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Abstract

For a simple undirected graph G, an induced matching in G is a set of edges M no two of
which have common vertex or are joined by an edge of G in the edge set E(G) of G. Denoted
by im(G), the maximum cardinal number of M is known as the induced matching number of
G. In this work, we probe im(G) where G = Gm,n, which is the stacked-book graph obtained
by the Cartesian product of the star graph Sm and path Pn.

Keywords: Stacked-Book Graphs, Maximum Induced Matching Number, Cartesian Product of
Graphs.
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1 Introduction
Suppose that G is a graph with E(G) as the edge set of G while V (G) denotes the vertex set of G.
Let M be a subset of E(G) such that for every e1, e2 ∈ M there is no such edge in E(G) to which
any of the end points of e1 and e2 are commonly adjacent. Then M is an induced matching in
G. Maximum Induced matching (MIM) problem is the generalization of the older graph matching
problem, and it was introduced in [1].

Suppose that M is the largest induced matching in G then the cardinal number of M , denoted
by im(G) is called the maximum induced matching number of G. Many investigations have been
on this subject. It has attracted interest mostly because it is theoretically interesting and it has a
number of direct applications. In [1], the authors described MIM problem as "risk free" marriage
where married couples who are perfectly matched are identified while [2] investigated the MIM
problem in intersection graphs. Its usefulness in cryptography is also obvious. Its applications can
also be found in scheduling and planning, graph coloring [3], secure communication channels [4]
neural networks in artificial intelligence [5, 6]. Cameron in her earlier work [7] showed that even
though the MIM problem is NP-complete for bipartite graphs, it is easier to resolve for chordal
graphs. This was also confirmed for circular graph in [8]. Golumbic and Lewenstein [4] established
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that there is a relationship between MIM number and redundancy number in graphs and also
showed that the MIM problem is polynomial-time solvable for tree graphs.

For graphs G and H, the Cartesian product G□H have vertex set V (G) × V (H) and edge set
E(G□H)= {((x1, x2), (y1, y2)) : (x1, y1) ∈ E(G) and x2 = y2 or
(x2, y2) ∈ E(H) and x1 = y1}.

Recent works on MIM problem include [9] where the MIM number was extensively probed for
grids, Pn□Pm, the Cartesian product of paths Pn and Pm. For odd nm, a bound im(Pn□Pm) ≤
⌊nm+1

4 ⌋ was obtained. The bound was tightened in [10] and further in [11]. In [12], investigation
was made into obtaining exact algorithm for MIM problem of graphs on n−vertices.

In this work, we investigate the Maximum Induced Matching (MIM) problem for stacked-book
graph, Gm,n, class which are graphs obtained from the Cartesian product of star graphs Sm and
paths Pn. The MIM numbers are obtained for the initial range of these graphs while lower bounds
of MIM number are derived for the general class.

2 Preliminaries
The vertex set of graph G is denoted by V (G) and M is a subset of E(G), the edge set of G, and M
is the induced matching of G. A vertex v ∈ V (G) is called saturated if v ∈ V (M) and unsaturated if
otherwise. A star graph Sm contains a central vertex v1 (except if specifically indicated otherwise)
with m − 1 leaves, which are all incident to v1 as pendants. A path Pn contains n vertices and
n − 1 edges, while a cycle Cm contains m vertices and edges. Suppose that u and v are members
of V (G), then d(u, v) is a positive integer, which is the shortest distance between u and v in G. A
vertex v ∈ V (G) is called unsaturable if by its position, cannot be saturated either because of its
distance from a saturated vertex or it is at the right distance but still not adjacent to a vertex that
can be saturated in other to form an edge in the induced matching. A saturable vertex therefore,
is the opposite of an unsaturable vertex. The diameter of a graph G is the maximum distance over
all pair vertices u and v in G, and it is denoted by diam(G). Set [a, b] to denote the set of integers
from a to b while [a] is a shortened form of [1, a].

Structure of a Stacked-book graph. The stacked-book graph is the Cartesian product Sm□Pn

of a star graph Sm and path Pn. Structurally, a Sm□Pn contains n number of Sm stars such that
there exist E(G′) ∈ E(Sm□Pn),
E(G′) = {viui : vi ∈ V (Sm(i));ui ∈ V (Sm(i+ 1), 1 ≤ i < n)} with Sm(i) designated as the star Sm

at the i-th position in the stacked-book graph. Clearly,

E(Sm□Pn) = E(G′) ∪ E(∪n
i=1Sm(i)).

Initial Results.
The following results are obvious

Theorem 2.1. Let Pn be a path graph on n vertices. Then, im(Pn) = ⌈n−1
3 ⌉.

Theorem 2.2. Let Cn be a circle graph on n vertices. Then im(Cn) = ⌊n
3 ⌋.

Theorem 2.3. [9] Suppose that G3,n is a grid graph obtained by the Cartesian product P3□Pn,
where n is even or odd. Then for a positive integer k,

im(P3□Pn) =


⌈ 3n

4 ⌉ if n is even;
3(n−1)

4 if n = 4k + 1
3(n−1)+2

4 if n = 4k + 3
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Figure 1: G5,2 with 8 saturated vertices and im(G5,2) = 4

3 Results
First we show a result on the MIM number of star graph Sm.

Lemma 3.1. Let Sm be a given star graph. Then im(Sm) = 1

Proof: This follows trivially from the fact that all edges in a star are incident to each other. Thus
im(Sm) = 1.

Remark: The implication of this result is that every star graph contains at most one element in
its induced matching set.

We present some results on the induced matching of stacked-book graph Gm,n. Henceforth, for
a stacked-booked graph Gm,n, we refer to Sm(i) and vi respectively, as the subgraph that induced
the star Sm at the ith position in Gm,n and its centre vertex, respectively

Lemma 3.2. For a set that has a maximum cardinality of a MIM of Gm,2, the centers of the
subgraphs that induced the star Sm in Gm,2 cannot be contained in the set.

Proof: Suppose that v1 and u1 are the central vertices of Sm(1) and Sm(2) in Gm,2, respectively.
Note that Gm,2 contain a P5. By Theorem 2.1, im(P5) = 2 thus im(Gm,2) ≥ 2. Assume to the
contrary that one of v1 or u1 is saturated, say v1. Then either v1u ∈ M , where u ∈ N(v1) − u1

or v1u1 ∈ M . If v1u ∈ M , then by Lemma 3.1, then at least m − 2 vertices in Sm(1) will be
unsaturated. Thus, for all viui /∈ M , im(Gm,2) = 1, a contradiction. Now, suppose that v1u1 ∈ M
then every vertex in Gm,2 \ {v1, u1} is a neighbor of either v1 or u1. This implies that the vertices
in Gm,2 \ {v1, u1} are unsaturated. That is, im(Gm,2) = 1, a contradiction.

The first theorem follows.

Theorem 3.1 For Gm,2, im(Gm,2) = m− 1.

Proof. For Gm,2, there exist Sm(1), Sm(2) ⊆ Gm,2 with vertices v1, v2 . . . vm and u1, u2, . . . um

and a path P5(i) = vi → ui → u1 → ui+1 → vi+1, for all i ∈ [2,m]. Thus, there exists, the
set P̄ = P5(2), P5(3), . . . , P5(

m−1
2 ), if m is odd. Therefore, there are m−1

2 number of P5−paths.
Now, by Lemma 3.1, im(P5) = 2. Clearly, P̄ consists of all the edges in E(Gm,2) that can be in
M . Therefore, im(Gm.2) ≤ 2

(
m−1
2

)
= m − 1. Now suppose that m is even. Then, set P ∗ ={

P5(2), P5(3), . . . , P5(
m−2
2 ), P3(t)

}
, where P3(t) = vk → uk → u1. So, im(P ∗\P3(t)) = 2

(
m−2
2

)
=

m − 2. By Theorem 2.1, im(P3(t)) = 1. Therefore, im(P ∗) = m − 1. Hence, for any integer
m, im(Gm,2) ≤ m − 1. Conversely, by definition of induced matching and stacked-book graph,
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Figure 2: G5,3 with 8 saturated vertices and |M | = 4

v2u2, v3u3, . . . , vmum, satisfying the distance conditions belong to M . Thus, im(Gm,2) ≥ m−1 and
hence the claim.

Next we consider the induced matching in Gm,3, where m is either even or odd and show that the
graph contains the same induced matching as Gm,2.

Theorem 3.2. For Gm,3, im(Gm,3) = m− 1.

To proof Theorem 3.2, we need two results, the first one, which is about the nature of induced
matching and distances between vertices of graphs, is more like a folklore because it follows from
the definitions of induced matching of graphs.

Lemma 3.3. Let e1 be in the induced matching of graph G. Then e2 ∈ E(G) is also in the induced
matching of G if there exists v1, v2 ∈ e1 and u1, u2 ∈ e2 such that d(v1, u1) ≥ 3 and d(v2, u2) ≥ 2.

Proof. The proof follows from the definition of induced matching M of graph G.

Lemma 3.4. Let Gm,3 be a stacked-book graph with factor star graphs Sm(1), Sm(2) and Sm(3)
such that v1 → u1 → w1 is a P3 path in Gm,3, where v1, u1 and w1 are the central vertices of the
respective factor star graphs. If u1 is saturated, and u1vk ∈ M for some vk ∈ V (Gm,3), then M is
not the maximum induced matching of Gm,3.

Proof. For vk ∈ V (Gm,3), vk ̸= u1, for which vi ∈ Gm,3 such that d(vk, vi) = 3 since the
diam(Gm,3) = 3. However, suppose that vivj ∈ E(Gm,3), for which d(vk, vi) = 3. It is clear that
vi is a leaf if some Sm(t), t ∈ {1, 3}. Thus, d(u1, vj) = 1, hence a contradiction to Lemma 3.3 and
hence the result.

Proof of Theorem 3.2. Suppose that |M | > m− 1. Let v1, u1 and w1 be the central vertices of
Sm(1), Sm(2) and Sm(3) respectively. Clearly, v1u1, u1w1 /∈ M from Lemma 3.4. Now, first we show
that v1 is not saturable. Suppose that v1 is saturable, then v1vq ∈ M , where vq is a leaf on Sm(1). By
Lemma 3.2, subgraph induced by Sm(1) and Sm(2) does not contain another member of M . Also, let
vquq ∈ E(Gm,3), with uq ∈ Sm(2) and uqwq ∈ E(G), with wq ∈ Sm(3). Since d(vq, uq) = 1, then uq

can not be saturated. Thus, uqwq /∈ M . In like manner, if w1 is saturated, and w1wq ∈ M no other
edge in subgraph of Gm,3 induced by Sm(2) and Sm(3) is a member of M , and vquq /∈ M . Without
loss of generality, suppose that v1, vq ∈ M , then only M̄ := {uiwi : i ∈ [2,m]; i ̸= q} ⊂ E(Gm,3)
will be member of M . Thus |M̄ | = m − 2 and so |M | = m − 1, which is a contradiction. Now it
has been established that none of the pendants of Sm(1), Sm(2) and Sm(3) can be in M . Thus, the
possible members of M are {viui : i ∈ [2,m]} ∪ {uiwi : i ∈ [2,m]} := M ′. Clearly, |M̄ | = 2(m− 1).
By Lemma 3.3, only half of the members of M̄ can be in M . Thus, im(Gm,3) ≤ m−1. Reasonably,
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Figure 3: G5,4 with 10 saturated vertices and |M | = 5

im(Gm,2) ≤ im(Gm,3). By Theorem 3.1, therefore, im(Gm,3) ≥ m− 1 and thus im(Gm,3) = m− 1.

Next we investigate the induced matching number of Gm,4. We start with a lemma that will be
employed in the main result.

Lemma 3.5. Let Sm(1), Sm(2), Sm(3) and Sm(4) be the factor stars of Gm,4. Suppose that
im(Gm,4) ≥ m. Then if M ′ = {uiwi : i ∈ [2,m]; ui ∈ Sm(2), wi ∈ Sm(3)}, then M ′ is not a subset
of M .

Proof. It is easy to see that |M ′| = m− 1. Now, suppose that M ′ ⊂ M , then ui, wi are saturated
for all i ∈ [2,m]. Thus, no vertex vi ∈ Sm(1) and ri ∈ Sm(4) is saturable, for i ∈ [2,m], which
implies that im(Gm,4) = m− 1 and thus, a contradiction.

Next we consider the main theorem.

Theorem 3.3. Let Sm(1), Sm(2), Sm(3) and Sm(4) be the factor star graphs Gm,4. Then,
im(Gm,4) = m.

Proof. There are at least some edge M ′ := {uiwi : i ∈ [2,m]; ui ∈ Sm(2), wi ∈ Sm(3)} not in
M , by Lemma 3.5. Suppose therefore that ukwk /∈ M . Then for vk ∈ Sm(1), and rk ∈ Sm(4),
v1vk, r1rk ∈ M , where v1 and r1 are the central vertices of Sm(1) and Sm(4) respectively. Thus,
im(Gm,4) ≥ m. Conversely, suppose that im(Gm,4) = m + 1. Now, let u1, w1 be the central
vertices of Sm(2) and Sm(3) respectively. Suppose that one of ui, wi, say ui is saturated such that
u1ui ∈ M . Then, by Lemma 3.5, no edge in the subgraph of Gm,4 induced by Sm(1), Sm(2) and
Sm(3) is contained in M . Likewise, if w1wi ∈ M, then all other vertices on the subgraph of Gm,4

induced by Sm(2), Sm(3) and Sm(4) are unstaurable. If any of the pendant of Sm(2) and Sm(3) is
in M , then M = 2. Now, note as well that if u1w1 ∈ M , then by the distances of u1 and w1 to the
rest of vertices on Sm(1), Sm(2), Sm(3) and Sm(4), only u1w1 will be in M . Thus for optimal M ,
some members of M ′′ := {viui; i ∈ [2,m]} or M ′′′ := {wiri : i ∈ [2,m]} will have to be in M .

Now clearly, it can be seen that |M ′∪M ′′| = 2(m−1) and only m−1 members of M ′∪M ′′ can
be in M . Based on this observable fact, at least there will exist a wi ∈ Sm(3) that is not saturable.
Thus, there exist a saturable vertex ri ∈ Sm(4), such that r1ri ∈ M . But since w1 is saturated,
no pendant on Sm(4) is contained in M . Thus, im(Gm,4) < m + 1 and hence a contradiction.
Therefore, im(Gm,4) ≤ m and the claim follows.

Now we consider the case of Gm,5. We shall need some new results to aid the proof.

Lemma 3.6. Suppose that w1 ∈ Sm(3) is the central vertex of Sm(3), where {Sm(i) : i ∈ [1, 5]} is
the set of factor stars of Gm,5. If w1 is saturated, then for M of Gm,5, |M | ≤ 2m− 3.
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Proof. Suppose that w1 is the central vertex of Sm(3) and it is saturated. Then one of the
w1wk, u1w1 and w1r1 belongs to M where u1, r1 are central vertices of Sm(2) and Sm(4) respec-
tively. Suppose that w1wk ∈ M , where k ≤ m. Now for all i ∈ [2,m], i ̸= k, wi ∈ Sm(3) is
unsaturable by Lemma 3.1. Thus members of {uiwi : i ∈ [2,m]} and {wiri : ri ∈ Sm(4), i ∈ [2,m]}
do not belong to M . Also it is clear to see that both edges vkuk, rktk /∈ M , where tk ∈ Sm(5).
Using similar technique adopted in the proof of Theorem 3.3, it can be deduced that v1vi, t1ti /∈ M
for all i ∈ [2,m]. Thus, only E′ = {viui : i ∈ [2,m], i ̸= k} and E′′ = {riti : i ∈ [2,m], i ̸= k} can be
in M . Clearly, |E′ ∪ E′′| = 2(m − 2). Thus |M | = 2m − 3. Also, if u1w1 ∈ M , it can be seen by
following the definitions of induced matching that no other edges in the subgraph of Gm,5 induced
by Sm(1), Sm(2) and Sm(3) is a member of M and from Theorem 3.2, only m − 1 edges of the
subgraph of Gm,5 induced by Sm(3), Sm(4) and Sm(5) can be in M . Thus, M consists of at most
m edges, which is not more than 2m− 3, since m ≥ 3. Similar argument above can be employed to
show the claim that w1r1 does not belong in M .

Lemma 3.7. Suppose that im(Gm,5) ≥ 2(m − 1). Then u1, w1 and r1, the central vertices of
Sm(2), Sm(3) and Sm(4) respectively are unsaturated.

Proof. This follows from Theorem 3.3 and Lemma 3.2.

We proceed to probe the induced matching of Gm,5.

Theorem 3.4. For Gm,5, im(Gm,5) = 2(m− 1).

Proof. From Lemmas 3.6 and 3.7, we see that if u1, w1, r1 are unsaturated, then |M | ≥ 2m−3. Now
we show that im(Gm,5) ≥ 2(m−1). Note that there exists a path P5(i) = vi → ui → wi → ri → ti,
for all i ∈ [2,m]. Therefore, there are m − 1 such paths in Gm,5. From Theorem 2.1, im(P5) = 2.
Thus, im(Gm,5) ≥ 2(m − 1). Conversely, u1, w1, r1 are established not to be saturated for the
claim to hold. The edges in E(Gm,5) left to be members of M the pendants of Sm(1) and Sm(5)
and the paths P5(i). Suppose that a pendant each from Sm(1) and Sm(5) belong to M , then by
definition of induced matching, at most one edge on each of the paths P5(i) can be a member of
M . Thus |M | = m+ 1. The only alternative is if no pendant of Sm(1) and Sm(5) is a member of
M . Thus, at most two edges from each member of P5(i) will be in M . Thus, |M | ≤ 2(m− 1) and
so, im(Gm,5) = 2(m− 1).

Now we generalize the results.

Theorem 3.5. For Gm,n with n even.

im(Gm,n) ≥
{

m⌈n
4 ⌉ − 1 if n ≡ 2 mod 4;

mn
4 if n ≡ 0 mod 4.

Proof. The claims follow by combining Theorems 3.1 and 3.3.

Theorem 3.6. For Gm,n with n odd

im(Gm,n) ≥
{

m⌊n
4 ⌋+ 2 if n ≡ 3 mod 4;

mn+3m−8
4 if n ≡ 1 mod 4.

We have established the lower bound for the MIM numbers for the stacked-book graphs. From
our preliminary work into establishing the tighter bounds, we have reasons to suggest that the
results in the last two theorems may coincide with the upper bounds, and thus we come up with
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the conjectures below.

Conjecture 3.1. For Gm,n with n even

im(Gm,n) =

{
m⌈n

4 ⌉ − 1 if n ≡ 2 mod 4;
mn
4 if n ≡ 0 mod 4.

Conjecture 3.2. For Gm,n with n odd

im(Gm,n) =

{
m⌊n

4 ⌋+ 2 if n ≡ 3 mod 4;
mn+3m−8

4 if n ≡ 1 mod 4.

4 Concluding Remarks

We have obtained the MIM number of stacked-book graphs Gm,n for all m and for n ∈ [1, 5]. These results
are building blocks for obtaining the lower bounds for the cases where n ≥ 6. Conjectures 3.1 and 3.2
suggest that the lower bounds obtained in this work will in fact be equal to the upper bounds, if those
can be found. It must be noted that obtaining the lower bounds or the MIM numbers for the complete
stacked-book graphs class will take rigorous effort and therefore may be worth considering as a new task.
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