rate due to disease in human population
bvh Bite rate of infectious mosquitoes
bhv Bite rate of susceptible mosquitoes
ρvh Transmission probability from Iv to Sh

ρhv Transmission probability from Ih to Sv

βvh Rate of transmissions from Iv to Sh

βhv Rate of transmission from Ih to Sv

3.3 Disease free equilibrium when N0 > 1

If the DFE of the model given by (2.4) when N0 > 1 is denoted by G3 be , then

G3 = (S∗
h, I

∗
h, R

∗
h, A

∗
n, A

∗
i , S

∗
v , I

∗
v ) = (

rh
µh

, 0, 0,K(1− 1

N0
), 0,

bv
µv

K(1− 1

N0
), 0) (3.12)

using similar method as above, the next generation matrix (K) is given by

K =

(
0

βhvS
∗
h

N∗
hµv

βhvS
∗
v

N∗
hS1

ρv(1−ζv)bv
N0S2µv

)
=

(
0 Rvh

Rhv Rvv

)
. (3.13)

Thus, the dominant eigenvalue of K, which is the basic reproduction number denoted by R0 is
given by

R0 =
1

2
(Rvv +

√
R2

vv + 4RhvRvh), (3.14)

where, Rhv =
βhvS

∗
v

N∗
hS1

, Rvh =
βhvS

∗
h

N∗
hµv

= βhv

µv
, and Rvv = 1− ζv.

Lemma 3.4. The mosquito persistent DFE of the model denoted by G3 is locally asymptotically
stable when R0 < 1, and unstable otherwise [31].

3.3.1 Interpretation of R0

The basic reproduction number (R0) represents an average number of new secondary cases that
is generated by a single infectious individual (throughout its infectivity period) when it is introduced
into a wholly susceptible population of humans and mosquitoes. R0 is interpreted as follows.
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Susceptible humans would get infection through contact (bite) with an infected mosquitoes, such
bite should be capable of transmitting the disease. So that, for an infected mosquito, the number
of infections it generates (near DFE) is given by the product of its rate of infection (βhv

N∗
h
) with the

average time it spends in the infectious stage ( 1
µv

). Thus, (with S∗
h = N∗

h)

Rhv =
βhv

N∗
hµv

S∗
h =

βhv

µv
. (3.15)

Likewise, a susceptible mosquito acquires infection through bite on an infectious human (Ih). So
that, the number of infections that an adult susceptible mosquito would acquire from an infectious
human (near the DFE) is equivalent to the product of infection rate of infectious humans (βhv

N∗
h
) and

the average period of infectivity ( 1
S1

). Therefore

Rvh =
βhv

N∗
hS1

S∗
v (3.16)

Some percentage of eggs laid per oviposition by infectious mosquitoes would be infected, thus,
that would give the number of mosquito vertical transmissions (which occurs at the point of lay)
given by (Rvv = 1− ζv). Therefore, the basic reproduction number is given by (3.14).
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Figure 2: Simulation showing infected humans with different initial conditions converging to the
DFE when R0 < 1.
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3.4 Type reproduction number
In the case of non-vector borne diseases (where a population under study is homogeneous), the

basic reproduction number defines the threshold quantity that can easily be used to control or
eliminate the disease under consideration. It may not necessarily be the case for a vector borne
disease (heterogeneous population), in fact, the basic reproduction number may not be important
especially if effort in control is targeted at a particular population, or as cycle of infection goes
through other populations [33]. Thus, it is important to calculate another threshold quantity called
the type reproduction number.

Here, we compute another threshold quantity that can be used in correctly determining critical
control effort needed for a heterogeneous population known as the type-reproduction number (T )
[34]. A strategy to estimating effort(s) needed to control an infectious disease by targeting a specific
sub-population of hosts, with the fact that infection will pass through other sub-populations before
causing secondary infections was described by [15, 33, 34].

If K denote the next generation matrix with large domain, and the host type 1 denote the
populations of Ih, while the host type 2 denote the population of Iv. The type j reproduction
number is given by

Tj = gTK(I − (I −M)K)−1g, (3.17)

where I and M are respectively an identity and projection matrices, g is a unit vector with all
elements equal to zero except the jth. Let

K =


0 0 K13 K14

0 0 0 0
0 0 K33 K34

K41 0 0 0

 ,

where,

K13 =
βhvbv
S2µv

, K14 =
βhv

µv
,

K33 =
ρv(1− ζv)bv
N0S2µv

, K34 =
ρv(1− ζv)

N0µv
, K41 =

βhvS
∗
v

N∗
hS1

.

So that from (3.17) the type-reproduction number for infectious human is given by

T1 =
K13K34K41

1−K33
+K41K14 =

RhvRvh

1−Rvv
=

RhvRvh

ζv
=

S∗
vβ

2
hv

N∗
hS1µvζv

. (3.18)

The threshold above is the expected number of cases in the human population that is caused by one
infectious human in a completely susceptible population, the infection might be through chains of
infections or directly, it singles out the required control effort when targeting the human population
[15, 34].

If R0 > 1, It can easily be shown that,

RhvRvh > 1−Rvv = ζv.

Similarly, R0 < 1 implies that

RhvRvh < 1−Rvv = ζv.
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Table 3: Parameter values used in numerical calculations with their references, with low baseline
values that gives R0 < 1, while R0 > 1 for the high baseline

Parameter Range Low baseline High baseline References
rh 1− 103 day−1 30 day−1 10 day−1 [11, 26, 36]
µh 0.02− 0.05 years 0.015 years 0.02 years [4, 12, 13]
δh 0− 10−3 day−1 0.001 day−1 0.001 day−1 [11]
bvh 0.1− 1 day−1 0.3 day−1 0.5 day−1 [4, 11, 42]
bhv 0.1− 1 day−1 0.414 day−1 0.823 day−1 [11, 42]
ρvh 0.1− 0.75 day−1 0.25 day−1 0.55 day−1 [41, 42]
ρhv 0.5− 1 day−1 0.35 day−1 0.45 day−1 [41, 42]
βhv 0.2− 1 day−1 0.145 day−1 0.37 day−1 [11, 41]
ωh 0.07− 0.33 day−1 0.14 day−1 0.08 day−1 [40]
m 1− 10 2 5 [29, 41]
ζv 0− 1 day−1 0.95 day−1 0.90 day−1 [14, 21]
ρv 1− 14 day−1 4 day−1 6 day−1 [12, 13]
bv 0.05− 0.5 day−1 0.05 day−1 0.1 day−1 [13, 29]
µA 0.25− 0.33 days 0.3 days 0.2 days [12, 13]
µv 0.03− 0.25 days 0.14 days 0.05 days [41, 42]

Thus, T1 < 1 ⇐⇒ R0 < 1. In the same vain, the type-reproduction number for infected mosquitoes
is

T2 =
K14K41

1 +K14K41
=

RhvRvh

1 +RhvRvh
. (3.19)

It is the expected number of cases within the adult mosquito population that is caused by one
infected adult mosquito in a population of susceptible mosquitoes. It is straightforward to see that
T2 < 1.

3.5 Endemic equilibrium and backward bifurcation
Here, the endemic equilibrium (EE) of the model (2.4) would be computed, and direction of

bifurcation at R0 = 1 is also analyzed.

3.5.1 Endemic equilibrium

By letting
Ai +An = A

and
λ∗∗
h =

βhvI
∗∗
V

N∗∗
h

, λ∗∗
V = βhv

I∗∗h
N∗∗

h

,
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it can be shown that the model given by (2.4) has a unique endemic equilibrium provided that
N0 > 1 given by

S∗∗
h =

rh
λ∗∗
h + µh

, I∗∗h =
λ∗∗
h rh

S1(λ∗∗
h + µh)

, R∗∗
h =

λ∗∗
h rhωh

S1(λ∗∗
h + µh)µh

,

A∗∗ =
KS2µv(N0 − 1)

bv
, A∗∗

n =
ρv(1− A∗∗

K )[S∗∗
V + ζvI

∗∗
V ]

S2
,

A∗∗
i =

ρv(1− A∗∗

K )[1− ζv]I
∗∗
V

S2
, S∗∗

V =
bvρv(1− A∗∗

K )[S∗∗
V + ζvI

∗∗
V ]

(λ∗∗
V + µv)S2

,

I∗∗V =
λ∗∗
V S2bvA

∗∗ + bvµvρv(1− A∗∗

K )[1− ζv]I
∗∗
V

(λ∗∗
V + µv)S2µv

,

(3.20)

where
N∗∗

h = S∗∗
h + I∗∗h +R∗∗

h .

It is worth mentioning that there are many mosquito born disease models that were shown to
undergo backward bifurcation (a phenomenon where stable DFE coexists with a stable EE even
when R0 < 1), some of which include [8, 9, 11, 15, 35, 37]. Thus, we explore the existence or
otherwise of it.

Figure 3: Simulation showing infected humans converging to the EE when R0 > 1 with multiple
initial conditions.

3.5.2 Backward bifurcation analysis

By applying the method described by [31, 38]. It is based on center manifold theory.
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Theorem 3.5. The model given by (2.4) undergoes BB at R0 = 1 whenever the bifurcation coeffi-
cient a given by (A.4) is positive.

Proof of the Theorem is in Appendix A.

The epidemiological implication of the backward bifurcation is that, the classical requirement that
R0 < 1 is sufficient for disease elimination does not stands. Although it is still a necessarily con-
dition, but it is not sufficient to eliminate dengue. In such situation, elimination of dengue in a
population would depend on the initial sizes of the sub-populations given in the model [11].

Theorem 3.6. The model (2.4) does not undergoes backward bifurcation at R0 = 1 if δh = 0.

Proof. Note that, if δh = 0 then S1 = ωh + µh, and,

5(µh + ωh)

µh
− 3S1

µh
(
RHV RV H

(1−RV V )
) =

(µh + ωh)

µh
(5− 3

RHV RV H

(1−RV V )
),

and since RHV RV H

(1−RV V ) ≤ 1, then,

a ≤ −2w2
2v2

N∗
hK

(S∗
v8β

2
hvK

µvζv
+

β2
hvS

∗
vKS1

µvµhζv
+ βhvS

∗
vK

S1

µh
(5− 3

RHV RV H

(1−RV V )
)
)
< 0 (3.21)

The result of the Corollary (3.6) above is similar to that obtained numerically by Chitnis et. al [9]
in their Malaria model without incorporating aquatic stages of mosquitoes.

3.6 Global stability of the DFE (G3)

Using the method of [39], conditions for which the disease free equilibrium (G3) will be globally
asymptotically stable with respect to the invariant region Ω defined by (3.1) are obtained.

Theorem 3.7. The disease free equilibrium (G3) of the model (2.4) with respect to Ω is GAS if
RHV RV H

N∗
hN0(δh+µh)
rh(N0−1) +RV V ≤ 1.

Notice that RHV RV H
N∗

hN0(δh+µh)
rh(N0−1) +RV V ≤ 1 is equivalent to RHV RV H

(1−RV V ) ≤ rh(N0−1)
N∗

hN0(δh+µh)
, since

rh
δh+µh

≤ N∗
h and N0 − 1 < N0, then RHV RV H

N∗
hN0(δh+µh)
rh(N0−1) +RV V ≤ 1 suffices that R0 ≤ 1.

Next, we look into a case for another positively invariant set Ω∗ ⊂ Ω given as follows.

Theorem 3.8. The disease free equilibrium (G3) of the model (2.4) with respect to Ω∗ is globally
asymptotically stable if RHV RV H

(1−RV V ) ≤ rh
N∗

h(δh+µh)
, where,

Ω∗ ={Sh, Ih, Rh, An, Ai, Sv, Iv ∈ R7
+ :

rh
δh + µh

≤ Nh ≤ rh
µh

, An ≤ K, Ai ≤ K,

Sv ≤ S∗
v =

Kbv
µv

(1− 1

N0
), ≤ Sv + Iv ≤ Kbv

µv
}.

Corollary 3.9. The disease free equilibrium (G3) of the model given by (2.4) in respect of Ω∗ is
GAS whenever δh = 0, and R0 ≤ 1.

If δh = 0, the condition reduces to RHV RV H

1−RV V
≤ 1. It should also be observed that for the subset Ω∗,

Ā22 = A22(x̄1, 0). Thus, the condition for GAS of G3 is RHV RV H

1−RV V
≤ 1 =⇒ R0 ≤ 1.

Similar proof has been done in [39].
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4 Numerical simulation and sensitivity analysis

Here, some simulations are conducted for the model (2.4), and sensitivity analysis (both local
and global) for the basic reproduction number (R0) are performed with respect to the model
parameters. Values for parameter ranges are given in Table 3 for high (R0 > 1) and low (R0 < 1)
transmissions are used.

4.1 Numerical simulations
Using parameter values as presented in Table 3, the low baseline referred to the case when

R0 < 1 and N0 = 3, while high transmission baseline is when R0 > 1 and N0 = 34. Some
numerical simulations for the model (2.4) are performed for the two baseline parameter values.
Figure 3 show the simulation of infected humans (Ih) with different initial conditions approaching
the endemic equilibrium when R0 > 1, while Figure 2 depict simulation of the model showing
population of infected humans (Ih) approaching the disease free equilibrium when R0 < 1.
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Figure 4: Plot for the local sensitivity indices of R0 for the model parameters with R0 < 1(low
transmission) and R0 > 1 (high transmission). Where v = 1− ζv.

4.2 Local sensitivity analysis of R0

Relative change in a function due to parameter changes (local sensitivity indices) can be mea-
sured using elasticity index [44, 45]. Given a multi-variable function f and any arbitrary parameter
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say ω, the elasticity index is given by

Υf
ω =

∂f

∂ω
× ω

f
. (4.1)

With the explicit value for the basic reproduction number, the above formula (4.1) is used to analyze
elasticity (local sensitivity) indices of R0 with respect to the parameters of model (2.4).

With the use of parameter values presented in Table 3, sensitivity index of the basic reproduction
number for both low and high transmission are obtained. For the sake of easy comparison, a plot
for the sensitivity index is given in Figure 4. This index is obtained when other parameters are
kept constant, thus, there is need for more robust sensitivity index.

Parameters

P
R

C
C

−1.0

−0.5

0.0

0.5

1.0

µH γH δH βHM bM rH Κ v µM φM µA

Figure 5: Partial Rank Correlation Coefficients (PRCC) of R0 for the model parameters.

4.3 Global sensitivity analysis
Although easier to compute, but because local sensitivity indices are more suited for parameters

known with certainty, it is necessarily to perform a more reliable analysis which allows for the
variation of other parameters as effect of a particular parameter is gauged.

Using parameter ranges given in Table 3, the partial rank correlation coefficient (PRCC) of the
model parameters are computed and presented in Figure 5 with the basic reproduction number as
the R0. Likewise Table 4 shows the sensitivity index, bias, error and confidence interval for each
parameter.
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Table 4: Partial Rank Correlation Coefficients (PRCC) of the parameters (Par) of R0 where v =
1− ζv.Par Sensitivity Bias Std error Min. C.I Max. C.I
µh +0.0568229 -0.001056 0.03434093 -0.0075356 +0.12541
ωh -0.13438731 -0.000729 0.03080668 -0.1971379 -0.074570
δh -0.11941843 +0.00178 0.03205131 -0.1877505 -0.058661
βhv +0.5822655 -0.000888 0.01898839 +0.546284 +0.62179
bv +0.2872719 -0.000173 0.02971285 +0.227748 +0.34781
rh -0.43285879 -0.000464 0.02730825 -0.4861036 -0.382255
κ +0.4103448 +0.00078 0.02517658 +0.360995 +0.46169
v +0.8342995 +0.00015 0.01241340 +0.810207 +0.85844
µv -0.55622995 -0.000434 0.02038602 -0.5970142 -0.514089
ρv +0.0351035 -0.000558 0.03430478 -0.0298447 +0.10249
µA +0.0257274 -0.002854 0.03544698 -0.0403328 +0.09836

Conclusion

The dengue model that incorporates both mosquito vertical transmission is constructed and
analyzed. Major findings include.

• There exists a threshold quantity for the mosquito population called the basic offspring number
(N0). It plays major role in extinction or otherwise of the mosquito population, with N0 ≤ 1
indicating the extinction of mosquitoes which persist otherwise.

• For the full model (with both mosquitoes and humans), dengue virus can be controlled if the
associated basic reproduction number is less than or equal to unity and N0 ≤ 1.

• The full model (with both mosquitoes and humans) undergoes backward bifurcation (at R0 =
1) whenever N0 > 1. It was further shown that, the bifurcation is caused by disease induced
death rate of humans.

• The type reproduction numbers were also computed and their relationship with the basic
reproduction number presented. Conditions for global asymptotic stability of the DFE were
computed. Also, βhv and µv are respectively the most positively and negatively correlated
parameters to the basic reproduction.
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Appendix A: Backward bifurcation

Proof of the existence of backward bifurcation

Let,
(Sh, Ih, Rh, An, Ai, Sv, Iv) = (z1, z2, z3, z4, z5, z6, z7),

so that the total human population, aquatic and adult mosquito populations are:

Nh = z1 + z2 + z3, A = z4 + z5, and NV = z6 + z7.

Then, model (2.4) as transformed is represented by,

dz1
dt

= rh − (
βhvz7

z1 + z2 + z3
)z1 − µhz1,

dz2
dt

= (
βhvz7

z1 + z2 + z3
)z1 − δhz2 − ωhz2 − µhz2,

dz3
dt

= ωhz2 − µhz3,

dz4
dt

= ρv(1−
z4 + z5

K
)(z6 + ζvz7)− bvz4 − µAz4,

dz5
dt

= ρv(1−
z4 + z5

K
)(1− ζv)z7 − bvz5 − µAz5,

dz6
dt

= bvz4 −
βhvz2

z1 + z2 + z3
z6 − µvz6,

dz7
dt

=
βhvz2

z1 + z2 + z3
z6 + bvz5 − µvz7.

(A.1)

and,

λh =
βhvz7

z1 + z2 + z3
z1, λV =

βhvz2
z1 + z2 + z3

z6.

The Jacobian matrix at the DFE and βhv = β∗
hv is:

J∗ =



−µh 0 0 0 0 0 −β∗
HV

0 −S1 0 0 0 0 β∗
HV

0 ωh −µh 0 0 0 0

0 0 0 −ρvbv
µv

−S2(N0 − 1) S2µv

bv

S2µvζv
bv

0 0 0 0 −S2 0 S2µv(1−ζv)
bv

0 −β∗
HV S∗

v

S∗
h

0 bv 0 −µv 0

0
β∗
HV S∗

v

S∗
h

0 0 bv 0 −µv


.

At R0 = 1 which implies RHV RV H = 1 − RV V , the Jacobian J∗ has left (vi) and right (wi)
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eigenvectors associated with the zero eigenvalue respectively given by

v1 = 0, v2 =
1

S∗
hS2µ2

V ζ
2
vµ

2
h + S∗

vβ
2
hvµ

2
h((1− ζv) + S2ζv)

, v3 = 0

v4 = 0, v5 =
βhvbv
S2µvζv

v2, v6 = 0, v7 =
βhv

µvζv
v2,

(A.2)

and

w1 =
−RHV RV HS1

ζvµh
w2, w2 = S∗

hS2µ
2
hµ

2
V ζ

2
v , w3 =

ωhw2

µh
, w4 =

−βhvS
∗
v (1− ζv)

S∗
hbvζv

w2,

w5 =
βhvS

∗
v (1− ζv)

S∗
hbvζv

w2, w6 = − βhvS
∗
v

S∗
hµvζv

w2, w7 =
βhvS

∗
v

S∗
hµvζv

w2.

(A.3)
Using the vectors in (A.2) and (A.3) we have

a =

n∑
k,i,j=1

VkWiWj
∂2fk

∂xi∂xj
(0, 0) =

−2w2
2v2

N∗
hK

[
8β2

hv

S∗
vK

µvζv
+

β2
hvS

∗
vK(ωh + µh)

µvµhζv
+

βhvS
∗
vK(

4µh + 5ωh

µh
− 3

S1

µh
{ RHV RV H

(1−RV V )
})
] (A.4)

while,

b =

n∑
k,i=1

vkwi
∂2fk

∂xi∂ρv
(0, 0) =

S∗
vw2v2
S∗
h

(
βhv

µvζv
+ 8) > 0. (A.5)

Observe that a can be positive or negative.

Appendix B: Global asymptotic stability of G3

Here, the global stability of the DFE G3 is done using a method described by [39]. The model
(2.4) is first transformed into a pseudo-triangular form.
If p1 = (Sh, An, Sv)

T is the populations of the susceptible components of (2.4), and p̄1 = (S∗
h, A

∗
n, S

∗
v )

T

represents the DFE. Based on the properties of the disease free equilibrium, equations of the model
can be simplified as,

dSh

dt
= rh − βhv

Iv
Nh

Sh − µhSh,

= −µh(Sh − S∗
h)− βhv

Iv
Nh

Sh,

(B.1)

similarly,

dAn

dt
= ρv(1−

A

K
)(Sv + ζvIv)− S2An,

= −(An −A∗
n)(S2 + ρv

Sv

K
) + ρv(1−

A

K
)(Sv − S∗

v + ζvIv)− ρv
Sv

K
Ai,

(B.2)
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and,
dSv

dt
= bvAn − βhv

Ih
Nh

Sv − µvSv,

= −µv(Sv − S∗
v ) + bv(An −A∗

n)− βhv
Ih
Nh

Sv.

(B.3)

From the above, the following coefficient matrices are obtained

A11(p) =

−µh 0 0

0 −(S2 + ρv
Sv

K ) ρv(1− A∗
n

K )
0 bv −µv

 ,

A12(p) =

 0 0 0 −βhv
Sh

Nh

0 0 −ρv
Sv

K ρvζv(1− A
K )

−βhv
Sv

Nh
0 0 0

 ,

(B.4)

Also, if p2 = (Ih, Rh, Ai, Iv)
T is the population of infectious component of (2.4), with the following

simplification

dAi

dt
= ρv(1−

(Ai +An)

K
)(1− ζv)Iv − bvAi − µAAi,

= ρv(1− ζv)Iv − ρv(1− ζv)Iv
Ai

K
− ρv(1− ζv)Iv

An

K
− S2Ai,

= −Ai(S2 + ρv(1− ζv)
Iv
K
) + ρv(1− ζv)Iv(1−

An

K
).

(B.5)

the following matrix is also obtained,

A22(p) =


−S1 0 0 βhv

Sh

Nh

ωh −µh 0 0
0 0 −m33 m34

βhv
Sv

Nh
0 bv −µv

 , (B.6)

where, m33 = S2 + ρv(1− ζv)
Iv
K and m34 = ρv(1− ζv)(1− A∗

n

K ). So that, the system is re-written as
ṗ1 = A11(p)(p1 − p̄1) +A12(p)p2

ṗ2 = A22(p)p2.

(B.7)

Theorem 4.1. Consider (2.4). Let Ω ⊂ Rn1+n2
+ be a positively-invariant set. If

1. The system (2.4) is defined on the positively invariant set Ω ⊂ Rn1+n2
+ .

2. The sub-system ṗ = A11(p)(z1 − z̄1) is globally asymptotically stable at the equilibrium z̄1.

3. For any p ∈ Ω, the matrix A22(p) is Metzler and irreducible.

51

 https://doi.org/10.5281/zenodo.13625991


International Journal of Mathematical Sciences and
Optimization: Theory and Applications

10(3), 2024, Pages 31 - 56
https://doi.org/10.5281/zenodo.13625991

4. There exists an upper bound matrix Ā22 for the set W = {A22(p)/p ∈ Ω}, with the property
that either Ā22 /∈ W or if Ā22 ∈ W(i.e., Ā22 = maxΩW), then for p̄ ∈ Ω such that Ā22 =
A22(p̄), then p̄ ∈ R7 × {0} (the DFE sub-manifold contains the points where the maximum is
attained).

5. The stability modulus of Ā22 satisfies α(Ā22) ≤ 0.

Then, the associated DFE is GAS in Ω [12, 15, 39].

We have already shown that Ω was is positively invariant with respect to (2.4) (Lemma 3.1). For
the fixed point G3, where A∗ = K(N0−1

N0
), the associated eigenvalues of the matrix (A11(p) ) given

by (B.4) are as follows

− µh,

− 1

2
(S2 + µv +

ρvSv

K
) +

1

2

√
(S2 + µv +

ρvSv

K
)
2 − 4

ρvSv

K
µv,

− 1

2
(S2 + µv +

ρvSv

K
)− 1

2

√
(S2 + µv +

ρvSv

K
)
2 − 4

ρvSv

K
µv.

Via some computations, it can be shown that (S2 + µv + ρvSv

K )
2 − 4Sv

K ρvµv > 0, and (S2 + µv +
ρvSv

K )
2 − 4Sv

K ρvµv < (S2 + µv +
ρvSv

K )
2, thus, the eigenvalues of the Metzler matrix A11(p) are all

real and negative. Therefore the subsystem ṗ1 = A11(p)(p1− p̄1) is globally asymptotically stable.
Any square matrix U in the following form is reducible

U =

(
U1 U2

0 U3

)
(B.8)

where U1 and U3 are square matrices of order at least 1 or if A can be transformed into the form
(B.8) by simultaneous permutations of rows and columns. It is irreducible otherwise. Alternatively,
a square matrix is irreducible if and only if its associated digraph is strongly connected [43].

Lemma 4.2. Let W be a Metzler matrix which is block decomposed as follows

W =

(
A1 A2

A3 A4

)
(B.9)

A1 and A4 are square matrices. Then W is Metzler stable if and only if A1 and A4−A3A
−1
1 A2 are

Metzler stable.

Let M∗
h = rh

δh+µh
, then Nh ≥ M∗

h and Sh ≤ Nh, so that 1
M∗

h
≥ 1

Nh
and Sh

Nh
≤ 1 in Ω with

equality at the DFE. Furthermore An ≤ K and Sv ≤ S∗
v

N0

N0−1 in Ω. Also, from the definition of
Metzler reducible matrix follows that A22(p) is irreducible, hence conditions 1-3 of Theorem (4.1)
are satisfied. The following matrix Ā22(p) given by

Ā22(p) =


−S1 0 0 βhv

ωh −µh 0 0
0 0 −S2 ρv(1− ζv)

1
N0

βhvS
∗
vN0

(N0−1)M∗
h

0 bv −µv

 (B.10)
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is Metzler and an upper bound of A22(p) ∈ Ω provided RHH < 1. Thus, condition 4 of Theorem
(4.1) is satisfied. In the case of the matrix Ā22 we have

A =

(
−S1 0
ωh −µh

)
, B =

(
0 βhv

0 0

)
,

C =

(
0 0

βhvS
∗
vN0

(N0−1)M∗
h

0

)
, D =

(
−S2 ρv(1− ζv)

1
N0

bv −µv

)
.

(B.11)

Under the condition that RHH < 1, it is easy to verify that A is Metzler stable. Also

D− CA−1B =

−S2 ρv(1− ζv)
1
N0

bv −µv(1− β2
hvS

∗
vN0

S1M∗
hµv(N0−1) )

 . (B.12)

Let Z =
N∗

hN0

M∗
h(N0−1) . Then D− CA−1B is Metzler if

β2
hvS

∗
vN

∗
hN0

S1N∗
hM

∗
h(N0 − 1)µv

= RHV RV HZ < 1. (B.13)

and Metzler stable if

S2µv(1−RHV RV HZ −RV V ) ≥ 0 =⇒ RHV RV HZ +RV V ≤ 1. (B.14)

Notice that for N0 > 1, Z =
N∗

hN0

M∗
h(N0−1) > 1, therefore, the two conditions given by (B.13) and

(B.14) are equivalent to

RHV RV H

1−RV V
≤ 1

Z
=

M∗
h(N0 − 1)

N∗
hN0

< 1 and, RHV RV H <
M∗

h(N0 − 1)

N∗
hN0

.

Thus, the necessarily and sufficient conditions for the GAS of G3 with respect to Ω is that RHV RV HZ+
RV V ≤ 1.
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