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Abstract

Picone identity is a powerful tool for proving qualitative properties of differential operators
with ubiquitous applications in the analysis of partial differential equations, so generalizing it
for different types of differential equations has become a desired venture. p(x)-Laplacian is
a non-homogeneous quasilinear partial differential operator arising from various mathematical
model with non-standard growth. However, in this paper, we establish a new generalized
nonlinear variable exponent Picone identities for p(x)-sub-Laplacian. As applications we prove
uniqueness, simplicity, monotonicity and isolatedness of the first nontrivial Dirichlet eigenvalue
of p(x)-sub-Laplacian with respect to the general vector fields. Further applications yield Hardy
type inequalities and Caccioppoli estimates with variable exponents.

Keywords: Picone Identity, p(x)-Sub-Laplacian, Principal Eigenvalue, Hardy Inequality, Cacciop-
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1 Preliminaries

1.1 Introduction
This paper is concerned with variable exponent Picone identity in the context of sub-Riemannian
geometry. We derive a nonlinear Picone identity which allows us to study some qualitative properties
of the principal eigenvalue of p(x)-sub-Laplacian with respect to the general vector fields on smooth
manifolds. As by-products, we also derive Hardy type inequalities and Caccioppoli estimates with
variable exponents. These results are appearing for the first time, even in the Euclidean setting. In
recent years, several authors have devoted their researches towards the study of variable exponent
elliptic equations and systems with p(x)-growth condition in Euclidean setting with many interesting
results [1–6]. Models involving p(x)-growth condition arise from physical processes such as nonlinear
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elasticity theory, electrorheological fluids, image processing, etc [7–9]. It has been observed that
p(x)-Laplacian is similar in many respect to the classical p-Laplacian (p-constant) but it lacks certain
vital properties such as homogeneity. This therefore makes the nonlinearity so much complicated
and many of known approaches to p-Laplacian can no longer hold for p(x)-Laplacian. It is interesting
to consider p(x)-Laplacian in the sub-elliptic setting and investigate which of the known results for
p-constant hold for variable exponents.

1.2 p(x)-Sub-Laplace operator and eigenvalues
Let M be an n-dimensional smooth manifold equipped with a volume form dx and {Xk}Nk=1, n ≥ N ,
be a family of vector fields defined on M . Consider the operator

LX :=

N∑
k=1

X∗
kXk,

which is a second-order differential operator usually called canonical sub-Laplacian. This operator
is related to the operator for the sum of squares of vector fields and it is well known to be locally
hypoelliptic if the commutators of the vector fields {Xk}Nk=1 generate the tangent space of M as
the Lie algebra, due to Hörmander’s pioneering work [10]. We denote the horizontal gradients for
general vector fields by

∇X = (X1, · · · , XN ) and ∇∗
X = (X∗

1 , · · · , X∗
N ),

where Xk and its formal adjoint X∗
k are respectively given by

Xk =

n∑
j=1

akj(x)
∂

∂xj
and X∗

k = −
n∑

j=1

∂

∂xj
(akj(x)), k = 1, · · · , N.

There are numbers of examples of sub-manifolds where vector fields can be defined. For examples,
we list among others, the Carnot groups, Heisenberg groups, Engel groups, and Grushin plane
(which does not even posses a group structure). Interested readers can see the book [11] for more
examples and detail discussions on the sub-Laplacian and its various extensions in each case. In
the case M = Rn, then dx is the Lebesgue measure, ∇X = ∇ and LX = ∆ are the usual Euclidean
gradient and Laplacian, respectively.

Let p : Ω̄ → R be a continuous function and p(x) > 1 for x ∈ Ω̄ ⊂ M . We define the p(x)-sub-
Laplacian for general vector fields on M by the formula

Lpu := ∇∗
X(|∇Xu|p(x)−2∇Xu),

where u is a smooth function. If p(x) = p (p=constant), the operator Lpu becomes the p-sub-
Laplacian, ∇∗

X(|∇Xu|p−2∇Xu) and |x| stands for the Euclidean length of x = (x1, · · · , xn).
As mentioned earlier, various partial differential equations with variable exponent growth condi-

tion have appeared in literature (see [1–6] for instance), but there is scarcity of such mathematical
models in the subelliptic setting. In this paper however we shall consider the indefinite weighted
Dirichlet eigenvalue problem for p(x)-sub-Laplacian on Ω ⊂M , p(x) > 1,

−∇∗
X(|∇Xu|p(x)−2∇Xu) = λg(x)|u|p(x)−2u, x ∈ Ω,
u > 0, x ∈ Ω,
u = 0, x ∈ ∂Ω,

(1.1)

and discuss some properties of the eigenvalue λ ∈ R+ and the corresponding eigenfunction u(x)
in certain Sobolev spaces with variable exponents [12–14]. It is well known in the classical setting
(p(x) = p-constant and M = Rn) that Problem (1.1) possesses a closed set of nondecreasing
sequence of nonnegative eigenvalues {λk} which grows to +∞ as k → +∞, and that the first
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nonzero eigevalue is simple and isolated. Due to some complication in the nonlinearities in p(x)-
Laplacian and inhomogeneity of the corresponding variable exponent norm, some of the results
in the classical case may not hold or rather under restrictive assumptions. In [4], the authors
studied (1.1) (with g(x) = 1, M = Rn) and showed the existence of infinitely many eigenvalues
and established some sufficient condition for the infimum of the spectrum (called the principal
eigenvalue),

λ1,p = inf
u̸=0

∫
Ω
|∇u|p(x)dx∫

Ω
|u|p(x)dx

, p(x) > 1,

to be zero and positive, respectively. The properties that λ1,p > 0 is very useful in analysis and
applications. Motivated by [4], we are able to assume the existence of λ1,p > 0 for (1.1) and proved
its uniqueness, monotonicity, simplicity and isolatedness. The variable exponent Picone identity
(discussed in Section 2) plays a crucial role in our proofs.

1.3 Picone identities
Picone identity is a very useful tool in the study of qualitative properties of solutions of differential
equations, and for this, several linear and nonlinear Picone type identities have been derived to
handle differential equations of various type. Picone identity was originally developed by Mauro Pi-
cone in 1910 to prove Sturm Comparison principle and oscillation theory for a system of differential
equations. This identity was later extended to partial differential equation involving Laplacian by
Allegretto [15] and p-Laplacian by Allegretto and Huang [16] to establish among others, existence
and nonexistence of positive solutions, Sturmian comparison principle, Liouville type theorems,
Hardy inequalities and some profound results involving p-Laplace equations and systems. Pre-
cisely, Allegretto [15] proved that, for nonnegative differentiable functions u and v with v ̸= 0, the
following formula

|∇u|2 + u2

v2
|∇v|2 − 2

u

v
∇u∇v = |∇u|2 −∇

(
u2

v

)
∇v ≥ 0 (1.2)

holds. Allegretto and Huang [16] extended (1.2) to handle p-Laplace equations and eigenvalue
problems involving p-Laplacian. Their identity reads as follows, for u ≥ 0, v > 0, then

|∇u|p + (p− 1)
up

vp
|∇v|p − p

up−1

vp−1
|∇v|p−2∇v∇u = Rp(u, v), (1.3)

where

Rp(u, v) := |∇u|p −∇
(

up

vp−1

)
|∇v|p−2∇v ≥ 0.

Several extensions and generalization of Picone identity have been established in order to handle
more general elliptic operators. Tyagi [17] and Bal [18] established nonlinear versions of (1.2) and
its p-Laplace analogue (1.3), respectively, with several applications, (see also [19–21]). For other
interesting extension of Picone type identities one can find [22, 23] (for Finsler p-Laplacian with
application to Caccioppoli inequality), [24–26] (for general vector fields and p-sub-Laplacian with
applications to Grushin plane, Heisenberg group, Stratified Lie groups), [27] (for p-sub-Laplacian
on Heisenberg group and applications to Hardy inequalities), [28,29] (for nonlinear Picone identities
for anisotropic p-sub-Laplacian and p-biLaplacian with applications to horizontal Hardy inequalities
and weighted eigenvalue problem on Stratified Lie groups).

Allegretto [30] established variable exponent Picone type identity for differentiable functions
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v > 0, 0 ≤ u ∈ C∞
0 (Ω), Ω ⊂ Rn with n ≥ 1 and continuous p(x) > 1 as follows:

|∇u|p(x)

p(x)
−∇

[
up(x)

p(x)vp(x)−1

]
|∇v|p(x)−2∇v

=
|∇u|p(x)

p(x)
−
(u
v

)p(x)−1

|∇v|p(x)−2∇v∇u+
p(x)− 1

p(x)

(u
v
|∇v|

)p(x)
(1.4)

+
1

p(x)

up(x)

vp(x)−1
|∇v|p(x)−2

[
1

p(x)
− ln

(u
v

)]
∇v∇p(x) ≥ 0

on the assumption that ∇v∇p(x) = 0. He used the inequality to prove Barta theorem and some
other results. Later, Yoshida [31] (see also [32, 33]) established similar Picone identities for quasi-
linear and half-linear elliptic equations involving p(x)-Laplacian and pseudo p(x)-Laplacian, and
consequently developed Sturmian comparison theory. Most recently, Feng and Han [34], motivated
by Allegretto [30] proved a modified form of (1.4) and showed that

|∇u|p(x) −∇
(

up(x)

vp(x)−1

)
|∇v|p(x)−2∇v ≥ 0 (1.5)

if ∇v∇p(x) = 0 a.e in Ω, with equality if and only if ∇(u/v) = 0 in Ω. They proved monotonicity
of principal eigenvalue λ1,p and a variable exponent Barta inequality for p(x)-Laplacian in the form

λ1,p ≥ inf
x∈Ω

[
∆pv

vp(x)−1

]
, Ω ⊂ Rn,

where ∆p := −∇(|∇v|p(x)−2∇v), on the assumption that ∇v∇p(x) = 0.

1.4 Variable exponent functional spaces
In order to discuss generalized solutions, we need some concepts from the theory of variable Lebesgue
and Sobolev spaces. Detailed description of these spaces can be found in [12–14].

Let Ω ⊂M be an open domain and E(Ω) denotes the set of all equivalence classes of measurable
real-valued functions defined on Ω being equal almost everywhere.

Definition 1.1. The variable exponent Lebesgue space Lp(·)(Ω) is defined as

Lp(·)(Ω) =

{
u ∈ E(Ω) :

∫
Ω

|u(x)|p(·)dx <∞
}

equipped with the (Luxemburg) norm

∥u∥Lp(·)(Ω) = inf

{
t > 0 :

∫
Ω

∣∣∣∣u(x)t
∣∣∣∣p(x) dx ≤ 1

}
.

Consider the functional (also called the ρ-modular) on Lp(·)(Ω), which is the mapping ρp(·)(u) :
Lp(·)(Ω) → R, and defined by

Lp(·)(Ω) :=

∫
Ω

|u(x)|p(x)dx.

The following proposition contains vital results in the study of variable Lebesgue space. We suppose
a continuous function p : Ω̄ → R+, p(x) > 1 is such that

1 < p− := ess inf
x∈Ω̄

p(x) ≤ p(x) ≤ p+ := ess sup
x∈Ω̄

p(x) <∞.

Proposition 1.2. [12–14]
Denote ∥u∥p(x) := ∥u∥Lp(x)(Ω). For any u, um ∈ Lp(x)(Ω), where m = 1, 2, · · · , the following
statements are true:
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1. ∥u∥p(x) < 1(= 1 or > 1) if and only if ρp(x)(u) < 1(= 1 or > 1);

2. If ∥u∥p(x) ≤ 1 then ∥u∥p
+

p(x) ≤ ρp(x)(u) ≤ ∥u∥p
−

p(x);

3. If ∥u∥p(x) > 1 then ∥u∥p
−

p(x) ≤ ρp(x)(u) ≤ ∥u∥p
+

p(x);

4. ∥um − u∥p(x) → 0 if and only if ρp(x)(um − u) → 0;

5. min{∥u∥p
−

p(x), ∥u∥
p+

p(x)} ≤ ρp(x)(u) ≤ max{∥u∥p
−

p(x), ∥u∥
p+

p(x)}.

The following generalized Hölder’s inequality can be used to define equivalent norms.

Proposition 1.3. (Hölder’s inequality [12,13])
Let 1

p(x) +
1

p′(x) = 1 a.e. on Ω, then for all u ∈ Lp(x)(Ω) and v ∈ Lp′(x)(Ω) we have uv ∈ L1(Ω) and∫
Ω

|u(x)v(x)|dx ≤
(
1 +

1

p−
− 1

p+

)
∥u∥p(x)∥v∥p′(x).

Definition 1.4. The variable exponent Sobolev space W 1,p(·)(Ω) is defined as

W 1,p(·)(Ω) = {u ∈ Lp(·)(Ω) : |∇Xu| ∈ Lp(·)(Ω)}

equipped with the norm

∥u∥W 1,p(·)(Ω) = ∥u∥Lp(·)(Ω) + ∥∇Xu∥Lp(·)(Ω).

The space W 1,p(·)
0 (Ω) is defined as the closure of C∞

0 (Ω) in W 1,p(·)(Ω) with respect to the norm

∥u∥
W

1,p(·)
0 (Ω)

= ∥∇Xu∥Lp(·)(Ω).

It can be easily proved that Lp(·)(Ω), W 1,p(·)(Ω) and W
1,p(·)
0 (Ω) are all separable and reflexive

Banach spaces in their respectful norms if 1 < inf p(x) < sup p(x) <∞ on Ω.

1.5 Plan of the paper
In this paper, we derive new generalized variable exponent Picone type identities for general vector
fields in the sub-Riemannian settings. The derived generalized identity contains some known Picone
type identities in various settings as will be discussed in Section 2. Consequently, we give several
applications to qualitative properties of the principal eigenvalue of p(x)-sub-Laplacian. Here, we
are concerned with uniqueness, simplicity, monotonicity and isolatedenss of the Dirichlet principal
eigenvalue. These are discussed in Section 3. Lastly, motivated by [23,24], we derive as a consequent
of Picone identity, sub-elliptic variable exponents Caccioppoli estimates in the form∫

Ω

ϕp(x)|∇Xv|p(x)dx ≤ (p+)p
+

∫
Ω

vp(x)|∇Xϕ|p(x)dx

for every nonnegative test function ϕ ∈ C∞
0 (Ω), where v is a sub-solution in Ω ⊂ M and p+ :=

ess sup p(x). On the other hand, for v positive p(x)-superharmonic functions, we obtain a new
version of logarithmic Caccioppolli inequality∫

Ω

|ϕ∇X log v|pdx ≤
(

p+

p− − 1

)p+ ∫
Ω

|∇Xϕ|pdx.
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2 Nonlinear variable exponent Picone identity
Here we give the statement and the proof of the nonlinear Picone identity with variable exponent,
which is the main result of this section. First, we state some hypotheses as adopted in this section
(and ofcourse throughout the paper) and Young’s inequality in the forms that will be applied here
and later.

Let M be an n-dimensional smooth manifold and Ω any domain in M , p(x) > 1 is a continuous
function on Ω̄, p′(x) = p(x)/(p(x)− 1) is Hölder conjugate to p(x).

Lemma 2.1. (Classical Young’s inequality) Let s ≥ 0, t ≥ 0, and p(x) > 1 such that 1/p(x) +
1/p′(x) = 1. There holds the inequality

st ≤ sp(x)

p(x)
+
tp

′(x)

p′(x)
(2.1)

with equality if and only if sp(x) = tp
′(x).

Inequality (2.1) is the classical Young’s inequality which can be varied in the following form.

Lemma 2.2. (Modified Young’s inequality) Let Φ(x),Ψ(x) ≥ 0, p(x) > 1 such that 1/p(x) +
1/p′(x) = 1 and ε : Ω → R+ be a continuous and bounded function. There holds the inequality

ΦΨp(x)−1 ≤ Φp(x)

p(x)ε(x)p(x)−1
+
p(x)− 1

p(x)
ε(x)Ψp(x) (2.2)

for a.e. x ∈ Ω Furthermore, there is equality in (2.2) if and only if Φ = ε(x)Ψ.

Proof. Applying the classical Young’s inequality (2.1) with

s =
Φ

ε(x)
p(x)−1
p(x)

and t =
(
Ψε(x)

1
p(x)

)p(x)−1

,

we have

ΦΨp(x)−1 =

(
Φ

ε(x)
p(x)

p(x)−1

)(
Ψε(x)

1
p(x)

)p(x)−1

≤ Φp(x)

p(x)ε(x)p(x)−1
+
p(x)− 1

p(x)

(
Ψε(x)

1
p(x)

)p(x)
.

The next is the variable exponent Picone identity which is the main theorem in this section.

Theorem 2.3. Let u ≥ 0 and v > 0 be nonconstant differentiable functions a.e. in Ω. Suppose
p : Ω̄ → (0,∞) is a C1-function for p(x) > 1, and f : (0,∞) → (0,∞) is a C1-function satisfying
f(y) > 0 and f ′(y) ≥ (p(x)− 1)

[
f(y)

p(x)−2
p(x)−1

]
for y > 0. Define

L(u, v) = |∇Xu|p(x) −
up(x) lnu

f(v)
|∇Xv|p(x)−2∇Xv∇Xp(x)

− p(x)
up(x)−1

f(v)
|∇Xv|p(x)−2∇Xv∇Xu+

up(x)f ′(v)

(f(v))2
|∇Xv|p(x) (2.3)

and

R(u, v) = |∇Xu|p(x) −∇X

(
up(x)

f(v)

)
|∇Xv|p(x)−2∇Xv. (2.4)

Then
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1. L(u, v) = R(u, v).

2. Moreover L(u, v) ≥ 0 if ∇Xv∇Xp(x) ≡ 0.

3. Furthermore, L(u, v) = 0 a.e. in Ω if and only if ∇X(u/v) = 0 a.e. in Ω.

Proof. By direct computation we have

R(u, v) = |∇Xu|p(x) −
(
∇X(up(x))

f(v)
− up(x)∇X(f(v))

(f(v))2

)
|∇Xv|p(x)−2∇Xv

= |∇Xu|p(x) −
up(x) lnu∇Xp(x) + p(x)up(x)−1∇Xu

f(v)
|∇Xv|p(x)−2∇Xv

+
up(x)f ′(v)

(f(v))2
|∇Xv|p(x)

= L(u, v),

which proves (1) of the theorem.
Next we verify L(u, v) ≥ 0. Rewriting the expression for L(u, v) as follows

L(u, v) = |∇Xu|p(x) − p(x)
up(x)−1

f(v)
|∇Xv|p(x)−1|∇Xu|+

up(x)f ′(v)

(f(v))2
|∇Xv|p(x)

+ p(x)
up(x)−1

f(v)
(|∇Xv||∇Xu| − ∇Xv∇u)−

up(x) lnu

f(v)
|∇Xv|p(x)−2∇Xv∇Xp(x)

= p(x)

 |∇Xu|p(x)

p(x)
+
p(x)− 1

p(x)

[
(u|∇Xv|)p(x)−1

f(v)

] p(x)
p(x)−1

+
up(x)f ′(v)

(f(v))2
|∇Xv|p(x)

− (p(x)− 1)

[
(u|∇Xv|)p(x)−1

f(v)

] p(x)
p(x)−1

− p(x)
up(x)−1

f(v)
|∇Xv|p(x)−1|∇Xu|

+ p(x)
up(x)−1

f(v)
(|∇Xv||∇Xu| − ∇Xv∇u)−

up(x) lnu

f(v)
|∇Xv|p(x)−2∇Xv∇Xp(x)

= L1(u, v) + L2(u, v) + L3(u, v) + L4(u, v),

where

L1(u, v) := p(x)

 |∇Xu|p(x)

p(x)
+
p(x)− 1

p(x)

[
(u|∇Xv|)p(x)−1

f(v)

] p(x)
p(x)−1


− p(x)

up(x)−1

f(v)
|∇Xv|p(x)−1|∇Xu|,

L2(u, v) :=
up(x)f ′(v)

(f(v))2
|∇Xv|p(x) − (p(x)− 1)

[
(u|∇Xv|)p(x)−1

f(v)

] p(x)
p(x)−1

,

L3(u, v) := p(x)
up(x)−1

f(v)
(|∇Xv||∇Xu| − ∇Xv∇u) ,

L4(u, v) := −u
p(x) lnu

f(v)
|∇Xv|p(x)−2∇Xv∇Xp(x).
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Applying the Young’s inequality (2.1), choosing s = |∇Xu| and t = (u|∇Xv|)p(x)−1

f(v) , we obtain

p(x)
up(x)−1

f(v)
|∇Xv|p(x)−1|∇Xu|

≤ p(x)

 |∇Xu|p(x)

p(x)
+
p(x)− 1

p(x)

[
(u|∇Xv|)p(x)−1

f(v)

] p(x)
p(x)−1

 ,

implying that L1(u, v) ≥ 0 with equality if and only if there is equality in the Young’s inequality,
that is, s = t

1
p(x)−1 .

Applying the assumption f ′(y) ≥ (p(x)− 1)
[
f(y)

p(x)−2
p(x)−1

]
, we have

up(x)f ′(v)

(f(v))2
|∇Xv|p(x) ≥ (p(x)− 1)

[
(u|∇Xv|)p(x)−1

f(v)

] p(x)
p(x)−1

,

which implies that L2(u, v) ≥ 0 with equality if and only if
f ′(y) = (p(x)− 1)

[
f(y)

p(x)−2
p(x)−1

]
. Clearly, L3(u, v) ≥ 0 by reverting to the inequality |∇Xv||∇Xu| −

∇Xv∇Xu ≥ 0. By the virtue of the assumption that ∇Xv∇Xp(x) ≡ 0, we have also L4(u, v) ≡ 0.
Putting all of these together we obtain that L(u, v) ≥ 0 a.e. in Ω.

Observe that L(u, v) = 0 holds if and only if

|∇Xu| =
u

f(v)
1

p(x)−1

|∇Xv|, (2.5)

f ′(y) = (p(x)− 1)
[
f(y)

p(x)−2
p(x)−1

]
, (2.6)

and

|∇Xv||∇Xu| = ∇Xv∇Xu. (2.7)

Upon solving for (2.6) we get f(v) = vp(x)−1. If ∇X(u/v) = 0 then there exists a positive constant,
say α > 0 such that u = αv, then equality (2.7) holds. Combining f(v) = vp(x)−1 and u = αv, then
(2.5) holds. We can now conclude that L(u, v) = 0 implies ∇X(u/v) = 0. Indeed, if L(u, v)(x0) = 0,
x0 ∈ Ω, there are two cases to consider, namely; the case u(x0) ̸= 0 and the case u(x0) = 0.
(a) If u(x0) ̸= 0, then L(u, v) = 0 for all x0 ∈ Ω, that is, L1(u, v) = 0, L2(u, v) = 0 and L3(u, v) = 0,
and we conclude that (2.5), (2.6) and (2.7) hold, which when combined gives u = αv a.e. for some
constant α > 0 and ∇X(u/v) = 0 for all x0 ∈ Ω.
(b) If u(x0) = 0, we denote Ω∗ = {x ∈ Ω : u(x) = 0}, and suppose Ω∗ ̸= Ω. Here u(x0) = αv(x0)
implies α = 0 since u(x0) = 0 and v(x0) > 0. By the first case (Case (a)) we know that u(x) = αv(x)
and u(x) ̸= 0 for all x ∈ Ω \ Ω∗, then it is impossible that α = 0. This contradiction implies that
Ω∗ = Ω.

Remark 2.4. Theorem 2.3 generalizes many known results. For examples:

1. If M = Rn and f(v) = vp(x)−1 in (2.3) and (2.4). Then, we obtain the variable exponent
Picone identity of Allegretto [30] and Feng and Han [34].

2. If p(x) = p, f(v) = vp−1 in (2.3) and (2.4), then our result covers Allegretto and Huang’s [16]
(M = Rn), Niu, Zhang and Wang [27] (Heisenberg group), Ruzhansky, Sabitbek and Suragan
[24] (for general vector fields).

3. If we allow p(x) = p in (2.3) and (2.4), we then recover Bal [18] in the Euclidean setting and
Suragan and Yessirkegenov [29] in the setting of stratified Lie groups.
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3 Applications

Eigenvalue problem for p(x)-sub-Laplacian
Let Ω ⊂ M be a bounded domain with smooth boundary ∂Ω. We suppose a continuous function
p : Ω̄ → R+, p(x) > 1 is such that

1 < p− := ess inf
x∈Ω̄

p(x) ≤ p(x) ≤ p+ := ess sup
x∈Ω̄

p(x) <∞.

Now consider the indefinite weighted Dirichlet eigenvalue problem for p(x)-Laplacian

−∇∗
X(|∇Xu|p(x)−2∇Xu) = λg(x)|u|p(x)−2u, x ∈ Ω,
u > 0, x ∈ Ω,
u = 0, x ∈ ∂Ω,

(3.1)

where Ω is as defined above, g(x) is a positive bounded function and p : Ω̄ → (1,∞) is a continuous
function for x ∈ Ω̄.

Definition 3.1. Let λ ∈ R+ and u ∈W
1,p(x)
0 (Ω), the pair (u, λ) is called a solution of (3.1) if∫

Ω

|∇Xu|p(x)−2⟨∇Xu,∇Xϕ⟩dx− λ

∫
Ω

g(x)|u|p(x)−2uϕdx = 0 (3.2)

for all ϕ ∈W
1,p(x)
0 (Ω). If (u, λ) is a solution of (3.1), we call λ an eigenvalue, and u an eigenfunc-

tion corresponding to λ.
Similarly, by the sup-solution and sub-solution of (3.1), we mean the pair (u, λ) such that∫

Ω

|∇Xu|p(x)−2⟨∇Xu,∇Xϕ⟩dx− λ

∫
Ω

g(x)|u|p(x)−2uϕdx ≥ 0 (3.3)

and ∫
Ω

|∇Xu|p(x)−2⟨∇Xu,∇Xϕ⟩dx− λ

∫
Ω

g(x)|u|p(x)−2uϕdx ≤ 0 (3.4)

for all ϕ ∈W
1,p(x)
0 (Ω), respectively.

Denote the principal eigenvalue of (3.1) (the least positive eigenvalue) by λ1,p := λ1,p(Ω), clearly
for the solution (u, λ) and u ̸= 0, we get

λ1,p = inf
u∈∈W

1,p(x)
0 (Ω)\{0}

∫
Ω
|∇Xu|p(x)dx∫

Ω
g(x)|u|p(x)dx

.

In the case p(x) = p(constant), it is well known that λ1,p(Ω) given above is the first eigenvalue
of p-Laplacian (with g(x) = 1, Ω ⊂ Rn), which must be positive. But this is not true for general
p(x) in the sense that λ1,p may be zero [14]. Nevertheless, Fan, Zhang and Zhao in [4] have proved
the existence of infinitely many eigenvalues p(x)-Laplacian and established sufficient conditions for
λ1,p(Ω) > 0 (see also Franzina and Lindqvist [35]). Motivated by [4], we are able to assume the
existence of λ1,p > 0 in the rest of this section.

In the rest of this section we are concerned with the indefinite weighted Dirichlet eigenvalue
problem (3.1) and discuss some properties of its solutions v satisfying ∇Xv∇Xp(x) ≡ 0 by the
application of Picone identity in Theorem 2.3. We remark that the results of this paper are classical
in the sense that they have been established using different methods such variational approach
(see [1, 4, 6] for instance) where the condition ∇Xv∇Xp(x) ≡ 0 is not required.

89

https://doi.org/10.5281/zenodo.14710510


International Journal of Mathematical Sciences and
Optimization: Theory and Applications

10(4), 2024, Pages 81 - 98
https://doi.org/10.5281/zenodo.14710510

3.1 Variable exponent Hardy type inequality
Proposition 3.2. Let Ω ⊂ M be an open bounded domain. Suppose that a function v ∈ C∞

0 (Ω)
satisfies ∇Xv∇Xp(x) ≡ 0 and

−Lpv = µa(x)f(v) in Ω,
v > 0 in Ω,
v = 0 on ∂Ω,

(3.5)

where f : R+ → R+ is C1 and satisfies f ′(y) ≥ (p(x)− 1)
[
f(y)

p(x)−2
p(x)−1

]
, µ > 0 is a constant, a(x) is

a positive continuous function. Then there holds∫
Ω

|∇Xu|p(x)dx ≥ µ

∫
Ω

a(x)|u|p(x)dx

for any 0 ≤ u ∈ C1
0 (Ω).

Proof. Since v > 0 and solves (3.5) in Ω, that is, v ∈ W
1,p(x)
0 (Ω). For a given a ϵ > 0, we set

ϕ = |u|p(x)

f(v+ϵ) . By the definition of solution (3.2) we compute

µ

∫
Ω

a(x)f(v)
|u|p(x)

f(v + ϵ)
dx ≤

∫
Ω

|∇Xv|p−2∇Xv∇X

(
|u|p(x)

f(v + ϵ)

)
dx

=

∫
Ω

[
|∇Xu|p(x) −R(u, v + ϵ)

]
dx

=

∫
Ω

|∇Xu|p(x)dx−
∫
Ω

L(u, v + ϵ)dx.

Taking the limit as ϵ→ 0+, applying Fatou’s Lemma and Lebesgue dominated convergence theorem
respectively on the left hand side and right hand side of the last expression, we obtain

0 ≤
∫
Ω

|∇Xu|p(x) − µ

∫
Ω

a(x)|u|p(x)dx−
∫
Ω

L(u, v)dx.

Therefore we have

0 ≤
∫
Ω

|∇Xu|p(x)dx− µ

∫
Ω

a(x)|u|p(x)dx

since L(u, v) ≥ 0 almost everywhere in Ω. This therefore completes the proof.

Corollary 3.3. Suppose there exists λ > 0 and a strictly positive sup-solution of (3.1) such that
∇Xp(x)∇Xv = 0. Then ∫

Ω

|∇Xu|p(x)dx ≥ λ

∫
Ω

g(x)|u|p(x)dx (3.6)

for all u ∈W
1,p(x)
0 (Ω).

Proof. Applying Proposition 3.2 by setting a(x) ≡ g(x), µ = λ and f(v) = |v|p(x)−2v , then one
arrives at the conclusion (3.5) at once.
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3.2 Principal frequency and domain monotonicity

Proposition 3.4. Let there exists λ and a strictly positive sup-solution v ∈ W
1,p(x)
0 (Ω) of (3.1)

such that ∇Xp(x)∇Xv = 0. Then we have∫
Ω

|∇Xu|p(x)dx ≥ λ

∫
Ω

g(x)|u|p(x)dx (3.7)

and

λ1,p(Ω) ≥ λ (3.8)

for all u ∈W
1,p(x)
0 (Ω).

Proof. Suppose there exists λ > 0, since v is strictly positive sup-solution of (3.1) in Ω, we have∫
Ω

|∇Xv|p(x)−2⟨∇Xv,∇Xϕ⟩dx ≥ λ

∫
Ω

g(x)|v|p(x)−2vϕdx (3.9)

for all ϕ ∈ W
1,p(x)
0 (Ω). For a given small ϵ > 0, setting ϕ = |u|p(x)

(v+ϵ)p(x)−1 into (3.9). Then, following
the proof of the Proposition 3.2, we arrive at (3.7).

Now, let u1 ∈W
1,p(x)
0 (Ω) be the eigenfunction corresponding to the principal eigenvalue λ1,p(Ω).

We have ∫
Ω

|∇Xu1|p(x)−2⟨∇Xu1,∇Xϕ⟩dx = λ1,p

∫
Ω

g(x)|u1|p(x)−2u1ϕdx (3.10)

for any ϕ ∈W
1,p(x)
0 (Ω). Choosing ϵ > 0 (small) we can define via Picone identity that

0 ≤ L(u1, v + ϵ) = R(u1, v + ϵ), v > 0. (3.11)

Integrating (3.11) over Ω and then using (3.9) with ϕ = |u1|p(x)

f(v+ϵ) and (3.10) with ϕ = u1, we obtain

0 ≤
∫
Ω

L(u1, v + ϵ)dx =

∫
Ω

R(u1, v + ϵ)dx

=

∫
Ω

|∇Xu1|p(x)dx−
∫
Ω

∇X

(
|u1|p(x)

f(v + ϵ)

)
|∇Xv|p(x)−2∇Xvdx

=

∫
Ω

|∇Xu1|p(x)dx+

∫
Ω

|u1|p(x)

f(v + ϵ)
∇∗

X(|∇Xv|p(x)−2∇X)vdx

≤ λ1,p(Ω)

∫
Ω

g(x)|u1|p(x)dx− λ

∫
Ω

g(x)
|u1|p(x)

f(v + ϵ)
|v|p(x)−2vdx.

As usual, taking the limit as ϵ→ 0+, applying Fatou’s Lemma and Lebesgue dominated convergence
theorem, setting f(v) = vp(x)−1, we arrive at

0 ≤ (λ1,p(Ω)− λ)

∫
Ω

g(x)|u1|pdx,

which implies λ1,p(Ω) ≥ λ.
As a corollary to the last proposition, we show strict monotonicity of the principal eigenvalue

with respect to domain monotonicity. Let λ1,p(Ω) > 0 be the principal eigenvalue of Lp on Ω.

Corollary 3.5. Suppose Ω1 ⊂ Ω2 ⊂ Ω and Ω1 ̸= Ω2. Let u1 and u2 be the eigenfunctions
corresponding to λ1,p(Ω1) and λ1,p(Ω2) satisfying ∇Xp(x)∇Xu1 = 0 and ∇Xp(x)∇Xu2 = 0. Then

λ1,p(Ω1) > λ1,p(Ω2)

if they both exist.
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Proof. Let u1 and u2 be positive eigenfunctions corresponding to λ1,p(Ω1) and λ1,p(Ω2), respectively.
Clearly with ϕ ∈ C∞

0 (Ω), we have by Picone identity that

0 ≤
∫
Ω

L(ϕ, u2)dx =

∫
Ω

R(ϕ, u2)dx.

Replacing ϕ by u1 and applying Proposition 3.4 we have

λ1,p(Ω1)− λ1,p(Ω2) ≥ 0.

If we have λ1,p(Ω1) = λ1,p(Ω2), then L(u1, u2) = 0 a.e. in Ω and thus u1 = αu2 for some constant
α > 0. However, this is impossible when Ω1 ⊂ Ω2 and Ω1 ̸= Ω2.

Next is the uniqueness and simplicity results.

3.3 Uniqueness and simplicity of first eigenvalue

Proposition 3.6. Let there exists λ > 0 and a strictly positive solution v ∈ W
1,p(x)
0 (Ω) of (3.1)

such that ∇Xp(x)∇Xv = 0. Then we have

λ1,p(Ω) = λ.

Moreover, let u1 be the corresponding eigenfunction to λ1,p(Ω). Then any other u ∈ W
1,p(x)
0 (Ω)

corresponding to λ1,p(Ω) is a constant multiple of u1.

Proof. Let u1 ∈ W
1,p(x)
0 (Ω) be the eigenfunction corresponding to λ1,p(Ω) and u be a positive

solution of (3.1). Applying Picone identity by choosing ϵ > 0 (small) as follows:

0 ≤
∫
Ω

L(u, u1 + ϵ)dx

=

∫
Ω

|∇Xu|p(x)dx+

∫
Ω

up(x)

f(u1 + ϵ)
∇∗

X(|∇Xu1|p(x)−2∇X)u1dx

= λ

∫
Ω

g(x)|u|p(x)dx− λ1,p(Ω)

∫
Ω

g(x)
up(x)

(u1 + ϵ)p(x)−1
|u1|p(x)−2u1dx,

where we have set f(u1 + ϵ) = (u1 + ϵ)p(x)−1. Taking the limit as ϵ→ 0+, applying Fatou’s Lemma
and Lebesgue dominated convergence theorem, then

λ1,p(Ω) ≤ λ.

On the other hand by Proposition 3.4, we have

λ1,p(Ω) ≥ λ.

This therefore implies that λ1,p(Ω) = λ. By this we have proved the uniqueness part.
Now by the hypothesis of the theorem we have for ϕ, ψ ∈ C∞

0 (Ω) that∫
Ω

|∇Xu|p(x)−2⟨∇Xu,∇Xϕ⟩dx = λ1,p

∫
Ω

g(x)|u|p(x)−2uϕdx, (3.12)

∫
Ω

|∇Xu1|p(x)−2⟨∇Xu1,∇Xψ⟩dx = λ1,p

∫
Ω

g(x)|u1|p(x)−2u1ψdx. (3.13)

Taking ϕ = u and ψ = |u|p
(u1+ϵ)p−1 into (3.12) and (3.13), respectively, and sending ϵ→ 0+, we arrive

at ∫
Ω

|∇Xu|p(x)dx = λ1,p

∫
Ω

g(x)|u|p(x)dx

=

∫
Ω

|∇Xu1|p(x)−2∇Xu1∇X

( |u|p(x)

u
p(x)−1
1

)
dx,
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which implies (by choosing f(u1) = u
p(x)−2
1 )∫

Ω

R(u, u1)dx =

∫
Ω

L(u, u1)dx = 0

and consequently, ∇X(u/v) = 0, i.e., u = αu1 for some positive constant α > 0.

The next proposition gives the sign changing nature of any other eigenfunction associated to an
eigenvalue other than λ1,p(Ω).

Proposition 3.7. Any eigenfunction v corresponding to an eigenvalue λ ̸= λ1,p(Ω) such that
∇Xp(x)∇Xv = 0 changes sign.

Proof. By contradiction we suppose v > 0 does not change sign (the case v ≤ 0 can be handled
similarly). Let ϕ > 0 be an eigenfunction corresponding to λ1,p(Ω). Choosing any ϵ > 0 as before,
applying Picone identity, we have

0 ≤
∫
Ω

L(ϕ, v + ϵ)dx

=

∫
Ω

[
|∇Xϕ|p(x) −∇X

( ϕp(x)

f(v + ϵ)

)
|∇Xv|p(x)−2∇Xv

]
dx

=

∫
Ω

|∇Xϕ|p(x)dx+

∫
Ω

ϕp(x)

f(v + ϵ)
Lpvdx.

Since ϕp(x)

(v+ϵ)p(x)−1 is admissible in the weak formulation of (3.1) satisfied by (ϕ, λ), we arrive at

0 ≤ λ1,p(Ω)

∫
Ω

g(x)|ϕ|p(x)dx− λ

∫
Ω

ϕp(x)

f(v + ϵ)
g(x)|v|p(x)−2vdx.

Setting f(v + ϵ) = (v + ϵ)p(x)−1 and letting ϵ→ 0+ in the last inequality as usual we obtain

0 ≤ (λ1,p − λ)

∫
Ω

g(x)ϕp(x)dx,

which is a contradiction since
∫
Ω
g(x)ϕp(x)dx = 1. Thus v must change sign.

4 Variable exponent Caccioppoli estimates for general vector
fields

Picone identity is applied to prove some variable exponent Caccioppoli estimates for general vector
fields in this section. Recall that

1 < p− := ess inf
x∈Ω̄

p(x) ≤ p(x) ≤ p+ := ess sup
x∈Ω̄

p(x) <∞.

Without giving rise to confusion but for simplicity sake we write p := p(x) and q =: q(x). We also
denote q− := ess infx∈Ω̄ q(x) and q+ := ess supx∈Ω̄ q(x).

Theorem 4.1. Let v be a positive sub-solution of (3.1) in Ω ⊂ M . Then for every fixed q(x) >
p(x)− 1, p(x) > 1, ∇Xv∇Xp(x) = 0, ∇Xv∇Xq(x) = 0 and λ ∈ R, we have∫

Ω

vq−pϕp|∇Xv|pdx ≤ Cp+

p,q

∫
Ω

vq|∇Xϕ|pdx+ Cλ,p,q

∫
Ω

g(x)vqϕpdx (4.1)
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for every nonnegative functions ϕ ∈ C∞
0 (Ω), where

Cp+

p,q :=

(
p+

q− − p+ + 1

)p+

and Cλ,p,q :=

(
λp+

q− − p+ + 1

)
.

Proof. Let u = vq/pϕ, where ϕ is a nonnegative test function and v is a sub-solution of (3.1), we
compute

∇X

(
vq/pϕ

)
= ϕ∇X(vq/p) + vq/p∇Xϕ

= ϕvq/p ln v

(
∇Xq

p
− q∇Xp

p2

)
+
q

p
v

q−p
p ϕ∇Xv + vq/p∇Xϕ

so that

⟨∇Xv,∇X

(
vq/pϕ

)
⟩ = ϕvq/p ln v

(
∇Xq

p
− q∇Xp

p2

)
∇Xv

+
q

p
v

q−p
p ϕ|∇Xv|2 + vq/p⟨∇Xϕ,∇Xv⟩.

Now using the the fact that v is a sub-solution of (3.1) and the condition that ∇Xv∇Xp(x) ≡ 0
and ∇Xv∇Xq(x) ≡ 0 in the Picone identity L(u, v) ≥ 0, we have

0 ≤
∫
Ω

L(vq/pϕ, v)

=

∫
Ω

|∇X

(
vq/pϕ

)
|pdx+

∫
Ω

f ′(v)

(f(v))2
|vq/p|p|ϕ∇Xv|pdx

−
∫
Ω

q
|vq/pϕ|p−1

f(v)
ϕv

q−p
p |∇Xv|pdx (4.2)

−
∫
Ω

p
|vq/pϕ|p−1

f(v)
vq/p|∇Xv|p−2⟨∇Xϕ,∇Xv⟩dx.

Considering the condition f ′(v) ≥ (p(x)−1)
[
f(v)

p(x)−2
p(x)−1

]
, we can then choose f(v) = vp(x)−1. Then

(4.2) reads

0 ≤
∫
Ω

|∇X

(
vq/pϕ

)
|pdx+

∫
Ω

(p− 1)vq−p|ϕ∇Xv|pdx−
∫
Ω

qvq−p|ϕ∇Xv|pdx

−
∫
Ω

p|v
q−p
p ϕ|p−1vq/p|∇Xv|p−2⟨∇Xϕ,∇Xv⟩dx. (4.3)

Using the ε(x)-modified version of the Young’s inequality in Lemma 2.2 with Φ = vq/p|∇Xϕ| and
Ψ = v

q−p
p ϕ|∇Xv|, we can estimate the last term of (4.3) as follows

−
∫
Ω

p|v
q−p
p ϕ|p−1vq/p|∇Xv|p−2⟨∇Xϕ,∇Xv⟩dx

≤
∫
Ω

p|v
q−p
p ϕ|p−1|∇Xv|p−1vq/p∇Xϕdx

≤
∫
Ω

ε1−pvq|∇Xϕ|pdx+

∫
Ω

ε(p− 1)vq−p|ϕ∇Xv|pdx, (4.4)

where ε(x) is a continuous bounded function on Ω, which will be chosen later. Substituting (4.4)
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into (4.3) we get

0 ≤
∫
Ω

|∇X

(
vq/pϕ

)
|pdx−

∫
Ω

[q − p+ 1− ε(p− 1)]vq−p|ϕ∇Xv|pdx

+

∫
Ω

ε1−pvq|∇Xϕ|pdx

≤ λ

∫
Ω

g(x)|vq/pϕ|pdx− C1
ϵ,p,q

∫
Ω

vq−p|ϕ∇Xv|pdx+ C2
ϵ,p

∫
Ω

vq|∇Xϕ|pdx,

where we have used
∫
Ω
|∇Xu|p(x)dx ≤ λ

∫
Ω
g(x)|u|p(x)dx for the sub-solution of (3.1). Here

C1
ϵ,p,q := q− − p+ + 1− ε̄(p+ − 1) and C2

ϵ,p := ε̄1−p+

,

where ε̄ := supΩ ε(x).
Rearranging the last inequality we arrive at∫

Ω

vq−p|ϕ∇Xv|pdx ≤
C2
ϵ,p

C1
ϵ,p,q

∫
Ω

vq|∇Xϕ|pdx+
λ

C1
ϵ,p,q

∫
Ω

g(x)|vq/pϕ|pdx.

We can now choose a suitable number ε̄ as ε̄ := q−−p++1
p+ and then compute

1

C1
ϵ,p,q

:=
1

q− − p+ + 1− ε̄(p+ − 1)
=

p+

q− − p+ + 1
,

C2
ϵ,p

C1
ϵ,p,q

:=
ε̄1−p+

q− − p+ + 1− ε̄(p+ − 1)
=

(
p+

q− − p+ + 1

)p+

.

The proof is therefore complete.
The following two corollaries can be deduced from Theorem 4.1 using the same assumptions.

Corollary 4.2. Let v be a positive sub-solution of (3.1) in Ω satisfying ∇Xv∇Xp(x) = 0. If
g(x) ≡ 0 and p(x) = q(x) in Ω. Then we have∫

Ω

ϕp(x)|∇Xv|p(x)dx ≤ (p+)p
+

∫
Ω

vp(x)|∇Xϕ|p(x)dx

for every nonnegative function ϕ ∈ C∞
0 (Ω).

Corollary 4.3. Let v be a positive sub-solution of (3.1) in Ω satisfying ∇Xv∇Xp(x) = 0. Letting
λ = 1 and p(x) = q(x) in Ω. Then we have∫

Ω

ϕp(x)|∇Xv|p(x)dx ≤ (p+)p
+

∫
Ω

vp(x)|∇Xϕ|p(x)dx+ p+
∫
Ω

g(x)vq(x)ϕp(x)dx

for every nonnegative function ϕ ∈ C∞
0 (Ω).

Remark 4.4. Suppose M = Rn, p(x) = p (constant) and q(x) = q (constant):

1. Corollary 4.2 reduces to [23, Corollary 3.1] and [36, Equation 5.27].

2. Corollary 4.3 reduces to [37, Corollary A.6].

We remark also that analogous result to Theorem 4.1 holds for positive sup-solutions of (3.1)
with q(x) < p(x)− 1.
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Theorem 4.5. Let v be a positive sup-solution of (3.1) in Ω ⊂ M . Then for every fixed q(x) <
p(x)− 1, p(x) > 1, ∇Xv∇Xp(x) = 0, ∇Xv∇Xq(x) = 0 and λ ∈ R, we have∫

Ω

vq−pϕp|∇Xv|pdx ≤ Cp−

p,q

∫
Ω

vq|∇Xϕ|pdx+ Cλ,p,q

∫
Ω

g(x)vqϕpdx (4.5)

for every nonnegative functions ϕ ∈ C∞
0 (Ω), where

Cp−

p,q :=

(
p+

p− − q+ − 1

)p+

and C−
λ,p,q := −

(
λp+

p− − q+ − 1

)
.

Remark 4.6. Setting q = 0 in (4.5) we obtain a particular case whose right hand side is independent
of the nonnegative function v. That is∫

Ω

|ϕ∇X log v|pdx ≤
(

p+

p− − 1

)p+ ∫
Ω

|∇Xϕ|pdx−
(

λp+

p− − 1

)∫
Ω

g(x)ϕpdx. (4.6)

This is the variable exponent logarithmic Caccioppolli inequality. Precisely, If g(x) ≡ 0, then (4.6)
reduces to a new version of the well known logarithmic Caccioppolli inequality for positive p(x)-
superharmonic functions∫

Ω

|ϕ∇X log v|p(x)dx ≤
(

p+

p− − 1

)p+ ∫
Ω

|∇Xϕ|p(x)dx,

where 1 < p− < p+ < ∞. Note that v ∈ W
1,p(x)
loc is said to be p(x)-superharmonic if it satisfies∫

Ω
|∇Xu|p(x)−2⟨∇Xu,∇Xϕ⟩dx ≥ 0. Interested reader is hereby referred to [38] and [39] for p(=

constant)-superharmonic case.
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