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Abstract
In this study, we introduced novel class of contractivity conditions called C-class Akram

contraction and C-class generalized MJ−Contraction and established the convergence of Picard
and Jungck iterations to the unique fixed point and unique common fixed point respectively.
Our results generalizes and extends some existing related results in literature.
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1 Introduction and Preliminaries
Fixed point theory is a very useful tool in the fields of Mathematics, Engineering and several
others. This is becuase, diverse real life problems in these fields may be formulated as systems
of non-linear mathematical equations, such as optimization problem, differential equation, integro-
diffrential equation, amongst others. These problems may be solved using fixed point approach.
What then is fixed point and its approach?

Let X be a nonempty set and J a self-map on X. Any element x ∈ X is a fixed point of J, if
J(x) = x and we denote the set of all fixed points of J by FJ = {x ∈ X : J(x) = x}.

Given a complete metric space M and a continuous self-map J on M such that

d(Jx, Jy) ≤ ad(x, y), ∀x, y ∈M ; with a ∈ [0, 1) fixed, (1.1)

Banach [1] established that J has a unique fixed point in M, and that Picard iteration xn+1 = Jxn
converges to this unique fixed point.

In generalizing Banach’s contractivity condition and some of its earlier generalizations, the
following definitions was introduced by Akram et al.
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Definition 1.1. [2]: An operator J : X → X of a metric space (X, d) is said to be A-contraction
if:

d(Jx, Jy) ≤ ϕ
(
d(x, y), d(x, Jx), d(y, Jy)

)
(1.2)

for all x, y ∈ X and some ϕ ∈ (A) , where (A) is the set of all functions ϕ : R3
+ → R+ satisfying:

i) ϕ is continuous on the set R3
+ (with respect to Euclidean metric on R3 );

ii) if any of the conditions a ≤ ϕ(a, b, b), or a ≤ ϕ(b, b, a), or a ≤ ϕ(b, a, b) holds for some a, b ∈ R+,
then there exist ℵ ∈ [0, 1) such that a ≤ ℵb.

Literature abounds with several generalizations and extensions of classical Banach’s fixed point
theorem, interested reader can see [3–5] and the references there in.

More over, in 1976, Gerald Jungck [6] established the notion of common fixed point of mappings.
Given a pair of self-mapping (J, P ) on a complete metric space (X, d), with J(X) ⊂ P (X) where
P is continuous. Then, J and P have a unique common fixed point, if there exists ℵ ∈ (0, 1) such
that,

d(Jx, Jy) ≤ ℵd(Px, Py) ∀ x, y ∈ X, (1.3)

Definition 1.2. [6] Let M be a complete metric space, and suppose J, P : M → M. For x0 ∈ M,
sequence {Pxn}∞n=0 ⊂M defined by

Pxn+1 = Jxn, n ≥ 0, (1.4)

is called Jungck iterative process.

Using idea of Jungck, many authors have improved on the existing iterative techniques.

Definition 1.3. [7] Given a Banach space M , and the pair of operator J, P : M → M. For any
generic x0 ∈M, the sequence {Pxn}∞n=0, defined by

Pxn+1 = (1− α)Pxn + αJxn, n ≥ 0, α ∈ (0, 1). (1.5)

is called Jungck-Schaefer iteration.

For more on Jungck-type iterative algorithms, interested reader can see [8–13] and references
therein.

Recently, Olatinwo and Omidire [9] established unique common fixed point of generalized MJ

contraction.

Definition 1.4. [9]: Let (X, d) be a metric space and J, P : X → X such that

d(Jx, Jy) ≤ ϕ
(
d(Px, Py), d(Px, Jx), d(Py, Jy),

[d(Px, Jx)]r[d(Py, Jx)]pd(Px, Jy), d(Py, Jx)[d(Px, Jx)]m
)

∀ x, y ∈ X; r, p,m ∈ R+

for some ϕ ∈ Φ where Φ is the set of all functions satisfying ϕ : R5
+ → R+ such that:

(i) ϕ is continuous on the set R5
+ (with respect to Euclidean metric on R5 );

(ii) if any of the conditions a ≤ ϕ(a, b, b, b, b), or a ≤ ϕ(b, b, a, b, b), or a ≤ ϕ(b, b, a, c, c) holds for
some a, b, c ∈ R+, then there exists a constant ℵ ∈ [0, 1) such that a ≤ ℵb.

Meanwhile, in 2014, Ansari introduced the concept of C−class functions as defined below:

Definition 1.5. [14] A mapping G : [0,∞)2 → R is called C−class function if it is continuous
and satisfies the following axioms:

(1) G(µ,ℵ) ≤ µ;
(2) G(µ,ℵ) = µ implies that either µ = 0 or ℵ = 0; for all µ,ℵ ∈ [0,∞).
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Note for some G we have that G(0, 0) = 0.
We denote the set of C−class functions by C.
See [14] for example of C-class functions.

Remark 1.6. Motivated by Definition 1.5 many researchers have improved on existing contractive
definitions in other spaces and classes, like cone C-class, inverse C-class, multiplicative C-class
function etc.

Definition 1.7. [14, 15] A function ψ : [0,∞) → [0,∞) is called an altering distance function if
the following properties are satisfied:

(i) ψ is non-decreasing and continuous,
(ii) ψ(t) = 0 if and only if t = 0.

We denote the set of altering distance functions by Ψ.

Definition 1.8. [14] Let Φ denote the class of functions ϕ : [0,∞) → [0,∞) which satisfy the
following conditions:

(i) ϕ is continuous;
(ii) ϕ(t) > 0, t > 0 and ϕ(0) ≥ 0.

Definition 1.9. [14]A tripled (ψ, ϕ,G) where ψ ∈ Ψ, ϕ ∈ Φ and G ∈ C is said to be monotone if
for any x, y ∈ [0,∞)

x ⩽ y =⇒ G(ψ(x), ϕ(x)) ⩽ G(ψ(y), ϕ(y)).

Lemma 1.10. [16]Suppose (X, d) is a metric space. Let {xn} be a sequence in Xsuch that
d(xn, xn+1) → 0 as n → ∞. If {xn} is not a Cauchy sequence then there exist an ε > 0 and
sequences of positive integers {m(k)} and {n(k)} with

m(k) > n(k) > k such that d(xm(k), xn(k)) ≥ ε, d(xm(k)−1, xn(k)) < ε and
(i) limk→∞ d(xm(k)−1, xn(k)+1) = ε;
(ii) limk→∞ d(xm(k), xn(k)) = ε;
(iii).limk→∞ d(xm(k)−1, xn(k)) = ε

We note also that, limk→∞ d(xm(k)+1, xn(k)+1) = ε and limk→∞ d(xm(k), xn(k)−1) = ε

In this paper, it is our intention to give a more robust and novel contractivity definitions using
C− class function in generalizing A-contraction and MJ contraction which are generalizations and
extensions of Banach, Jungck, Kannan, Akram et al., Olatinwo et al. contractivity definitions and
many more in literature. Also, the convergence of Picard and Jungck iterative schemes to the
unique fixed point and unique common fixed point of these novel contractivity definitions shall be
established.

2 Preliminary
We introduce the following definitions which are generalization of Definitions 1.1 and 1.4 as well as
some others in literature.

Definition 2.1. Let M be a metric space. A mapping J : M → M will be called a C-Class
Akram Contraction if ∀ x, y ∈M ,

d(Jx, Jy) ≤ A(d(x, y), d(x, Jx), d(y, Jy)) (2.1)

and some (ψ, ϕ,G) ∈ Ψ× Φ× C where A : R3
+ → R2

+ is a set of functions satisfying:

1. A is continuous on the set R3
+ (with respect to the Euclidean metric on R3); and
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2. If any of the conditions a ≤ A(a, b, b) or a ≤ A(b, b, a) or a ≤ A(b, a, b) holds for some
a, b ∈ R+, then ∃ G ∈ C such that ψ(a) ≤ G(ψ(b), ϕ(b)).

Definition 2.2. Let M be a metric space. A function J, P : M → M will be called a C-Class
Generalized MJ Contraction if

d(Jx, Jy) ≤ A
(
d(Px, Py), d(Px, Jx), d(Py, Jy),

[d(Px, Jx)]r[d(Py, Jx)]pd(Px, Jy), d(Py, Jx)[d(Px, Jx)]m
)

∀ x, y ∈ X; r, p,m ∈ R+ (2.2)

and that some (ψ, ϕ,G) ∈ Ψ×Φ×C and where A is the set of all function satisfying A : R5
+ → R2

+

such that:
(i) A is continuous on the set R5

+ (with respect to Euclidean metric on R5 );
(ii) if any of the conditions a ≤ A(a, b, b, b, b), or a ≤ A(b, b, a, b, b), or a ≤ A(b, b, a, c, c) holds for
some a, b, c ∈ R+, then there exists a function G ∈ C such that ψ(a) ≤ G(ψ(b), ϕ(b)).

Remark 2.3. Definition 2.1 is a generalization of the Definition 1.1 (see [2]) which is a general-
ization of Banach, Kannan, and many more in literature.

Remark 2.4. Definition 2.2 generalizes Definition 1.4 see [9] which is a generalization of Jungck
and many others in literature.

The following shall be required in the sequel:

Definition 2.5. [17] Two self-mappings J and P on a metric space X are weakly commuting if

||JPu− PJu|| ≤ ||Ju− Pu||, ∀ u ∈ X.

Definition 2.6. [18] Self mappings J and P on a metric space X are compatible if and only if

lim
n→∞

||JPun − PJun|| = 0

whenever {un} is a sequence in X, such that

lim
n→∞

J(un) = lim
n→∞

P (un) = w

for some w ∈ X.

Remark 2.7. Commuting mappings are weakly commuting and the reverse is not true, see [17] for
example.Weakly commuting mappings are compatible, but compatible mappings may not be weakly
commuting see [18] for illustration.

Lemma 2.8. [17, 18]: Let J and P be two compatible self-mappings on a complete metric space
M. If Jx∗ = Px∗, then JPx∗ = PJx∗.
Assume that limn→∞ Jxn = limn→∞ Pxn = w for some w ∈M.
(a) If J is continuous at w, then

lim
n→∞

PJxn = Jw.

If P is continuous at w, then
lim
n→∞

JPxn = Pw.

(b) If J and P are continuous at w, then

Jw = Pw and PJw = JPw.
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3 Results
Theorem 3.1. Let M be a complete metric space and let J : M → M be a mapping satisfying
Definition 2.1, Then:
(i) J has a unique fixed point x∗ ∈M ; and
(ii) For any initial guess x0 ∈M, the Picard iteration converges to the unique fixed point of J ∈M.

Proof. Using Picard iteration, x1 = Jx0 and Definition 2.1, we have

d(xn, xn+1) = d(Jxn−1, Jxn)

≤ A
(
d(xn−1, xn), d(xn−1, Jxn−1), d(xn, Jxn)

)
= A

(
d(xn−1, xn), d(xn−1, xn), d(xn, xn+1)

)
then, there exists a function G ∈ C such that

ψ(d(xn, xn+1)) ≤ G(ψ(d(xn−1, xn)), ϕ(d(xn−1, xn))) (3.1)
using Definition 1.5, we arrived at

d(xn, xn+1) ≤ d(xn−1, xn).

We deduce that {d(xn, xn+1)} is a monotonic decreasing sequence of positive numbers.
And since every monotone decreasing sequence in a metric space is bounded by zero, so there exists
l ≥ 0 such that

d(xn, xn+1) ≤ l

Letting n→ ∞ in (3.1) and using continuity of functions G, ψ and ϕ, we obtain

ψ(l) ≤ G(ψ(l), ϕ(l)),

and by Definition 1.5, we arrived at ψ(l) = 0 or ϕ(l) = 0.
Thus, we have that l = 0 and, then

lim
n→∞

d(xn, xn+1) = 0 (3.2)

Now, we shall prove that {xn} is a Cauchy sequence, If {xn} is not a Cauchy sequence, then by
Lemma 1.10 there exist ε > 0 and two sequences {mk} and {nk} of positive integers such that the
following sequences tend to ε as k → ∞:

lim
k→∞

d(xm(k)+1, xn(k)+1) = ε , lim
k→∞

d(xm(k), xn(k)) = ε. (3.3)

Using (3.1) together with (2.1), we have

d(xm(k)+1, xn(k)+1)) ≤ G(ψ(p(xm(k), xn(k))), ϕ(p(xm(k), xn(k)))), (3.4)

and

d(xm(k)+1, xn(k)+1) = d(Jxm(k), Jxn(k))

≤ A
(
d(xm(k), xn(k)), d(xm(k), Jxm(k)), d(xn(k), Jxn(k))

)
= A

(
d(xm(k), xn(k)), d(xm(k), xm(k)+1), d(xn(k), xn(k)+1)

)
as k → ∞, we have

ε ≤ A
(
ε, 0, 0

)
,

and using Definitions 1.5, 1.7 and 2.1, we arrived at the following

ψ(ε) ≤ G(ψ(0), ϕ(0)) ≤ ψ(0) = 0
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which implies that ψ(ε) = 0, thus ε = 0 . This shows that the sequence {xn} is Cauchy. Then,
there exists x∗ ∈M such that xn → x∗ as n→ ∞.
Now, let x = x∗ and y = xn in Definition 2.1, we have:

d(Jx∗, Jxn) ≤ A
(
d(x∗, xn), d(x

∗, Jx∗), d(xn, Jxn)
)

d(Jx∗, xn+1) ≤ A
(
d(x∗, xn), d(x

∗, Jx∗), d(xn, xn+1)
)

taking limits as n→ ∞ together with Definition 2.1 we have

d(Jx∗, x∗) ≤ A
(
d(x∗, x∗), d(x∗, Jx∗), d(x∗, x∗)

)
= A

(
0, d(x∗, Jx∗), 0

)
then, there exists a G ∈ C such that

ψ(d(Jx∗, x∗)) ≤ G(ψ(0), ϕ(0)) ≤ ψ(0) = 0

that is
ψ(d(Jx∗, x∗)) = 0

Using Definition 1.7, we arrived at the following
d(Jx∗, x∗) = 0.

Therefore, Jx∗ = x∗.

For uniquness of the fixed point. If p ∈ M exists satisfies Jp = p, p ̸= x∗ then taking x = p
and y = x∗ in Definition 2.1, we get

d(p, x∗) = d(Jp, Jx∗)

≤ A
(
d(p, x∗), d(p, Jp), d(x∗, Jx∗)

)
= A

(
d(p, x∗), d(p, p), d(x∗, x∗)

)
A
(
d(p, x∗), 0, 0

)
then,

ψ(d(p, x∗)) ≤ G(ψ(0), ϕ(0)) ≤ ψ(0) = 0

and, we arrived at
d(p, x∗) = 0.

Hence, we have that p = x∗.

Theorem 3.2. Let M be a complete metric space and let J, P : M → M be compatible mappings
satisfying Definition 2.2. If P is continuous and J(M) ⊂ P (M), then:
(i) J and P have a unique common fixed point x∗ ∈M ; and
(ii) For any generic point x0 ∈M, the Jungck iteration (1.4) converges to the unique common fixed
point x∗ (say) of J and P.
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Proof. By Jungck iteration (1.4) and Definition (2.2), we have

d(Pxn, Pxn+1) = d(Jxn−1, Jxn)

≤ A
(
d(Pxn−1, Pxn), d(Pxn−1, Jxn−1), d(Pxn, Jxn),

[d(Pxn−1, Jxn−1)]
r[d(Pxn, Jxn−1)]

pd(Pxn−1, Jxn),

d(Pxn, Jxn−1)[d(Pxn−1, Jxn−1)]
m
)

= A
(
d(Pxn−1, Pxn), d(Pxn−1, Pxn), d(Pxn, Pxn+1),

[d(Pxn−1, Pxn)]
r[d(Pxn, Pxn)]

pd(Pxn−1, Jxn),

d(Pxn, Pxn)[d(Pxn−1, Pxn)]
m
)

= A
(
d(Pxn−1, Pxn), d(Pxn−1, Pxn), d(Pxn, Pxn+1), 0, 0

)
then, there exists a G ∈ C such that

ψ
(
d(Pxn, Pxn+1)

)
≤ G

(
ψ(d(Pxn−1, Pxn)), ϕ(d(Pxn−1, Pxn))

)
(3.5)

using Definition 1.5, we arrived at the following
d(Pxn, Pxn+1) ≤ d(Pxn−1, Pxn).

And we deduce that {d(Pxn, Pxn+1)} is a monotonic decreasing sequence of positive numbers.
And since every monotononic decreasing sequence in a metric space is bounded by zero, so there
exists l ≥ 0 such that

lim
n→∞

d(Pxn, Pxn+1) = l

Letting n→ ∞ in (3.5) and using continuity of functions G, ψ and ϕ, we obtain

ψ(l) ≤ G(ψ(l), ϕ(l)),

which implies that ψ(l) = 0 or ϕ(l) = 0. Thus l = 0 and

lim
n→∞

d(Pxn, Pxn+1) = 0 (3.6)

Now, we shall prove that {Pxn} is a Cauchy sequence. Suppose not, then by Lemma 1.10 there exist
ε > 0 and two sequences {Pmk} and {Pnk} of positive integers such that the following sequences
tend to ε as k → ∞:

lim
k→∞

d(Pxm(k)+1, Pxn(k)+1) = ε , lim
k→∞

d(Pxm(k), Pxn(k)) = ε (3.7)

From (3.5) together with (2.2), we have

d(Pxm(k)+1, Pxn(k)+1)) ≤ G(φ(d(Pxm(k), Pxn(k))), ψ(d(Pxm(k), Pxn(k)))), (3.8)
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and

d(Pxm(k)+1, Pxn(k)+1) = d(Jxm(k), Jxn(k))

≤ A
(
d(Pxm(k), Pxn(k)), d(Pxm(k), Jxm(k)), d(Pxn(k), Jxn(k)),

[d(Pxm(k), Jxm(k))]
r[d(Pxn(k), Jxm(k))]

pd(Pxm(k), Jxn(k)),

d(Pxn(k), Jxm(k))[d(Pxm(k), Jxm(k))]
m
)

= A
(
d(Pxm(k), Pxn(k)), d(Pxm(k), Pxm(k)+1), d(Pxn(k), Pxn(k)+1),

[d(Pxm(k), Pxm(k)+1)]
r[d(Pxn(k), Pxm(k)+1)]

pd(Pxm(k), Pxn(k)+1),

d(Pxn(k), Pxm(k)+1)[d(Pxm(k), Pxm(k)+1)]
m
)

as k → ∞,we have
ε ≤ A

(
ε, 0, 0, 0, 0

)
then, there exists a G ∈ C such that

ψ(ε) ≤ G(ψ(0), ϕ(0)).

And using Definitions 1.5 and 1.7, we arrived at the following
ψ(ε) ≤ G(ψ(0), ϕ(0)) ≤ ψ(0) = 0,

which implies that ψ(ε) = 0, thus ε = 0 . This shows that the sequence {Pxn} is Cauchy. Therefore,
there exists x∗ ∈M such that Pxn = Jxn−1 → x∗ as n→ ∞. That is,

lim
n→∞

Pxn = lim
n→∞

Jxn−1 = x∗ (3.9)

By Compatibility of J and P, continuity of P (continuity of P implies continuity of J as well, since
J(M) ⊂ P (M)) and Lemma 2.8, we have:

lim
n→∞

P (Pxn−1) = Px∗, lim
n→∞

J(Pxn−1) = Px∗ (3.10)

and
lim
n→∞

P (Jxn) = lim
n→∞

J(Pxn−1) = Px∗. (3.11)

From Definition (2.2), with x = Pxn and y = xn, we have

d(J(Pxn), Jxn) ≤ A
(
d(P (Pxn), Pxn), d(P (Pxn), J(Pxn)), d(Pxn, Jxn),

[d(P (Pxn), J(Pxn))]
r[d(Pxn, J(Pxn))]

pd(P (Pxn), Jxn),

d(Pxn, J(Pxn))[d(P (Pxn), J(Pxn))]
m
)
,

as n→ ∞, using equations (3.9), (3.10), (3.11), we have

d(Px∗, x∗) ≤ A
(
d(Px∗, x∗), d(Px∗, Px∗), d(x∗, x∗),

[d(Px∗, Px∗)]r[d(x∗, Px∗)]pd(Px∗, x∗),

d(x∗, Px∗)[d(Px∗, Px∗)]m
)

= A
(
d(Px∗, x∗), 0, 0, 0, 0

)
then, there exists a G ∈ C such that

ψ(d(Px∗, x∗)) ≤ G(ψ(0), ϕ(0)) ≤ ψ(0) = 0.

And using Definition 1.7, we arrived at the following
(d(Px∗, x∗) = 0.
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Therefore, Px∗ = x∗.

Again by Lemma 2.8 (b), together with the fact that P is continuous and
J(M) ⊆ P (M), implies J is also continuous. Then, we have

Jx∗ = Px∗ = x∗, and PJx∗ = JPx∗

For the uniqueness of this common fixed point. Suppose not, then there exists x∗ ̸= y∗, x∗, y∗ ∈
{FP∩J}(common fixed point set of operators J and P ) such that
Px∗ = Jx∗ = x∗, Py∗ = Jy∗ = y∗, and we have

d(x∗, y∗) = d(Jx∗, Jy∗)

≤ A
(
d(Px∗, Py∗), d(Px∗, Jx∗), d(Py∗, Jy∗),

[d(Px∗, Jx∗)]r[d(Py∗, Jx∗)]pd(Px∗, Jy∗), d(Py∗, Jx∗)[d(Px∗, Jx∗)]m
)
,

= A
(
d(x∗, y∗), d(x∗, x∗), d(y∗, y∗),

[d(x∗, x∗)]r[d(y∗, x∗)]pd(x∗, y∗), d(y∗, x∗)[d(x∗, x∗)]m
)

= A
(
d(x∗, y∗), 0, 0, 0, 0

)
then, there exists a G ∈ C such that

ψ(d(x∗, y∗)) ≤ G(ψ(0), ϕ(0)) ≤ ψ(0) = 0

and, we arrived at
d(x∗, y∗) = 0.

Hence, x∗ = y∗

Below is a result on commutativity of mappings which is a stronger condition than compatibility
(see Remark 2.7) and we omit the prove as it is similar to what is obtained in the prove of Theorem
3.2.

Corollary 3.3. Let M be a complete metric space and let J, P :M →M be commuting (or weakly
commuting) mappings satisfying Definition 2.2. If P is continuous and J(M) ⊂ P (M), then:
(i) J and P have a unique common fixed point x∗ ∈M ;
(ii) The unique common fixed point x∗ (say) can be approximated by Jungck iteration for any generic
point x0 ∈M.

Remark 3.4. Theorem 3.1 is a generalization of the results in Akram et al. (see [2]) which is a
generalization of Banach, Kannan, and many more in literature.

Remark 3.5. Theorem 3.2 generalizes the work of Olatinwo et al. [9] which is a generalization of
Jungck and many others in literature.

References
[1] Banach, S.; Sur les Operations dans les Ensembles Abstraits et leur Appliication aux quations

intrales, Fundamenta Mathematicae 3, (1922) 133-181.

[2] Akram, M., Zafar, A. A. and Siddiqui, A. A.; A general class of contractions; A-contractions,
Novi Sad J. Math., 38. No1(2008), 25-33.

[3] Kannan, R.; Some results on fixed points. Bull Calcutta Math. Soc. 10, (1968) 71-76.

9

 https://doi.org/10.5281/zenodo.15173994


International Journal of Mathematical Sciences and
Optimization: Theory and Applications

11(1), 2025, Pages 1 - 10
https://doi.org/10.5281/zenodo.15173994

[4] Rakotch, E.; A note on contractive mappings, Proc. Amer Math. Soc. 13, (1962) 459-465.

[5] Reich S.; Kannarfs fixed point theorem, Bull. Univ. Mat. Italiana, (4) 4, (1971) 1-11.

[6] Jungck, G.; Commuting mappings and fixed points, Amer. Math. Monthly, 83, (1976) 261-263.

[7] Olatinwo, M. O. and Omidire, O. J.; Convergence of Jungck-Schaefer and Jungck-Kirk-Mann
iterations to the unique common fixed point of Jungck generalized pseudo-contractive and
Lipschitzian type mappings, Journal of Advanced Math. Stud. 14(1), (2021).

[8] Omidire O. J.; Common Fixed Point of Some Certain generalized Contractive Con-
ditions in Convex Metric Space Settings, International Journal of Mathematical Sci-
ences and Optimization: Theory and Applications, 10(3), (2024) Pages 1 - 9.
https://doi.org/10.5281/zenodo.13152753

[9] Olatinwo, M. O. and Omidire, O. J.; Fixed point theorems of Akram-Banach type, Nonlinear
Analysis Forum 21(2), (2016) 55-64.

[10] Olatinwo, M. O. and Omidire, O. J.; Convergence results for Kirk-Ishikawa and some other
iterative algorithms in arbitrary Banach space setting, Transactions on Mathematical Pro-
gramming and Applications, Vol 8, No. 1, (2020) 01-11.

[11] Olatinwo, M. O. and Omidire, O. J.; Some new convergence and stability results for Jungck
generalized pseudo-contractive and Lipschitzian type operators using hybrid iterative tech-
niques in the Hilbert spaces. Springer Journals; Rendiconti del Circolo Matematico di Palermo
Series 2. (2022)

[12] Singh, S. L., Bhatnagar, C., Mishra, S. N.; Stability of Jungck-type iterative procedures.
International J. Math. Sci. 19, (2005) 3035-3043.

[13] Akewe, H.; The Statbility of a Modified Jungck-Mann Hybrid Fixed Point Iteration Procedure,
International Journal of Mathematical Sciences and Optimization: Theory and Applications,
Vol.1, (2016), pp. 95-104.

[14] Ansari, A.H.; Note on" φ − ψ−contractive type mappings and related fixed point", The 2nd
Regional Conference on Mathematics And Applications, PNU, 377-380 (2014).

[15] Khan,M.S., Swaleh, M. and Sessa, S.; Fixed point theorems by altering distances between the
points, Bull. Aust. Math. Soc., 30(1) (1984), 1-9.

[16] Chuadchawna, P., Chuadchawna, Kaewcharoen, A. and Plubtieng, S.; Fixed point theorems
for generalized α−µ−ψ-Geraghty contraction type mappings in α−µ−complete metric spaces,
J. Nonlinear Sci. Appl., 9 (2016), 471-485.

[17] Alexandra M., Common fixed point theorems for enriched Jungck contractions in Banach
spaces. J. Fixed Point Theory Appl., (2021), https://doi.org/10.1007/s11784-021-00911-y

[18] Jungck, G., Compatible mappings and common fixed points, Int. J. Math. and Math Sci.,
9(1986), 771 - 773.

10

 https://doi.org/10.5281/zenodo.15173994

	Introduction and Preliminaries
	Preliminary
	Results

