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Abstract

Malaria is one of the diseases that account for the highest mortality in sub-Saharan Africa
particularly among children below the age of five. On 17 April 2023, Nigeria became the
second country in the world to approve R21 malaria vaccine to prevent malaria infections
in children from five months to thirty-six months of age. In an attempt to investigate the
implications of vaccine development for malaria and the subsequent approval of its use in some
endemic regions, an age-structured malaria model was designed and some important factors
that could shape malaria dynamics were incorporated (e.g. vaccination, nonlinear incidence,
asymptomatic carriers, relapse and migration). The validity of the model is established using
some mathematics theorems and the reproduction number is computed following the next
generation matrix method. Bifurcation analysis is conducted by employing the center manifold
theorem. The results of the study indicated that the development of malaria vaccines and
the subsequent approval of its use in some malaria endemic regions (e.g. Ghana, Nigeria,
etc.) are a welcome development. However, while the vaccines may guarantee the necessary
protection, its application and coverage to the fullest may not instigate malaria eradication.
The policy implication of the results is that the prevalence of vectors in the endemic regions
necessitated adequate vector control in addition to the application of vaccines to minimize
malaria transmission.
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1 Introduction

Malaria is a disease of concern in different countries of the World over the years. The greatest
burden of the disease is carried by the Sub-Sahara African-residential human population according
to recent reports [1]. However, the low socio-economic and educational status of most people that
live in Africa are contributing factors to this burden [2, 3, 4]. Also, climatic conditions such as wind,
rainfall, relative humidity, and temperature; obtainable in Africa accelerate the survival and repro-
duction rate of the malaria vector [5, 6, 7]. The Plasmodium falciparum specie is the predominant
malaria infection parasite in the Sub-Sahara African region in contrast to other endemic regions of
the World [8, 9, 10]. Malaria is an acute illness, causing symptoms such as, fever, headache, and
chills and vomiting. Although malaria is preventable and treatable, the disease can lead to death
if left untreated [11]. Despite the efforts to prevent, control, and eradicate the disease, malaria
remains a public health problem globally and mainly in the tropics and subtropics region [12]. It
is also estimated that between 300 and 500 million individuals are infected annually, with most of
the estimated cases observed in Asia, Africa, Latin America, the Middle East and some parts of
Europe [13]. In 2018, an estimated 228 million cases of malaria and 405,000 deaths from malaria
occurred worldwide with 93% of all malaria cases and 94% of all malaria deaths occurred in the
African region [1].

In 2019, malaria was estimated to be 229 million cases and 409,000 deaths worldwide [14]. The
disease is more severe in children under five years old, with two-thirds of the reported deaths being
children [15]. Malaria is also a serious parasitic disease in less developed countries causing a high
mortality. It is estimated that nearly 300 to 400 million malaria cases occur worldwide, out of which
1.5 to 2 million die every year [15]. In Nigeria, an estimated 76 percent of Nigeria’s population is
at risk of malaria by living in high transmission areas. Nigeria accounts for 27 percent of malaria
cases worldwide and the highest number of malaria deaths (24 %) in 2019 [13].

Several factors contribute to malaria transmission. These include infected migrants, asymp-
tomatic carriers and age. Malaria burden depends on the age-structure of the human population as
children bear more burden than adults [14]. Children are more vulnerable to malaria than adults
since they have not developed immunity to infections [16]. It is estimated that two-third of the
world malaria deaths occurs in children less than five years of age [14].

Asymptomatic infections also play crucial roles in the dynamics of malaria. Asymptomatic
infections occur as a result of repeated exposure to disease [17]. The asymptomatic carriers serve
as a reservoir of parasites for malaria transmission [18]. Asymptomatic carriers present the case
of a human individual who harbors the parasite capable of transmitting the disease, but without
exhibiting symptoms. Also, there is a direct relationship between disease dynamics and human
movement patterns. The global increase in human mobility is creating highly favorable conditions
for the persistence of diseases being targeted for elimination, such as malaria, and for the faster
spread of emerging pathogens, such as Ebola or Zika [19, 20].

Mathematical models can improve our understanding of the epidemiology of malaria and those
components that are significant to malaria diagnosis, treatment and control. [21, 22]. Mathematical
models have been used for many years to understand the mechanisms of malaria transmission, since
such models approach can be used to give a visual interpretation of any possible intervention that
can be implemented in the field to control malaria transmission. These approaches provide a
scientific background before a final decision from the government should be taken. Based on the
importance of mathematical models on the epidemiological study of malaria, a good number of
papers have been developed across the globe by the scholars.
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From the early work by Ross in 1911 [23], many mathematical models were introduced by authors
to help a better understanding of malaria transmission. Macdonald in 1957 did some modifications
to Ross’s model by including superinfection and used his model to estimate the infection and
recovery rates of malaria [24]. He found that reducing the number of mosquitoes in an endemic
area is an inefficient malaria control strategy. In the early 1980s–1990s, Aron and May and Anderson
and May constructed their malaria models based on the assumptions that immunity to malaria is
independent of the duration of exposure [25, 26]. Okosun and other researchers concluded from
their mathematical model that a combination of insecticides and transmission-blocking treatment
is the most cost-effective interventions to control malaria [27]. An optimal vaccination and bed net
mathematical model is introduced by [28]. Their analytical results reveal that increasing the case
detection strategy may reduce the chance of backward bifurcation phenomena in their model. An
analysis of the potential impact of pre-erythrocytic vaccine from clinical data was discussed by the
author in [15].

Similar to [28], [14] also found a possible backward bifurcation from their model on the impact
of transmission-blocking drugs. Their model projects an approximately 82% malaria death rate
reduction by 2035 if 35% of the population in Sub-Saharan Africa receives a transmission-blocking
drug with an efficacy of 95%. [29] analyzed the dynamics of malaria using incidence data in
Bangladesh from 2001 to 2014. They found that as infection rate had the greatest impact on the
basic reproduction number compared to other model parameters, it was important to reduce the
infection rate which could be achieved by using insecticide-treated bed nets, spraying insecticides,
clearing stagnant water, etc. In a more recent mathematical model, authors include more recent
facts on malaria transmission such as the effect of vector-bias [30], asymptotic carriers [31], age-
structured [12, 32, 33, 34], competitive strains [35], seasonal factors [36, 37], and coinfection of
malaria with COVID-19 [38]. Furthermore, intervention models also have been widely introduced
by authors, such as the use of fumigation [39], insecticide-treated bed nets [40], and vaccines with
waning immunity [41], or transmission-blocking vaccines [42].

While there have been several works on malaria, only few focuses on age-structured, infected
immigrants, nonlinear incidence rate and vaccinated group. Most existing age-structured malaria
models adopt standard incidence rate to model malaria transmission [12, 32, 33, 34] . Besides,
none of the models consider vaccination as a malaria control strategy. Also, infected immigrants
are not well captured in some of the models that incorporated them [12, 32, 33, 34]. However,
infected immigrants are important components of malaria dynamics. Their presence can trigger
reemergence of malaria in an area where it has previously been eradicated. Their presence can
also worsen malaria transmission in already endemic regions. Further, in modeling disease spread,
nonlinear incidence rate is more reasonable than the standard incidence rate because it includes the
behavioral change and crowding effect of the infective individuals and prevents the unboundedness
of the contact rate by choosing suitable parameters [43, 44, 45].

Lastly, in 2015, Glaxo-SmithKline’s (GSK’s) RTS, S/AS01 pre-erythrocytic vaccine received a
positive scientific response on the quality of this vaccine in combating malaria transmission [46].
Recently, Ghana and Nigeria recognized the impacts of vaccines in combating the spread of malaria
and approved the R21 malaria vaccine manufactured by the Serum Institute of India [47]. The
vaccine is developed at the University of Oxford and is indicated for the prevention of clinical malaria
in children from 5 months to 36 months of age [47]. Based on the emergence of various vaccines
and the development of pre-erythrocytic vaccine (RTS, S/AS01 ) in particular, [1] developed a
mathematical model to study the potential impact of pre-erythrocytic vaccine (RTS, S/AS01 ) as
a control strategy to reduce the spread of malaria.
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This study is motivated to fill the existing gaps in some age-structured malaria models - [12, 32,
33, 34] by incorporating infected immigrants, nonlinear incidence rate and the influence of vaccines
on malaria dynamics. The study is intended to conduct the bifurcation analysis to investigate the
strength vaccines in combating malaria so as to inform the policy makers the extent of reliability
of malaria vaccines in the fight against malaria eradication.

2 MODEL FORMULATION

The model with human and vector compartments are formulated. The human population Nh(t)
is divided into two classes, children Nc(t) and adults Na(t); that is Nh (t) = Nc (t) + Na(t). The
children class is a subgroup of the host population whose members are less than five years old.
These members are vulnerable to malaria. The adult class is the group of individuals aged five
years and above who are less vulnerable to malaria. Each group is further subdivided into five
classes; vaccinated children (V c(t)), susceptible children (Sc(t)), asymptomatic children (Ac(t)),
infected children (Ic(t)), recovered children (Rc(t)), vaccinated adults (V a(t)), susceptible adults
(Sa(t)), asymptomatic adults (Aa(t)), infected adults (Ia(t)) and recovered adults (Ra(t)), so that

Nh (t) = Vc (t) + Sc (t) +Ac (t) + Ic (t) +Rc (t) + Va (t) + Sa (t) +Aa (t) + Ia (t) +Ra(t). (2.1)

The population of vector at time t, denoted by Nv (t), is sub-divided into mutually-exclusive com-
partments of susceptible vector (Sv (t)) and infected vector (Iv (t)) so that

Nv (t) = Sv (t) + Iv(t). (2.2)

The transmissions across the compartments are illustrated in Figure 1
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Since the model captures infected immigrants and the influence of vaccination on malaria dynamics,
recruitment rate in Figure ?? which is either by birth or by migration occurs at rate θ with bθ,
k1(1− b)θ, k2(1− b)θ and k3(1− b)θ recruited into Vc (t) , Sc (t) , Ac (t) and Ic (t) respectively. The
vaccinated children Vc (t) moves to the susceptible class at the expiration of immunity at rate ϕc.
Susceptible children Sc (t) become infected and join the asymptomatic group Ac (t) upon bitten
by infectious vectors Iv (t) with force of infection λc. Because of the recent approval of vaccines
in preventing clinical malaria in children from 5 months to 36 months of age [48], vaccination is
introduced to the susceptible children and it is assumed that the force of infection is reduced by the
constant (1 −m), where m is the rate of vaccination of susceptible children. Sc (t) class however
gains individuals at rate ψc when there is a relapse after malaria cure. Asymptomatic children Ac (t)
develop malaria symptoms at rate σc and move to the infectious compartment Ic (t). Infectious
children Ic (t) however recover from malaria infection through treatment and join recovered class at
rate γc. Children mature into adults at the same rate ε. Vaccinated adults Va (t) lose immunity and
become susceptible at rate ϕa. Susceptible adults Sa (t) become infected when they are bitten by
infectious vector Iv(t) with force of infection λa and join the asymptomatic group Aa (t). Because
of vigor and immunity in adults, the proportion (1−σa) from Aa (t) joins the recovered class before
the symptoms appear while the remaining proportion σa join the infectious class, both at the same
rate τ . Infectious adults Ia (t) however recover from malaria infection through treatment and join
recovered class at rate γa. All the compartments (both children and adults) lose population to
natural deaths at the same rate µh while in addition to natural deaths, infectious children and
adults compartments Ic (t) and Ia (t) lose populations to malaria at rates δc and δa respectively.

As for the vector population, susceptible vectors Sv (t) are recruited at rate πv but become
infected and join the compartment for the infectious vectors Iv (t) with force infection λv when they
come in contact with infectious humans (i.e., Ac (t) , Ic (t) , Aa(t) or Ia(t)). Natural deaths and
deaths due to vector control occur in the vector populations at the same rate µv and ρ respectively.
The model is built around the following main assumptions.

1. Malaria spread is attributed only to horizontal transmission;

2. Individuals in the vaccinated class have temporary immunity against malaria infection;

3. Vaccination in susceptible children does not proffer total protection but it reduces effective
contact;

4. Asymptomatic adults may recover from malaria before symptoms development;

5. Every individual below the age of five is a child while any person aged five and above is an
adult;

6. Malaria transmission to susceptible vectors Sv (t) is higher from infectious humans Ic (t) and
Ia (t) than from asymptomatic humans Ac (t) and Aa (t).

Following the aforementioned assumptions, formulations and the flow diagram, the age-structured
model for the transmission dynamics of malaria in a community is given by the following determin-
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istic system of non-linear differential equations:

dVc
dt

= bθ − (ϕc + ε+ µh)Vc, (2.3)

dVa
dt

= εVc − (µh + ϕa)Va, (2.4)

dSc

dt
= k1 (1− b) θ + ϕcVc + ψcRc − λcSc − (µh + ε)Sc, (2.5)

dSa

dt
= εSc + ϕaVa + ψaRa − λaSa − µhSa, (2.6)

dAc

dt
= k2 (1− b) θ + λcSc − (σc + ε+ µh)Ac, (2.7)

dAa

dt
= εAc + λaSa − (τ + µh)Aa, (2.8)

dIc
dt

= k3 (1− b) θ + σcAc − (δc + γc + ε+ µh) Ic, (2.9)

dIa
dt

= εIc + σaτAa − (δa + γa + µh) Ia, (2.10)

dRc

dt
= γcIc − (ψc + ε+ µh)Rc, (2.11)

dRa

dt
= (1− σa)τAa + εRc + γaIa − (ψa + µh)Ra, (2.12)

dSv

dt
= πv − λvSv − (µv + ρ)Sv, (2.13)

dIv
dt

= λvSv − (µv + ρ)Iv, (2.14)

where k1, k2, k3 are constants such that k1 + k2+k3 = 1 with nonnegative initial conditions

Vc (0) > 0, Sc (0) ≥ 0, Va (0) ≥ 0, Sa (0) ≥ 0, Ac (0) > 0, Ic (0) > 0, Rc (0) ≥ 0 ,

Aa (0) ≥ 0, Ia (0) ≥ 0, Ra (0) ≥ 0, Sv (0) > 0, Iv (0) ≥ 0 .

Also, λc =
n(1−m)βcIv

Iv+ϑ , λa = nβaIv
Iv+ϑ and λv = nβv[η(Ac+Aa)+Ic+Ia]

(Ac+Aa+Ic+Ia)+φ .
The variables and parameters for the model are redefined in Table 1 and Table 2 for ease of

reference

Table 1. description of model variables
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Variables Descriptions
Vc Population of vaccinated children
Sc Population of susceptible children
Va Population of vaccinated adults
Sa Population of susceptible adults
Ac Population of asymptomatic children
Ic Population of symptomatic children
Rc Population of recovered children
Aa Population of asymptomatic adults
Ia Population of symptomatic adults
Ra Population of recovered adults
Sv Population of susceptible vectors
Iv Population of infectious vectors

Table 2. description of model parameters
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Parameters Descriptions
µh Natural death rate for humans
δc Disease-induced mortality rate for children
δa Disease-induced mortality rate for adults
θ Human recruitment rate
πv Recruitment rate for vector
µv Natural death rate for vector
ρ Death rate for vector due to control
βc Probability that the mosquito bites result in malaria for children
βa Probability that the mosquito bites result in malaria for adults
βv Probability of infection of susceptible vectors per bite of the infected host
n Average per capita biting rate of mosquitoes
m Vaccination rate of susceptible children
ϕc Waning rate of immunity acquired through immunization for children
ϕa Waning rate of immunity acquired through immunization for adults
ε Maturation rate for children
ψc Rate of loss of natural immunity for children
ψa Rate of loss of natural immunity for adults
b Proportion of children recruited initially
σc Rate of development of clinical symptoms of malaria for asymptomatic

children
σa Rate of development of clinical symptoms of malaria for asymptomatic

adults
η Modification parameter for reduction in infectiousness of asymptomatic hu-

mans
γc Recovery rate for children
γa Recovery rate for adults
τ Rate of progression from asymptomatic stage for adults
ϑ Rate of control of mosquitoes
φ Rate of effectiveness of malaria prevention/ treatment
k1, k2, k3 Ratios of the children recruited to the susceptible, asymptomatic and in-

fectious compartments respectively

The model (2.3-2.14) is a modification and an extension of malaria models developed in [12, 32, 33,
34] by including:

1. the impacts of vaccination on malaria dynamics;

2. proportions of infected immigrants;

3. natural recovery rate for asymptomatic adults
and;

4. non-linear incidence rate.
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The model shall be studied qualitatively. Emphasis shall be placed on the bifurcation and
sensitivity of the model parameters to determine the major parameters to be targeted for control
of malaria particularly in the endemic regions.

Before the model is applied, it is necessary to show that it is epidemiologically and mathe-
matically well-behaved to guarantee its usability. The existence and uniqueness, positivity and
boundedness properties of solutions for the model shall be examined to verify its applicability.

2.1 Existence and Uniqueness of Solutions of (2.3-2.14)
Theorem 1 [48]. Let Ω denote a region

|t− t0| ≤ y, "∥x− x0∥" ≤ z, x = (x 1, x 2, . . . , xn), x 0 = (x 10, x 20, . . . , xn0).
Also, suppose the Lipschitzian condition " ∥f (t, x1)− f(t, x2)∥" ≤ c"x 1 − x 2" is satisfied by f (t,
x ), whenever (t, x 1) and (t, x 2) is in Ω, where c is positive. A unique continuous vector solution
x (t) of the system in the interval t− t0 ≤ δ exists, such that δ > 0.
Proof. Let Ω denote the region 0 ≤ α ≤ R, we want to show that the partial derivatives of (2.3-2.14)
are continuous and bounded in Ω. Let

H1 = bθ − (ϕc + ε+ µh)Vc,

H2 = εVc − (µh + ϕa)Va,

H3 = k1 (1− b) θ + ϕcVc + ψcRc − λcSc − (µh + ε)Sc,

H4 = εSc + ϕaVa + ψaRa − λaSa − µhSa,

H5 = k2 (1− b) θ + λcSc − (σc + ε+ µh)Ac,

H6 = εAc + λaSa − (τ + µh)Aa,

H7 = k3 (1− b) θ + σcAc − (δc + γc + ε+ µh) Ic,

H8 = εIc + σaτAa − (δa + γa + µh) Ia,

H9 = γcIc − (ψc + ε+ µh)Rc,

H10 = (1− σa)τAa + εRc + γaIa − (ψa + µh)Ra,

H11 = πv − λvSv − (µv + ρ)Sv,

H12 = λvSv − (µv + ρ)Iv,

Then the partial derivatives of (H1 −H12) are given below as∣∣∣∂H1

∂Vc

∣∣∣ = |−(ϕc + ε+ µh)| <∞; ∂H1 w.r.t. ∂ of other variables = |0| <∞.∣∣∣∂H2

∂Vc

∣∣∣ = |ε| <∞;
∣∣∣∂H2

∂Va

∣∣∣ = |−(ϕa + µh)| <∞; ∂H2 w.r.t. ∂ of other variables = |0| <∞.∣∣∣∂H3

∂Vc

∣∣∣ = |ϕc| < ∞;
∣∣∣∂H3

∂Rc

∣∣∣ = |ψc| < ∞;
∣∣∣∂H3

∂Sc

∣∣∣ = |−(λc + µh + ε)| < ∞; ∂H3 w.r.t. ∂ of other
variables = |0| <∞.∣∣∣∂H4

∂Sc

∣∣∣ = |ε| < ∞;
∣∣∣∂H4

∂Va

∣∣∣ = |ϕa| < ∞;
∣∣∣∂H4

∂Ra

∣∣∣ = |ψa| < ∞;
∣∣∣∂H4

∂Sa

∣∣∣ = |−(λa + µh)| < ∞; ∂H4 w.r.t.
∂ of other variables = |0| <∞.∣∣∣∂H5

∂Sc

∣∣∣ = |λc| <∞;
∣∣∣∂H5

∂Ac

∣∣∣ = |− (σc + ε+ µh)| <∞; ∂H5 w.r.t. ∂ of other variables = |0| <∞.∣∣∣∂H6

∂Vc

∣∣∣ = |ε| < ∞;
∣∣∣∂H6

∂Sa

∣∣∣ = |λa| < ∞;
∣∣∣∂H6

∂Aa

∣∣∣ = |−(τ + µh)| < ∞; ∂H6 w.r.t. ∂ of other variables
= |0| <∞.
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∂Ac

∣∣∣ = |σc| < ∞;
∣∣∣∂H7

∂Ic

∣∣∣ = |− (δc + γc + ε+ µh)| < ∞; ∂H7 w.r.t. ∂ of other variables
= |0| <∞.∣∣∣∂H8

∂Ic

∣∣∣ = |ε| < ∞;
∣∣∣∂H8

∂Aa

∣∣∣ = |σa| < ∞;
∣∣∣∂H8

∂Ia

∣∣∣ = |−(δa + γa + µh)| < ∞; ∂H8 w.r.t. ∂ of other
variables = |0| <∞.∣∣∣∂H9

∂Ic

∣∣∣ = |γc| <∞;
∣∣∣∂H9

∂Rc

∣∣∣ = |− (ψc + ε+ µh)| <∞; ∂H9 w.r.t. ∂ of other variables = |0| <∞.∣∣∣∂H10

∂Aa

∣∣∣ = |1− σa| τ < ∞;
∣∣∣∂H10

∂Rc

∣∣∣ = |ε| < ∞;
∣∣∣∂H10

∂Ia

∣∣∣ = |γa| < ∞;
∣∣∣∂H10

∂Ra

∣∣∣ = |−(ψa + µh)| < ∞;
∂H10 w.r.t. ∂ of other variables = |0| <∞.∣∣∣∂H11

∂Sv

∣∣∣ = |−(λv + µv + ρ)| <∞; ∂H11 w.r.t. ∂ of other variables = |0| <∞.∣∣∣∂H12

∂Sv

∣∣∣ = |λv| <∞;
∣∣∣∂H12

∂Iv

∣∣∣ = |− (µv + ρ)| <∞; ∂H12 w.r.t. ∂ of other variables = |0| <∞.

Given the above partial derivatives of (H1 −H12) w.r.t. each variables, it is shown that the partial
derivatives of (2.3-2.14) exists, are finite and bounded. Hence (2.3-2.14) has a unique solution.
Theorem 2. The solutions of the model are positive and bounded for all t ≥ 0 if the model’s initial
conditions are all nonnegative
(i.e., Vc (0) > 0, Sc (0) ≥ 0, Va (0) ≥ 0, Sa (0) ≥ 0, Ac (0) > 0, Ic (0) > 0, Rc (0) ≥ 0 ,

Aa (0) ≥ 0, Ia (0) ≥ 0, Ra (0) ≥ 0, Sv (0) > 0, Iv (0) ≥ 0).

Proof.
dVc
dt

∣∣∣∣Vc = 0 = bθ,

dSc

dt

∣∣∣∣Sc = 0 = k1 (1− b) θ + ϕcVc + ψcRc,

dVa
dt

∣∣∣∣Va = 0 = εVc,

dSa

dt

∣∣∣∣Sa = 0 = εSc + ϕaVa + ψaRa,

dAc

dt

∣∣∣∣Ac = 0 = k2 (1− b) θ + λcSc,

dIc
dt

∣∣∣∣ Ic = 0 = k3 (1− b) θ + σcAc,

dRc

dt

∣∣∣∣Rc = 0 = γcIc,

dAa

dt

∣∣∣∣Aa = 0 = εAc + λaSa,

dIa
dt

∣∣∣∣ Ia = 0 = εIc + σaτAa,

dRa

dt

∣∣∣∣Ra = 0 = (1− σa)τAa+εRc + γaIa,
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dSv

dt

∣∣∣∣Sv = 0 = πv,

dIv
dt

∣∣∣∣ Iv = 0 = λvSv.

It is clear that these ratios are not negative in the bounding planes of the nonnegative cone R12.
Therefore, if we start inside this cone, we will always stay inside this cone in the inward direction of
the vector field in all bounding planes. Consequently, all solutions of (2.3)-(2.14) are not negative.
For the proof of boundedness, the total population sizes for human and vector are added and we
re-write (2.1) and (2.2), i.e.,

Nh (t) = Vc (t) + Sc (t) +Ac (t) + Ic (t) +Rc (t) + Va (t) + Sa (t) +Aa (t) + Ia (t) +Ra(t),

Nv (t) = Sv (t) + Iv(t).

Adding (2.3)-(2.14) for human and vector, we obtain
dNh

dt = bθ + k1 (1− b) θ + k2 (1− b) θ + k3 (1− b) θ − µhNh − δcIc − δaIa,
dNv

dt = πv − µvNv − ρSv − ρIv.

}
(2.15)

Suppose bθ + k1 (1− b) θ + k2 (1− b) θ + k3 (1− b) θ = w then,
dNh

dt ≤ w − µhNh,
dNv

dt ≤ πv − µvNv.

}
(2.16)

If we solve (2.16), we find

Nh (t) ≤
w

µh
−

(
w

µh
−Nh (t0)

)
e−µh(t−t0)

and,

Nv (t) ≤
πv
µv

−
(
πv
µv

−Nv (t0)

)
e−µv(t−t0),

where Nh (t0) and Nv (t0) are initial conditions. Thus,
limt→∞Nh (t) ≤ w

µh
and limt→∞Nv (t) ≤ πv

µv
,

which shows the conclusion.
From the theorem, we obtain the following region:

Γ =
{
(Vc, Va, Sc, Sa, Ac, Aa, Ic, Ia, Rc, Ra, Sv, Iv) ∈ R12 : (Vc, Ac, Ic, Sv) > 0,

(Sc, Va, Sa, Rc, Aa, Ia, Ra, Iv) ≥ 0; Nh (t) =
w

µh
;Nv(t) =

πv
µv

}
which is a positively invariant set for Eqns. (2.3)-(2.14).

3 EQUILIBRIA, REPRODUCTION NUMBER, BIFURCA-
TION AND SENSITIVITY ANALYSES

To obtain malaria information, the model must be studied qualitatively. The equilibria and repro-
duction number for the model must be derived. Also, the bifurcation and sensitivity of the model’s
parameters must be examined.
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3.1 Equilibria
We begin the analysis by determining the population of individuals in each compartment when the
entire human and vector populations are free from malaria. This scenario is termed disease-free
equilibrium (DFE) in mathematical epidemiology and it is denoted by
D0 = (V 0

c , V
0
a , S

0
c , S

0
a, A

0
c , A

0
a, I

0
c , I

0
a , R

0
c , R

0
a, S

0
v , I

0
v ) in this analysis. The DFE D0 is attained when

all the infection terms in the model are reduced to zero such that

D0 =

{
bθ

ϕc + ε+ µh
,

εV 0
c

ϕa + µh
,
k1 (1− b) θ + ϕcV

0
c

µh + ε
,
εS0

c + ϕa
µh

, 0, 0, 0, 0, 0, 0,
πv

µv + ρ
, 0

}
.

When the populations are invaded by malaria, the equilibrium shifts from DFE to the endemic
equilibrium denoted by

D∗ = (V ∗
c , V

∗
a , S

∗
c , S

∗
a , A

∗
c , A

∗
a, I

∗
c , I

∗
a , R

∗
c , R

∗
a, S

∗
v , I

∗
v ).

Generally, infections transmit into the populations with the emergence of asymptomatic individuals
who gradually become visibly infected. Due to the complexity of the model, the existence of the
endemic equilibrium D∗ shall be established by showing that if the asymptomatic compartments
A∗

c and A∗
a are positive (i.e., A∗

c > 0 and A∗
a > 0) then other infected compartments I∗c and I∗a are

also positive and the populations are invaded with malaria. Now, solving Eqns. (2.8) and (2.11) in
terms of I∗c and I∗a then,

I∗c =
k3(1−b)θ+σcA

∗
c

δc+γc+ε+µh
,

I∗a =
εI∗

c+σaτA
∗
a

δa+γa+µh
.

}
(3.1)

Since the entire model’s variables and parameters are positive, the quantities I∗c and I∗a are positive
if and only if A∗

c and A∗
a remain positive. Therefore, the endemic equilibrium D∗ exists provided

that A∗
c > 0 and A∗

a > 0.

3.2 Reproduction number
The basic reproduction number, conventionally denoted by R0, is defined by [49] as the average
number of secondary infections generated by a typical infectious individual during his or her entire
period of infectiousness. The basic reproduction number is an important non-dimensional quantity
in epidemiology as it sets the threshold in the study of a disease both for predicting its outbreak
and for evaluating its control strategies. Thus, whether a disease becomes persistent or dies out
in a community depends on the value of the basic reproduction number R0. Besides, the basic
reproduction number R0 can be used to analyze the stability of equilibria of epidemic models.
If R0 < 1, it means that every infectious individual produces on average less than one secondary
infection and any outbreak in the population is doomed to a rapid failure for the chain of trans-
mission cannot be maintained but if R0 > 1, it means that every infectious individual produces on
average more than one secondary infection and the outbreak will take off in the population because
the chain of transmission is maintained. A large value for R0 may indicate the possibility of a major
epidemic [34].
The basic idea of the size of the reproduction number as introduced by Sir Ronald Ross is that the
value of the reproduction number below unity indicates that the number of infectious individuals
and the transmission potential of a disease in a population are insignificant to trigger epidemic in
the population whereas the value of the reproduction number above unity implies that the number
of infectious individuals and the transmission potential of a disease in a population are enough to
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result in the outbreak of the disease in the population. So, the reproduction number is the quantity
that governed the spread of a disease in a population.
On the other hand, all control measures of a disease are effective if the value of Re, the effective
reproduction number, is less than one. The effective reproduction number, Re measures the aver-
age number of new infections generated by a typical infectious individual in a community where
intervention strategies are on ground. Hence, the computation of the reproduction number is cen-
tral to the analysis of any epidemic model in order to be able to predict whether an epidemic will
take off or not in a population. In this analysis, the next generation matrix approach formulated
by [49] but subsequently developed by [51], which has been used in numerous epidemic models,
[12, 32, 33, 34, 38], shall be employed to compute the reproduction numbers of the present model.
Because infection can spread from both infectious humans and vectors, R0 in the present analysis
is made up of two parts as in other age-structured malaria models [12, 32, 33, 34]. It is made up of
Rh and Rd; the infection transmission potentials from infectious mosquitoes to susceptible children
and adults and from infectious children and adults to susceptible mosquitoes respectively which are
derived from the compartments Ac, Aa, Ic, Ia and Iv following the approach in [50]) outlined as
follows

F=


n(1−m)βcIvSc

0

Iv+ϑ
nβaIvSa

0

Iv+ϑ

0
0

nβv [η(Ac+Aa)+Ic+Ia]Sc
0

(Ac+Aa+Ic+Ia)+φ

 and V=


(σc + ε+ µh)Ac

−εAc + (τ + µh)Aa

−σcAc + (δc + γc + µh)Ic
−εIc − σaτAa + (δa + γa + µh)Ia

µv + ρ

.

Therefore,

F =


0 0 0 0 n(1−m)βcSc

0

ϑ

0 0 0 0 nβaSa
0

ϑ
0 0 0 0 0
0 0 0 0 0

nηβvSv
0

φ
nηβvSv

0

φ
nβvSv

0

φ
nβvSv

0

φ 0

 ,

V =


(σc + ε+ µh) 0 0 0 n(1−m)βcSc

0

ϑ
−ε (τ + µh) 0 0 0
−σc 0 (δc + γc + ε+ µh) 0 0
0 −σaτ −ε (δa + γa + µh) 0
0 0 0 0 µv + ρ


and,

V −1 =


1
q1

0 0 0 0
ε

q1q2
1
q2

0 0 0
q3

q1q2
0 1

q4
0 0

ε(q2q3+q4q5)
q1q2q4q6

q5
q2q6

ε
q4q6

1
q6

0

0 0 0 0 1
q7

 ,

where
q1 = σa + ε+ µh, q2 = τ + µh, q3 = σc, q4 = δc + γc + ε+ µh, q5 = σaτ,

q6 = δa + γa + µh, q7 = µv + ρ.
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The reproduction number (R0) represents the dominant eigenvalue of the generation matrix FV −1

which works to be

R0 =

√
n(1−m)βcS0

c

ϑq7

[
ηnβvS0

v

q1φ
+
nβvq3S0

v

q1q2φ

]
+

nβaS0
a

ϑq7

[
ηεnβvS

0
v

q1q2φ
+

ηεβvS0
v

q1q2q4q6φ

]
(3.2)

In (3.2), while n(1−m)βcS
0
c

ϑq7

[
ηnβvS

0
v

q1φ
+

nβvq3S
0
v

q1q2φ

]
quantifies the spread of malaria from infectious vec-

tors to susceptible children and from infectious children to susceptible vectors,
nβaS

0
a

ϑq7

[
ηεnβvS

0
v

q1q2φ
+

ηεβvS
0
v

q1q2q4q6φ

]
quantifies the spread of malaria from infectious vectors to susceptible

adults and from infectious adults to susceptible vectors. Substituting the values of S0
c , S0

a and S0
v

into (3.2), we have

R0 =
n2(1−m)βc {q1q8k1 (1− b) θ + ϕcb}

ϑq7q8q9

[
πvηβv

(µv + ρ)q1φ
+

πvβvq3
(µv + ρ)q1q2φ

]
+
n2εβa
ϑq7

{
ε [q1q8k1 (1− b) θ + ϕcb] + ϕa

µhq8q9

}[
πvηβv

(µv + ρ)q1q2φ
+

πvβv
(µv + ρ)q1q2q4q6φ

]
,

(3.3)

The reproduction number in (3.3) reveals the importance of vaccines in the control and eradication
of malaria through the vaccination parameter m, vaccination rate of susceptible children. If the
coverage and efficacy of the vaccines are high so that m → 1 then malaria transmission could be
greatly reduced particularly from the children who are more vulnerable to the disease. Therefore,
the development of malaria vaccines is a renewed hope to mankind. The vaccines can prevent
malaria spread and minimize malaria mortality with high coverage and efficacy.

3.3 Bifurcation analysis
Mathematical models present a comparatively inexpensive means to investigate the spread and
control of diseases [51]. Once a mathematical model is developed, the prospect of the disease can
be revealed by the parameters of the model when the important non-dimensional epidemiological
quantity known as the basic reproduction number is computed. The computed reproduction number
can be employed to perform bifurcation and sensitivity analyses to reveal the prospect of the disease.
So whether data are available or not, mathematical models, through bifurcation and sensitivity
analyses, can guide the policy makers towards the achievement of their objectives. The main
concern of epidemiologists is to establish a condition under which a disease can be eradicated from
a population [52]. This condition is governed by the size of the basic reproduction number which
is defined by [49] as the average number of secondary infections caused by an infectious individual
during his or her entire period of infectiousness. However, contrary to the analysis of the basic
reproduction number, there may not be a total elimination of a disease in a population even if
the reproduction number is less than unity. The bedrock of this idea is bifurcation theory whose
earliest work is attributable to the French mathematician Henri Poincare (1854 – 1912) [53].
Bifurcation is the study of changes in the qualitative or topological structure of dynamical system.
It occurs when a small smooth change to a parameter (bifurcation parameter) of a system of
differential equation causes a sudden qualitative or topological change in the behavior of the system.
In epidemiology, bifurcation is a phenomenon which shows how the equilibrium of an epidemic model
divides into a branch at the bifurcation point (i.e. R0 = 1) thereby, resulting into changes in the
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stability and qualitative behavior of the model. Bifurcation provides a way to understand changes
in the stability properties of epidemic models as some parameters of the models vary.
Researchers have identified forward and backward bifurcations in the analysis of disease transmission
models. A forward bifurcation occurs in a disease model if a stable disease-free equilibrium of the
model losses its stability and becomes a stable endemic equilibrium as the reproduction number
R0 of the model takes off through one. The existence of forward bifurcation does not have a
major health implication as the basic requirement R0 < 1 remains the necessary and sufficient
condition for disease eradication. On the other hand, numerous studies have shown that the classical
requirement of the basic reproduction number R0 being less than unity is just a necessary condition
for community wide eradication of a disease but not sufficient [54, 55, 56].
These studies have verified this fact by exploring the phenomenon of bistability, where multiple
stable equilibria co-exist, in some epidemic models. These models, in general, undergo backward
bifurcations which are sufficient for the existence of stable endemic equilibria when R0 < 1. In
other words, these studies have shown that a stable endemic equilibrium can co-exist with a stable
disease-free equilibrium at the bifurcation point. Thus, unlike in many classical disease transmission
models, reducing R0 to values less than unity does not guarantee the community-wide eradication
of a disease [57, 58, 59]. This means that the occurrence of a backward bifurcation may have serious
public health implications in the control or eradication of an epidemic since the condition R0 < 1
is not sufficient for disease eradication.
The existence of backward bifurcation shall be studied for the model following the center manifold
theory introduced by [60] which has been employed in many epidemic models [54, 55, 56]. To apply
the theorem, the variables of the model are transformed in such a way that x1 = Vc, x2 = Va,
x3 = Sc, x4 = Sa, x5 = Ac, x6 = Aa, x7 = Ic, x8 = Ia, x9 = Rc, x10 = Ra, x11 = Sv, x12 = Iv.
If X = (x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12)

T , the system of equations (2.3)-(2.14) becomes
dX
dt = F (X) where F = (f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12). Thus, the model Eqs. (2.3)-
(2.14) are transformed to

dx1
dt

= bθ − (ϕc + ε+ µh)x1, (3.4)

dx2
dt

= εx1 − (µh + ϕa)x2, (3.5)

dx3
dt

= k1 (1− b) θ + ϕcx1 + ψcx9 − λcx3 − (µh + ε)x3, (3.6)

dx4
dt

= εx3 + ϕax2 + ψax10 − λax4 − µhx4, (3.7)

dx5
dt

= k2 (1− b) θ + λcx3 − (σc + ε+ µh)x5, (3.8)

dx6
dt

= εx5 + λax4 − (τ + µh)x6 (3.9)

dx7
dt

= k3 (1− b) θ + σcx5 − (δc + γc + ε+ µh)x7 (3.10)

dx8
dt

= εx7 + σaτx6 − (δa + γa + µh)x8 (3.11)

dx9
dt

= γcx7 − (ψc + ε+ µh)x9, (3.12)
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dx10
dt

= (1− σa)τx6 + εx9 + γax8 − (ψa + µh)x10, (3.13)

dx11
dt

= πv − λvx11 − (µv + ρ)x11, (3.14)

dx12
dt

= λvx11 − (µv + ρ)x12, (3.15)

Since the infection of more and more children with malaria can escalate malaria transmissions
in both human and vector populations and aggravate malaria deaths in humans, we assume a
bifurcation point and choose βv, probability of infection of susceptible vectors per bite of the
infected host as the bifurcation parameter at the bifurcation point R0 = 1. We wish to investigate
whether perturbations in βv would instigate backward bifurcation or not at the bifurcation point.
The parameter βv is perturbed so that βv changes β∗

v and the variational matrix of the system
(3.4)-(3.15) around the disease-free equilibrium D0 is computed as follows

J(D0)
∣∣
βv=βv

∗ =

−q8 0 0 0 0 0 0 0 0 0 0 0
ε −q10 0 0 0 0 0 0 0 0 0 0

ϕc 0 −q9 0 0 0 0 0 ψ 0 0 −n(1−m)βcSc
0

ϑ

0 ϕa ε −µh 0 0 0 0 0 ψ 0 −nβaSa
0

ϑ

0 0 0 0 −q11 0 0 0 0 0 0 n(1−m)βcSc
0

ϑ

0 0 0 0 ε −q2 0 0 0 0 0 nβaSa
0

ϑ
0 0 0 0 q3 0 −q4 0 0 0 0 0
0 0 0 0 0 σaτ ε −q6 0 0 0 0
0 0 0 0 0 0 γc 0 −q12 0 0 0
0 0 0 0 0 (1− σa)τ 0 γa ε −q13 0 0
0 0 0 0 −ηq14 −ηq14 −q14 −q14 0 0 −q7 0
0 0 0 0 ηq14 ηq14 q14 q14 0 0 0 −q7


where

q10 = µh + ϕa, q11 = σc + ε+ µh, q12 = ψc + ε+ µh, q13 = ψa + µh, q14 =
nβ∗

vSv

φ
.

The associated right eigenvectors of J(D0)|βv=β∗
v

that are represented by

w = (w1, w2, w3, w4, w5, w6, w7, w8, w9, w10, w11, w12)
T can be obtained and are given in Eqns.

(3.16)-(3.27),
−q8w1 = 0, (3.16)

εw1 − q10w2 = 0, (3.17)

ϕcw1 − q9w3 + ψw9 −
n(1−m)βcS

0
c

ϑ
w12 = 0, (3.18)

ϕaw2 + εw3 − µhw4 + ψw10 −
nβaS

0
a

ϑ
w12 = 0, (3.19)
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−q11w5 +
n(1−m)βcS

0
c

ϑ
w12 = 0, (3.20)

εw5 − q2w6 +
nβaS

0
a

ϑ
w12 = 0, (3.21)

q3w5 − q4w7 = 0, (3.22)

σaτw6 + εw7 − q6w8 = 0, (3.23)

γcw7 − q12w9 = 0, (3.24)

(1− σa)τw6 + γaw8 + εw9 − q13w10 = 0, (3.25)

−ηq14w5 − nq14w6 − q14w7 − q14w8 − q7w11 = 0, (3.26)

ηq14w5 + nq14w6 + q14w7 + q14w8 − q7w12 = 0. (3.27)

Solving (3.16)-(3.27),
w1 =

q10
ε
w2 > 0, (3.28)

w2 = w2 > 0, (3.29)

w3 =
1

q3

{
ϕcq10
ε

w2 +
ψq12
γc

w7 −
n(1−m)βc

ϑ
w12

}
, (3.30)

w4 =
1

µh

{(
ϕa +

εϕcq10
q9

)
w2 +

(
εψq12
q9γc

+
ψ

q13

(
γa
q6

+
εq12
γc

))
w7

−
(
q15
ϑq9

+
nβaS

0
a

ϑ
− ψ

q13

[
(1− σa)τ

q2

(
εq15
ϑq11

+
nβaS

0
a

ϑ

)]
− γa
q6

(
σaτq15
ϑq11

+
nβaS

0
a

ϑ

))
w12

}
,

(3.31)

w5 =
1

q11

{
n(1−m)βcS

0
c

ϑ

}
w12 > 0, (3.32)

w6 =
1

q2

{
εn(1−m)βcS

0
c

ϑq11
+
nβaS

0
a

ϑ

}
w12 > 0, (3.33)

w7 = w7 > 0, (3.34)

w8 =
1

q6

{[
σaτn(1−m)βcS

0
c

ϑq12
+
nβaS

0
a

ϑ

]
w12 + w7

}
> 0, (3.35)

w9 =
q12
γc
w7 > 0, (3.36)

w10 =
1

q13

{[
(1− σa)τ

q2

(
εq15
ϑq11

+
nβaS

0
a

ϑ

)
+
γa
q6

(
σaτq15
ϑq12

+
nβaS

0
a

ϑ

)]
w12 +

(
γa
q6

+
εq12
γc

)
w7

}
> 0,

(3.37)
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w11 = w11 > 0, (3.38)

w12 = w12 > 0. (3.39)

Likewise, the left eigenvectors of the transformed model represented by
v = (v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12)

T can be derived and are stated as follows.
v1 = v2 = v3 = v4 = v9 = v10 = 0 but v5 = v5 > 0, v6 = v6 > 0, v7 = v7 > 0, v8 = v8 > 0,
v11 = v11 > 0 and v12 = v12 > 0. Now, the task is to derive the bifurcation coefficients a and b,
the procedure of which is described in Theorem 4.1 in [60]. As specified in Theorem 4.1 in [60], the
model undergoes backward bifurcation if a and b are both positive. The existence of a backward
bifurcation necessitates a simultaneous coexistence of a stable non-trivial equilibrium with stable
disease eradication equilibrium.
Computation of a: Following the procedure in Theorem 4.1 in [60], we employ the formula

a =

12∑
k,i,j=1

vkwiwj
∂2

∂xi∂xj
fk(0, 0),

with fk = f12 =
nβ∗

v [η(x5+x6)+x7+x8]
(x5+x6+x7+x8)+φ x11 − q7x12 so that

a =
2

φ
v12w5w11nηβ

∗
v +

2

φ
v12w6w11nηβ

∗
v +

2

φ
v12w7w11nβ

∗
v +

2

φ
v12w8w11nβ

∗
v (3.40)

Substituting the values of w5, w6 and w8 in (3.28-3.39) into (3.40) noting that v12 > 0, w7 >
0, w11 > 0 and w12 > 0 then,

a =
2

φ
v12

{
n(1−m)βcS

0
c

q11ϑ

}
w12w11nηβ

∗
v

+
2

φ
v12

{
εn(1−m)βcS

0
c

ϑq2q11
+
nβaS

0
a

ϑq2

}
w12w11nηβ

∗
v (3.41)

+
2

φ
v12w7w11nβ

∗
v

+
2

φ
v12

1

q6

{[
σaτn(1−m)βcS

0
c

ϑq12
+
nβaS

0
a

ϑ

]
w12 + w7

}
w11nβ

∗
v

Computation of b: Following the same procedure

b =

12∑
k,i,j=1

vkwi
∂2

∂xi∂β∗
v

fk(0, 0)

⇒ b =
2n

φ
v12w12 (1 + η)S0

v > 0. (3.42)

Since the model monitors human and animal populations, all the variables and parameters are
positive. Following [60], the model exhibits backward bifurcation if a and b are positive. According
to [60], b is always positive, the condition which has already been met given the value of b in (3.42).
Therefore, the malaria model undergoes backward bifurcation since a is also positive in (3.41).
The results of bifurcation analysis have revealed some important factors that can frustrate malaria
elimination. It has been revealed in (3.41) that the existence of vector parameter (i.e., β∗

v) in human
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population can enhance malaria permanence for as long as β∗
v > 0. However, the eradication of

malaria is possible if one of φ, the rate of effectiveness of malaria prevention/treatment or ϑ, the
rate of control of vectors or both are intensified. It is evident from (3.41) that a = 0 if φ → ∞ or
ϑ→ ∞ or if both φ→ ∞ and ϑ→ ∞. Under this condition (i.e., a = 0) and backward bifurcation
is avoided.
The results have important implications for malaria management and control and can guide the
policy makers. First, the development of malaria vaccines and the subsequent approval of its use
in some malaria endemic regions (e.g. Ghana, Nigeria, etc.) are a welcome development. However,
while the vaccines may guarantee the necessary protection (φ), its application and coverage to
the fullest may not instigate malaria eradication. It is evident from (3.41) that if m, the rate of
application of vaccines to the susceptible children, is equal to one, a ̸= 0 but a > 0. Therefore, the
prevalence of vectors in the endemic regions necessitates adequate vector control (ϑ) in addition
to the application of vaccines. Both parameters, φ and ϑ, have to be integrated into the policy
designed to eradicate malaria. Besides, the two parameters have to be taken with all seriousness in
the control of malaria.

4 Simulation and Discussion

The simulations are aided by the computer-in-built Runge-Kutta package implemented in software
Maple and the parameter values adopted for simulation, which are from the related literature as
well as assumptions, are displayed in Table 3. The definitions of the parameters are in Table 2.
Table 3: Values and Sources for the model parameters
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ParametersValues Sources
µh 0.01 day−1 [61]
δc 0.0005 day−1 [61]
δa 0.0002 day−1 [61]
θ 0.25 Assumed
πv 0.85 day−1 Assumed
µv 0.05 day−1 [62]
ρ 0.025 day−1 Assumed
βc 0.75 day−1 [61]
βa 0.27 day−1 [61]
βv 0.00064 day−1 Assumed
n 0.0005 day−1 Assumed
m 0.4 day−1 Assumed
ϕc 0.7 day−1 Assumed
ϕa 0.005 day−1 Assumed
ε 0.183 day−1 [61]
ψc 0.01 day−1 [61]
ψa 0.0027 day−1 [61]
b 0.1 day−1 Assumed
σc 0.1 day−1 [61]
σa 0.2 day−1 [61]
η 0.05 Assumed
γc 0.014 day−1 [63]
γa 0.002 day−1 [64]
τ 0.02 Assumed
ϑ 0.75 [65]
φ 0.75 [66]
m 0.4 [67]
k1 0.55 Assumed
k2 0.15 Assumed
k3 0.01 Assumed

Given Table 3, plots are generated in Figure 2 to Figure 3 to visualize the effects of vaccination
parameter (m) on the dynamics of malaria in children.
With parameter values in Table 3, we are able to generate plots in Figure 2 and we can visualize
the effect of vaccination on the dynamics of malaria particularly at various stages of infections
for children. We place emphasis on children because malaria has more adverse effects on children
especially those who are below five years of age [14]. It can be observed at a glance from Figure 2 that
the absence vaccine complicates susceptibility and infectivity of malaria in children. This is because
the populations of susceptible and infectious children in (a) and (c) in Figure 2 rise continuously.
The fall in the population of asymptomatic children in (b) indicates an instant progression from the
asymptomatic stage of infection to full infectious stage. Therefore, vaccination can play a major
role in preventing malaria infection and in reducing the escalation of the disease in children.
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In Figure 3, an increase in the vaccination parameter (m) from 0.4 through to 0.6 is accompanied
with simultaneously reductions in the populations of susceptible and infectious children as indicated
by the arrows in (a) and (c) in Figure 3. Although, there is an increase in the population of
asymptomatic children in (b), only few of them progress to the infectious stage. The effectiveness
and coverage of vaccination is able to bring down the population of the asymptomatic children. It
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is therefore evident from Figure 3 that the development of malaria vaccine is a plus to the struggle
against malaria eradication.

5 Conclusion

Malaria is a disease that can spread from humans to vectors and from vectors to humans and has
serious health and economic implications. In this study, a mathematical analysis of the dynamics
of malaria spread in human and vector populations has been presented. Because of the recent
development of malaria vaccine and the subsequent approval of its use in some malaria endemic
regions to combat malaria, an age-structured mathematical model has been developed to investigate
various factors (e.g. asymptomatic carriers, relapse, migration, etc.) that could limit the success
of vaccine applications in malaria control. Malaria dynamics has been examined with a focus on
the conditions that can frustrate the eradication of the disease (bifurcation analysis) Overall, the
findings from the study give a better understanding of malaria dynamics with respect to vaccine
development and vaccine approval to combat malaria. It can be observed from the expression for
R0 that malaria spread is influenced by the recruitment parameter for vectors πv as well as the
transmission parameters βv, βc and βa. For example, when all the stated parameters rise while
other parameters are held constant, R0 increases and this has negative control effects on malaria.
The simulations have been run to display the behaviors of the disease and it has been revealed that
malaria eradication, through vaccine development and vaccine approval to control the disease even
with high coverage of vaccine applications, might remain a tall dream.
The bifurcation analysis shows that factors such as migration, relapse, asymptomatic carriers, etc,
that could influence vector population particularly the population of infectious vectors, can shape
malaria dynamics. Malaria dynamics could be seriously influenced and it is evident from the
expression for the bifurcation coefficient ”a” that the application of vaccination parameter m, even
to the fullest, may not remove malaria endemicity. Therefore, effective vector control (ϑ), efficient
malaria prevention/treatment (φ) and adequate testing of the new arrivals which will improve
isolation are required in addition to the application of vaccines to overcome malaria.
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