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Abstract

In this paper, the problem of multi-term fractional order Volterra integro-differential equations
is considered. The multi-term fractional order derivative part of the multi-term fractional
order Volterra integro-differential equations is converted to its equivalent integral equation
and Schauder’s fixed point theorem is applied to establish the existence of solutions for the
multi-term fractional order Volterra integro-differential equations under some mild conditions.
Furthermore, examples were given to test the applicability of the proposed theorem.
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1 Introduction
Fractional calculus is a branch of mathematical analysis which deals with the investigation and
applications of integral and derivatives of arbitrary order. Therefore, it is the generalization of
classical calculus, involving derivatives and integrals of real or complex order [1]. Many physical
events are more desirably explained by fractional derivatives because it considers the evolution of
system into account. However, it is sometimes difficult to find exact solutions for some of these
equations. Hence, the need for a numerical approach. In the past few decades, a number of numer-
ical approaches for approximation of solutions to this class of equations have found applications in
various field of sciences, engineering and social sciences such as chaotic systems [2], Fluid Mechan-
ics [3], Viscoelasticity [4], Optimal Control problems [5], Biology [6], Physics [7], Bioengineering [8],
Finance [9], Social Sciences [10], Economics [11], Optics [12], Chemical Reactions [13] and Rheol-
ogy [14]. Furthermore, numerous scholars have proposed and studied the existence and uniqueness
of solutions of these equations such as [15] and [16] studied the existence of solution of multi-term
fractional order Fredholm integro-differential equation and Uniqueness and convergence of solution
of multi-term fractional order Fredholm Integro-differential equation, respectively. While [17] stud-
ied the uniqueness of solution of multi-term fractional order Volterra Integro-differential equation
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with convergence analysis, [18] proved the existence results for fractional integro-differential equa-
tions with nonlocal condition via resolvent operators. Also, the existence of solutions of various
types of fractional differential equations and fractional integro-differential equations of boundary
value problems and initial value problems were explored recently by [18–36], and so many more. A
special class of these equations are the Volterra type, it has been used to describe heat transfer is-
sues, nano hydrodynamics, mass diffusion processes, neutron diffusion, biological species coexisting
together with diminishing and increasing rate of growth, and electromagnetic theory [38]

In this study, we considered the multi-term fractional order Volterra integro-differential equation
of the form

Dαy(x) =

n∑
i=0

ui(x)D
γiy(x) + g (x) +

∫ s

0

k (s, t)G (y (t)) dt (1.1)

subject to the initial condition

y(k) (0) = dk, k = 0, 1, 2, ...,m− 1, (1.2)
m− 1 < α ≤ m, 0 < γ0 < γ1 < · · · < γi < α, m,n ∈ N,

where D is the differential operator defined in Caputo sense, y : Q = [0, 1] −→ R is a continuous
function which needs to be determined, ui, g : Q −→ R are given continuous functions, K :
Q × Q −→ R is the kernel of integration which is also continuous, G : R −→ R is a Lipschitz
function.

2 Preliminaries
Definition 2.1. (Compact Map [39]). Let X and Y be Banach spaces and let Ω ⊆ X. A map
F : Ω −→ Y is said to be compact if it is continuous and F (Ω) is relatively compact (i.e, for every
(xn)n ⊆ Ω, there exists a subsequence

(
xnj

)
j

of (xn)n such that F
(
xnj

)
j

is convergent).

Definition 2.2. (Uniformly Bounded [1]). A set M is called uniformly bounded if there exists
a constant K > 0 such that ∥m∥∞ ≤ K for every m ∈ M .

Definition 2.3. (Equicontinuous [1]). A set M is called equicontinuous if, for every ϵ > 0, there
exists some δ > 0 such that, for all m ∈ M and all x1, x2 ∈ [a, b] with |x1 − x2| < δ, we have
|m (x1)−m (x2)| < ϵ.

Theorem 1. (Arzelà-Ascoli [1]). Let M be a subset of C[a, b] equipped with the norm (∥·∥∞).
Then M is relatively compact in C[a, b] if and only if, M is equicontinuous and uniformly bounded.
Theorem 2. (Schauder’s Fixed Point Theorem [39]). Let C be a nonempty, closed, bounded
and convex subset of a Banach space X and let T : C −→ C be compact. Then T has a fixed point.

Proposition 2.4. (Riemann-Liouville Fractional Integral [1]). Reimann-Liouville fractional
integral of order α of a function y is defined as

Iαy (x) =
1

Γ (α)

∫ x

0

(x− s)
α−1

y (s) ds, x > 0, α ∈ R+, (2.1)

where R+is the set of positive real numbers.

Proposition 2.5. (Riemann-Liouville Fractional Derivative [1]).Reimann-Liouville frac-
tional derivative of order α of a function yis defined as

RLDαy (x) = DmIm−αy (x) , m− 1 < α ≤ m, m ∈ N

=
dm

dtm

(
1

Γ (m− α)

∫ x

0

(x− s)
m−α−1

y (s) ds

)
. (2.2)
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Proposition 2.6. (Caputo Fractional Derivative [1]). The fractional derivative of y(x) in the
Caputo sense is defined by

CDαy (x) = Im−αDmy (x) (2.3)

=
1

Γ (m− α)

∫ x

0

(x− s)
m−α−1 dmy (s)

dsm
ds, m− 1 < α ≤ m.

with the foloowing properties

(i) IαDαy (x) = y (x)−
∑m−1

k=0
y(k)(0)

k! xk, m− 1 < α ≤ m,

(ii) IαDγy (x) = Iα−γy (x), 0 < γ < α, and m− 1 < α ≤ m,m ∈ N,

(iii) Iαy (x) = xα

Γ(α+1) , where y (x) = 1, x ∈ [0, 1]

3 Preliminary results
Throughout this work, we denote by

i ∥·∥∞ the sup norm on C (Q,R) , i.e for u ∈ C (Q,R), ∥u∥∞ = supx∈Q |u (x)|.

ii Λ :=
n∑

i=0

∥ui∥∞
Γ(α−γi+1) .

Lemma 1. Let y : Q −→ R and g : Q −→ R be continuous functions. Then, a function y is a
solution to the fractional integro-differential equation (1.1)− (1.2) if and only if,

y (x) =

m−1∑
k=0

dk
k!

xk +

n∑
i=0

ui(x)I
α−γiy (s) + Iαg (s) + Iα

(∫ s

0

k (s, t)G (y (t)) dt

)
. (3.1)

Proof. Applying (2.1) on (1.1) and using property (i), (ii) and (iii) we have,

Iα (Dαy(x)) = Iα

(
n∑

i=0

ui(x)D
γiy(x)

)
+ Iα (g (x)) + Iα

(∫ s

0

k (s, t)G (y (t)) dt

)

=

n∑
i=0

ui(x)I
α (Dγiy(x)) + Iα (g (x)) + Iα

(∫ s

0

k (s, t)G (y (t)) dt

)

=

m−1∑
k=0

y(k) (0)

k!
xk +

n∑
i=0

ui(x)I
α−γiy(s) + Iαg (s) +

Iα
(∫ s

0

k (s, t)G (y (t)) dt

)
=

m−1∑
k=0

dk
k!

xk +

n∑
i=0

ui(x)I
α−γiy(s) + Iαg (s) + Iα

(∫ s

0

k (s, t)G (y (t)) dt

)
.

Thus, y solves (1.1)− (1.2) if and only if, y solves (3.1)

Lemma 2. Let X and Y be normed linear spaces and let f : A −→ Y be a Lipschitz map, A ⊆ X.
Then f sends bounded sets to bounded sets.

101

https://doi.org/10.5281/zenodo.14710636


International Journal of Mathematical Sciences and
Optimization: Theory and Applications

10(4), 2024, Pages 99 - 113
https://doi.org/10.5281/zenodo.14710636

Proof. For any set E ⊆ A, if there exists M > 0 : ∥x∥X ≤ M for all x ∈ E, then we show that
there exists M̃ > 0 : ∥f (x)∥Y ≤ M̃ for all x ∈ E. Since f is Lipschitz, that is, there exists L > 0
such that

∥f (x)− f (y)∥Y ≤ L ∥x− y∥X for all x, y ∈ A.

Let x0 be a fixed element of A.Then, if there exists M > 0 : ∥x∥X ≤ M for all x ∈ E, then,

∥f (x)∥Y = ∥f (x)− f (x0) + f (x0)∥X
≤ ∥f (x)− f (x0)∥+ ∥f (x0)∥
≤ L ∥x− x0∥+ ∥f (x0)∥
≤ L (∥x∥+ ∥x0∥) + ∥f (x0)∥
≤ L (M + ∥x0∥) + ∥f (x0)∥ .

Thus, ∥f (x)∥Y ≤ M̃ for all x ∈ E, where M̃ = L (M + ∥x0∥) + ∥f (x0)∥ . Hence, f (E) is bounded.
Thus, f sends bouned sets to bounded sets

Lemma 3. For any 0 ≤ a < b,

bα − aα ≤ (b− a)
α
, α ∈ (0, 1) .

Proof. Define f : [0, b) −→ R by

f (t) = (b− t)
α − bα + tα, t ∈ [0, b), (3.2)

Then from equation (3.2)

f (t) = (b− t)
α − bα + tα

≥ 0

Case I. Suppose α = 0, then for any 0 ≤ a < b we have from equation (3.2)

f (a) = 1

≥ 0

Case II (a). Suppose α > 0, and f (t) is increasing, then we have from equation (3.2)

f ′ (t) = −α
(
(b− t)

α−1 − tα−1
)
≥ 0.

Thus,
(b− t)

α−1 − tα−1 ≤ 0.

Hence,

t ≥ b

2
.

(b) Suppose α > 0, and f (t) is decreasing, then we have from equation (3.2)

f ′ (t) = −α
(
(b− t)

α−1 − tα−1
)
≤ 0.

Thus,
(b− t)

α−1 − tα−1 ≥ 0.

Hence,

t ≤ b

2
.
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So, f is decreasing on
[
0, b

2

]
and increasing on [ b2 , b). Hence, inf

t∈[0,b)
f (t) = f (0) = 0 and lim

t−→b−
f (t) =

f (b) = 0, i.e, inf
t∈[0,b)

f (t) = f (0) or f (b) . Thus, inf
t∈[0,b)

f (t) = 0. Therefore, for any 0 ≤ a < b,

f (a) ≥ inf
t∈[0,b)

f (t) = 0, i.e,

(b− a)
α − bα + aα ≥ 0,

that is,
bα − aα ≤ (b− a)

α .

Case III (a). Suppose α < 0, and f (t) is increasing, then we have from equation (3.2)

f ′ (t) = −α
(
(b− t)

α−1 − tα−1
)
≥ 0.

Thus,
(b− t)

α−1 − tα−1 ≥ 0.

Hence,

t ≤ b

2
.

(b) Suppose α < 0, and f (t) is decreasing, then we have from equation (3.2)

f ′ (t) = −α
(
(b− t)

α−1 − tα−1
)
≤ 0

Thus,
(b− t)

α−1 − tα−1 ≤ 0.

Hence,

t ≥ b

2
.

So, f is increasing on
[
0, b

2

]
and decreasing on [ b2 , b). Hence, inf

t∈[0,b)
f (t) = f (0) = 0 and lim

t−→b−
f (t) =

f (b) = 0, i.e, inf
t∈[0,b)

f (t) = f (0) or f (b) . Thus, inf
t∈[0,b)

f (t) = 0. Therefore, for any 0 ≤ a < b,

f (a) ≥ inf
t∈[0,b)

f (t) = 0, i.e,

(b− a)
α − bα + aα ≥ 0,

that is,
bα − aα ≤ (b− a)

α .

4 Main results
Throughout this work, we make the following hypotheses:

h1 there exists a constant M > 0 such that for any y1, y2 ∈ C (Q,R) we have

|G (y1 (x))−G (y2 (x))| ≤ M ∥y1 − y2∥∞ x ∈ Q

h2 there exists a constant K̂ such that

K̂ = sup
x,t∈[0,1]

∫ x

0

|k (x, t)| dt < ∞
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Theorem 3. (Existence of Solution). Assume that (h1) and (h2) holds, if(
Λ +

K̂M

Γ (α+ 1)

)
< 1, (4.1)

then there exists a solution y ∈ C (Q,R) to problem (1.1)− (1.2).

Proof. Let T be an operator such that T : C (Q,R) −→ C (Q,R) defined by

(Ty) (x) =

m−1∑
k=0

dk
k!

xk +

n∑
i=0

1

Γ (α− γi)

∫ x

0

(x− s)
α−γi−1

ui(s)y(s)ds

+
1

Γ (α)

∫ x

0

(x− s)
α−1

g (s) ds

+
1

Γ (α)

∫ x

0

(x− s)
α−1

(∫ s

0

k (s, t)G (y (t)) dt

)
ds. (4.2)

Our goal is to apply Schauder’s fixed point theorem. To do that, we will show that T satisfies
the following;

i T is Lipschitz,

ii T sends bounded sets to bounded sets,

iii T sends bounded sets to equicontinuous sets.

First, we note that T is well definded. Indeed, since x 7−→
∑m−1

k=0
dk

k! x
k, x 7−→

∑n
i=0 ui(x) (I

α−γiy) (x) , x 7−→
(Iαg) (x) , x 7−→

∫ x

0
k (x, t)G (y (t)) dt are continuous, the right hand of (4.2) is well defined and

x 7−→ (Ty) (x) is continuous. Thus, for y ∈ C (Q,R) , T y ∈ C (QR).
Let a, b ∈ C (Q,R), for any x ∈ [0, 1] , we have by setting E = |(Ta) (x)− (Tb) (x)|

E =

∣∣∣∣ n∑
i=0

1

Γ (α− γi)

∫ x

0

(x− s)
α−γi−1

ui(s) (a(s)− b (s)) ds

+
1

Γ (α)

∫ x

0

(x− s)
α−1

(∫ s

0

k(s, t) (G (a(t))−G (b (t))) dt

)
ds

∣∣∣∣
≤

∣∣∣∣∣
n∑

i=0

1

Γ (α− γi)

∫ x

0

(x− s)
α−γi−1

ui(s) (a(s)− b (s)) ds

∣∣∣∣∣
+

∣∣∣∣ 1

Γ (α)

∫ x

0

(x− s)
α−1

(∫ s

0

k(s, t) (G (a(t))−G (b (t))) dt

)
ds

∣∣∣∣
≤

n∑
i=0

1

Γ (α− γi)

∫ x

0

(x− s)
α−γi−1 |ui(s)| |(a(s)− b (s))| ds

+
1

Γ (α)

∫ x

0

(x− s)
α−1

(∫ s

0

|k(s, t)| |G (a(t))−G (b (t))| dt
)
ds

≤
n∑

i=0

∥ui∥∞ ∥a− b∥∞
1

Γ (α− γi)

∫ x

0

(x− s)
α−γi−1

ds

+K̂M ∥a− b∥∞
1

Γ (α)

∫ x

0

(x− s)
α−1

ds.

By property (iii) we have

|(Ta) (x)− (Tb) (x)| ≤

(
Λ +

K̂M

Γ (α+ 1)

)
∥a− b∥∞ , for all x ∈ [0, 1]
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Thus,
∥(Ta)− (Tb)∥∞ ≤ Φ ∥a− b∥∞ ,

where

Φ = Λ+
K̂M

Γ (α+ 1)
∈ R.

It follows that T is Lipschitz continuous.

Next, by Lemma 2, we can conclude that operator T (i.e T being Lipschitz) maps bounded sets
to bounded sets in C (Q,R).

Next, we show that T maps bounded sets to equicontinuous sets of C (Q,R). Let y ∈ Bϵ =
{y ∈ C (Q,R) : ∥y∥∞ ≤ ϵ}, let supx∈Q |G (y (x))| ≤ M ∥y∥∞ + G (0) and let x1, x2 ∈ [0, 1] with
x1 < x2. Setting E = (Ty) (x2)− (Ty) (x1) , then we have from (4.2)

|E| =

∣∣∣∣∑m−1
k=0

dk

k!

(
xk
2 − xk

1

)
+
∑n

i=0
1

Γ(α−γi)

(∫ x2

0
(x2 − s)

α−γi−1
ui(s)y(s)ds

−
∫ x1

0
(x1 − s)

α−γi−1
ui(s)y(s)ds

)
+ 1

Γ(α)

(∫ x2

0
(x2 − s)

α−1
g (s) ds−

∫ x1

0
(x1 − s)

α−1
g (s) ds

)
+ 1

Γ(α)

(∫ x2

0
(x2 − s)

α−1 (∫ s

0
k (s, t)G (y (t)) dt

)
−
∫ x1

0
(x1 − s)

α−1 (∫ s

0
k (s, t)G (y (t)) dt

))
ds

∣∣∣∣

.

≤

∣∣∣∣∣
m−1∑
k=0

dk
k!

(
xk
2 − xk

1

)∣∣∣∣∣
+

∣∣∣∣ n∑
i=0

1

Γ (α− γi)

(∫ x2

0

(x2 − s)
α−γi−1

ui(s)y(s)ds

−
∫ x1

0

(x1 − s)
α−γi−1

ui(s)y(s)ds

)∣∣∣∣
+

∣∣∣∣ 1

Γ (α)

(∫ x2

0

(x2 − s)
α−1

g (s) ds−
∫ x1

0

(x1 − s)
α−1

g (s) ds

∣∣∣∣ )
+

∣∣∣∣ 1

Γ (α)

(∫ x2

0

(x2 − s)
α−1

(∫ s

0

k (s, t)G (y (t)) dt

)
−
∫ x1

0

(x1 − s)
α−1

(∫ s

0

k (s, t)G (y (t)) dt

))
ds

∣∣∣∣.
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|E| ≤

∣∣∣∣∣
m−1∑
k=0

dk
k!

(
xk
2 − xk

1

)∣∣∣∣∣
+

∣∣∣∣ n∑
i=0

1

Γ (α− γi)

(∫ x2

0

(x2 − s)
α−γi−1

ui(s)y(s)

−
∫ x1

0

(x2 − s)
α−γi−1

ui(s)y(s) +

∫ x1

0

(x2 − s)
α−γi−1

ui(s)y(s)

−
∫ x1

0

(x1 − s)
α−γi−1

ui(s)y(s)

)
ds

∣∣∣∣
+

∣∣∣∣ 1

Γ (α)

(∫ x2

0

(x2 − s)
α−1

g (s)−
∫ x1

0

(x2 − s)
α−1

g (s)

+

∫ x1

0

(x2 − s)
α−1

g (s)−
∫ x1

0

(x1 − s)
α−1

g (s)

)
ds

∣∣∣∣
+

∣∣∣∣ 1

Γ (α)

(∫ x2

0

(x2 − s)
α−1

(∫ s

0

k (s, t)G (y (t)) dt

)
−
∫ x1

0

(x2 − s)
α−1

(∫ s

0

k (s, t)G (y (t)) dt

)
+

∫ x1

0

(x2 − s)
α−1

(∫ s

0

k (s, t)G (y (t)) dt

)
−
∫ x1

0

(x1 − s)
α−1

(∫ s

0

k (s, t)G (y (t)) dt

))
ds

∣∣∣∣
|E| ≤

m−1∑
k=0

|dk|
k!

(
xk
2 − xk

1

)
+

n∑
i=0

1

Γ (α− γi)

(∫ x2

x1

(x2 − s)
α−γi−1 |ui(s)| |y(s)| ds

+

∫ x1

0

(x2 − s)
α−γi−1 |ui(s)| |y(s)| ds

−
∫ x1

0

(x1 − s)
α−γi−1 |ui(s)| |y(s)| ds

)
+

1

Γ (α)

(∫ x2

x1

(x2 − s)
α−1 |g (s)| ds

+

∫ x1

0

(x2 − s)
α−1 |g (s)| ds−

∫ x1

0

(x1 − s)
α−1 |g (s)| ds

)
+

1

Γ (α)

(∫ x2

x1

(x2 − s)
α−1

(∫ s

0

|k (s, t)| |G (y (t))| dt
)
ds

+

∫ x1

0

(x2 − s)
α−1

(∫ s

0

|k (s, t)| |G (y (t))| dt
)
ds

−
∫ x1

0

(x1 − s)
α−1

(∫ s

0

|k (s, t)| |G (y (t))| dt
)
ds

)
.

The above inequality can be written as

|(Ty) (x2)− (Ty) (x1)| ≤ A+B + C +D, (4.3)

where

A =

m−1∑
k=0

|dk|
k!

(
xk
2 − xk

1

)
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B =

n∑
i=0

1

Γ (α− γi)

(∫ x2

x1

(x2 − s)
α−γi−1 |ui(s)| |y(s)| ds

+

∫ x1

0

(x2 − s)
α−γi−1 |ui(s)| |y(s)| ds−

∫ x1

0

(x1 − s)
α−γi−1 |ui(s)| |y(s)| ds

)

C =
1

Γ (α)

(∫ x2

x1

(x2 − s)
α−1 |g (s)| ds+

∫ x1

0

(x2 − s)
α−1 |g (s)| ds

−
∫ x1

0

(x1 − s)
α−1 |g (s)| ds

)

D =
1

Γ (α)

(∫ x2

x1

(x2 − s)
α−1

(∫ s

0

|k (s, t)| |G (y (t))| dt
)
ds

+

∫ x1

0

(x2 − s)
α−1

(∫ s

0

|k (s, t)| |G (y (t))| dt
)
ds

−
∫ x1

0

(x1 − s)
α−1

(∫ s

0

|k (s, t)| |G (y (t))| dt
)
ds

)
.

On Simplifying A by cosidering
(
xk
2 − xk

1

)
≤ (x2 − x1) for 0 ≤ k ≤ m− 1, since x2, x1 ∈ [0, 1] and

x1 < x2 and taking dk∗ = max
0≤k≤m−1

{dk}, we have

A =

m−1∑
k=0

|dk|
k!

(
xk
2 − xk

1

)
≤

(
|d1|
1!

+
|d2|
2!

+ ...+
|dm−1|
(m− 1)!

)
(x2 − x1)

=
|dk∗ |
k∗!

(m− 1) (x2 − x1) .

On simplifying B and by propeerty (iii) and Lemma 3 we have

B =

n∑
i=0

1

Γ (α− γi)

(∫ x2

x1

(x2 − s)
α−γi−1 |ui(s)| |y(s)| ds

+

∫ x1

0

(x2 − s)
α−γi−1 |ui(s)| |y(s)| ds−

∫ x1

0

(x1 − s)
α−γi−1 |ui(s)| |y(s)| ds

)
≤

n∑
i=0

∥ui∥∞ ∥y∥∞
Γ (α− γi + 1)

(
(x2 − x1)

α−γi +
(
xα−γi

2 − (x2 − x1)
α−γi

)
− xα−γi

1

)
= Λϵ

(
xα−γi

2 − xα−γi

1

)
≤ Λϵ (x2 − x1)

α−γi .

Simplifying C, we use property (iii) and Lemma 3 as follows

C =
1

Γ (α)

(∫ x2

x1

(x2 − s)
α−1 |g (s)| ds

+

∫ x1

0

(x2 − s)
α−1 |g (s)| ds−

∫ x1

0

(x1 − s)
α−1 |g (s)| ds

)
≤

∥g∥∞
Γ (α+ 1)

((x2 − x1)
α
+ (xα

2 − (x2 − x1)
α
)− xα

1 )

≤
∥g∥∞

Γ (α+ 1)
(x2 − x1)

α .
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To simplify D, we use property (iii) and Lemma 3 as follows

D =
1

Γ (α)

(∫ x2

x1

(x2 − s)
α−1

(∫ s

0

|k (s, t)| |G (y (t))| dt
)
ds

+

∫ x1

0

(x2 − s)
α−1

(∫ s

0

|k (s, t)| |G (y (t))| dt
)
ds

−
∫ x1

0

(x1 − s)
α−1

(∫ s

0

|k (s, t)| |G (y (t))| dt
)
ds

)
≤

K̂ (M ∥y∥∞ + |G (0)|)
Γ (α+ 1)

((x2 − x1)
α
+ (xα

2 − (x2 − x1)
α − xα

1 ))

≤ K∗ (Mϵ+ |G (0)|)
Γ (α+ 1)

(x2 − x1)
α
.

Thus, equation (4.3) is

|(Ty) (x2)− (Ty) (x1)| ≤ |dk∗ |
k∗!

(m− 1) (x2 − x1) +

n∑
i=0

∥ui∥∞ ∥y∥∞
Γ (α− γi + 1)

(x2 − x1)
α−γi

+
∥g∥∞

Γ (α+ 1)
(x2 − x1)

α
+

K∗ (Mϵ+ |G (0)|)
Γ (α+ 1)

(x2 − x1)
α
.

We see that the right hand side of the above equation is independent of y and tends to zero as
x2−x1 −→ 0. This leads to |(Ty) (x2)− (Ty) (x1)| −→ 0 as x2 −→ x1 uniformly in y. Therefore, the
set {Ty : y ∈ Bϵ} is equicontinuous and finally, we need to show that there exists a closed convex
bounded subset C of X such that Tc ⊆ C.

Consider Bϵ = {y ∈ C (Q,R) : ∥y∥∞ ≤ ϵ} , we will show that for some ϵ > 0, TBϵ ⊆ Bϵ. For
contradiction, suppose that TBϵ ⊈ Bϵ for all ϵ > 0.

Let n be a positive integer, then there exists yn ∈ Bn such that ∥Tyn∥∞ > n.
Consider

|(Tyn) (x)| ≤

∣∣∣∣∣
m−1∑
k=0

dk
k!

xk

∣∣∣∣∣
∣∣∣∣∣

n∑
i=0

1

Γ (α− γi)

∫ x

0

(x− s)
α−γi−1

ui(s)yn(s)ds

∣∣∣∣∣
+

∣∣∣∣ 1

Γ (α)

∫ x

0

(x− s)
α−1

g (s) ds

∣∣∣∣
+

∣∣∣∣ 1

Γ (α)

∫ x

0

(x− s)
α−1

(∫ s

0

k (s, t)G (yn (t)) dt

)
ds

∣∣∣∣
≤

m−1∑
k=0

sup
x∈[0,1]

|dk|
k!

xk

+

n∑
i=0

1

Γ (α− γi)

∫ x

0

(x− s)
α−γi−1

sup
s∈Q

|ui(s)| sup
s∈Q

|yn(s)| ds

+
1

Γ (α)

∫ x

0

(x− s)
α−1

sup
s∈Q

|g (s)| ds

+
1

Γ (α)

∫ x

0

(x− s)
α−1

(∫ s

0

sup
s∈Q

|k (s, t)| sup
t∈Q

|G (yn (t))| dt
)
ds

≤
m−1∑
k=0

|dk|
k!

+

n∑
i=0

∥ui∥∞ ∥yn∥∞
Γ (α− γi + 1)

+
∥g∥∞

Γ (α+ 1)
+

K̂ (Mn+ |G (0)|)
Γ (α+ 1)

, for all x ∈ [0, 1] text.
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Thus,

∥(Tyn)∥∞ ≤
m−1∑
k=0

|dk|
k!

+ Λn+
∥g∥∞

Γ (α+ 1)
+

K̂ (Mn+ |G (0)|)
Γ (α+ 1)

.

Observe that if

n < ∥(Tyn)∥∞

<

m−1∑
k=0

|dk|
k!

+ Λn+
∥g∥∞

Γ (α+ 1)
+

K̂ (Mn+ |G (0)|)
Γ (α+ 1)

.

Dividing through by n we have,

1 <

m−1∑
k=0

|dk|
nk!

+ Λ +
∥g∥∞

nΓ (α+ 1)
+

K̂M

Γ (α+ 1)
.

Letting n −→ ∞ we obtain

1 < Λ +
K̂M

Γ (α+ 1)
.

Which is a contradiction to equation (4.1). Hence, for some n0, TBn0
⊆ Bn0

.
Let C := Bn0 and let T̂ := T |c, i.e, T : C −→ C with T̂ y = Ty. By Arzelà-Ascoli thus, for any

(yn)n ⊆ C, since C is bounded (yn)n is bounded and by
(
T̂ yn

)
n
≡ (Tyn)n is equicontinuous. Then

there exists a subsequence
(
T̂ ynj

)
j

of
(
T̂ yn

)
n
which is convergent. Hence, T̂ is compact. By of

Schauder’s fixed point theorem, there exists a fixed point y of T in C (Q,R) . Then y is a solution
of equation (1.1)− (1.2).

5 Numerical Illustration
Example 1 [42]. Consider the Volterra fractional integro-differential equation

D
1
2 y (x) =

8

3
√
π
x

3
2 − 2√

π
x

1
2 − 3

12
x5 +

4

12
x4 +

∫ x

0

xty (t) dt. (5.1)

Subject to y (0) = 0 with exact solution y (x) = x2 − x.

Solution: Equation (5.1) can be written as

|(Ty2) (x)− (Ty1) (x)| =

∣∣∣∣∣ 1

Γ
(
1
2

) ∫ x

0

(x− s)
− 1

2

(∫ s

0

st (y2 (t)− y1 (t)) dt

)
ds

∣∣∣∣∣
≤ 1

Γ
(
1
2

) ∫ x

0

(x− s)
− 1

2

(∫ s

0

st |y2 (t)− y1 (t)| dt
)
ds

≤
∥y2 − y1∥∞

Γ
(
1
2

) ∫ x

0

(x− s)
− 1

2 s3ds

By Lemma 2 we have,

∥Ty2 − Ty1∥∞ ≤
(
Γ (4)x3.5

Γ (4.5)

)
∥y2 − y1∥∞

Thus,
∥Ty2 − Ty1∥∞ ≤ (0.515 83) ∥y2 − y1∥∞ . (5.2)

Since 0.515 83 < 1, we say that the problem satisfies the condition of Theorem 3.
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Example 2. Consider the multi-term fractional order integro-differential equation

D2y (x)− x2D
3
2 y (x)−

√
xD

1
2 y (x)− 3

√
xy (x) = 6

√
πx− 8

√
x7 − 16

5
x3 − 3

√
x10

√
π

+

∫ x

0

xt2y (t) dt.
(5.3)

Subject to y (0) = y′ (0) = 0 with exact solution y (x) =
√
πx3.

Solution: Equation (5.3) can be written as

|(Ty2) (x)− (Ty1) (x)| ≤ 1

Γ (2) Γ (1.5)

∫ x

0

(x− s) s
5
2 |y2 (s)− y1 (s)| ds

+
1

Γ (2) Γ (2.5)

∫ x

0

(x− s) s2 |y2 (s)− y1 (s)| ds

+
1

Γ (2)

∫ x

0

(x− s) s
1
3 |y2 (s)− y1 (s)| ds

+
1

3Γ (2)

∫ x

0

(x− s) |y2 (s)− y1 (s)| ds

≤
∥y2 − y1∥∞
Γ (2) Γ (1.5)

∫ x

0

(x− s) s
5
2 ds+

∥y2 − y1∥∞
Γ (2) Γ (2.5)

∫ x

0

(x− s) s2ds

+
∥y2 − y1∥∞

Γ (2)

∫ x

0

(x− s) s
1
3 ds

+
∥y2 − y1∥∞

3Γ (2)

∫ x

0

(x− s) ds.

By Lemma 2 we have

|(Ty2) (x)− (Ty1) (x)| ≤

(
Γ (3.5)x4.5

Γ (5.5) Γ (1.5)
+

Γ (3)x4

Γ (2.5) Γ (5)
+

Γ
(
4
3

)
x

7
3

Γ
(
10
3

) +
Γ (1)x2

3Γ (3)

)
∥y2 − y1∥∞ .

Thus,
∥Ty2 − Ty1∥∞ ≤ (0.62243) ∥y2 − y1∥∞ .

Since 0.62243 < 1, we say that the problem satisfies the condition of the Theorem 3.

6 Conclussion
The problem of multi-term fractional order Volterra integro-differential equation is successfully con-
verted to its equivalent integral form using Riemann-Liouville fractional integral, a lemma is extab-
lished to demonstrate the solution of the multi-term fractional order Volterra integro-differential
equation. We used Schauder’s fixed point theorem in establishing the existence of the solution.
Moreover, examples were considered to test the applicability of the proposed existence theorem for
the solution of multi-term fractional order Volterra integro-differential equations.
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