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Abstract

Let G = R2⋊T be the Euclidean motion group and let K(λ, t) = I0(λ)δ(t) be a distribution on
G, where I0(λ) is the Bessel function of order zero and δ(t) is the Dirac measure on SO(2) ∼= T,
the circle group. In this work, it is proved, among other things, that the distribution K(λ, t)
is tempered, positive definite, bounded and radial. Further more, a description of temperature
function on G ,realised as the positive definite solution of the Laplace-Beltrami operator on
SE(2), is presented.
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1 Introduction and Preliminaries
Radial distributions on a locally compact group G is a probability distribution that depends on
the radial distance of g ∈ G from the identity e of G. It is widely applied in modeling uncertain
motion in robotics and computer vision, estimating motion distributions for visual tracking and
also analysing motion related signals.

In this research, a kind of radial distribution on SE(2) obtained as the product of Bessel function
of order zero I0 and the dirac function on SE(2) is studied. It is demonstrated that this distribution
is tempered, positive definite and bounded. I0, used in defining the radial distribution on SE(2),
is obtained by solving the Laplace-Beltrami operator ∇2 = ∂2

∂r2 + 1
r

∂
∂r + 1

r2
∂2

∂θ2 radially using the
method of separation of variable (see [1]). I0 is further used to define a temperature function on
SE(2).

Preliminaries concerning the Euclidean motion group, its representation and invariant differ-
ential operators are presented in section two. Spaces of distributions on SE(2) are presented in
section three. It is also proved in this section that the Schwartz space of SE(2) is a Frechect space
and the convolution of functions is continuous in the Schwartz space of SE(2). In section four, a
radial distribution on SE(2) is presented and is also shown to be tempered, bounded and positive
definite. Lastly, a temperature function on SE(2) is presented in section five.

This work is licensed under a Creative Commons Attribution 4.0 International License.
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1.1 Euclidean Motion Group.
The Euclidean Motion group is a non-compact and non-commutative solvable Lie group realised as
a semi direct product of the additive group Rn with the Orthogonal group O(n). This means that
if S(n) denotes the group, then

S(n) = Rn ⋊O(n).

The special Euclidean motion group is the semi direct product of Rn with the special orthogonal
group, SO(n). That is,

SE(n) = Rn ⋊ SO(n),

where SO(n) = SL(n) ∩O(n).
SE(n) is also called group of transformation of the Euclidean plane. Henceforth, SE(n) is considered
for this research when n = 2. Elements of SE(2) are given by g = (x, α) ∈ SE(2), where α ∈ SO(2)
and x ∈ R2. For any g = (x1, α1) and h = (x2, α2), the group law of SE(2) is given as

gh = (x1, α1)(x2, α2) = (x1 + α1x2, α1α2)

and the inverse g−1 is given as ( [2])

g−1 = (−αT
1 , x1α

T
1 ), where α

T =

(
cosϕ −sinϕ
sinϕ cosϕ

)T

Elements of SE(2) may be identified as a 3× 3 homogeneous transformation matrix of the form

H(g) =

(
α x
0T 1

)
,

where 0T = (0, 0). SE(2) = (R2 ⋊ SO(2)) ∼= M ⊆ GL(3,R), where M is a subgroup of GL(3,R).
An element of SE(2) may also be presented in rectangular coordinate as follows.

g(x1, x2, ϕ) =

 cosϕ −sinϕ x1
sinϕ cosϕ x2
0 0 1

 , ϕ ∈ [0, 2π], (x1, x2) ∈ R2.

Solvability of SE(2) implies that there exist a sequence of closed subgroupG0 = G,G1, ..., Gn, Gn+1 =
{e} such that Gn+1 is a closed subgroup in Gk and Gk/Gk+1 is abelian ( [3–5]) . Since all abelian
and solvable Lie groups are amenable, it means that the Euclidean motion group is also an amenable
group. SE(n) is a group of affine maps induced by orthogonal transformation. It is also called a
group of rigid motions. The universal covering group of SE(2) is the semi direct product group
R2 ⋊R whose multiplication is defined as

(x1, α1)(x2, α2) = (x1 + eitx2, α1 + α2)

and its covering map is defined as
(x, α) 7→ (x, eit).

For x1, x2 ∈ R2 and α ∈ SO(2), the invariant measure on SE(n) is obtained as the product of
Lebesque measure on R2 and the Haar measure on SO(2) given as (see [6, 7])

dµ[(x, α)] = dx1dx2dα.

Let H = L2(SE(2), µ) be the Hilbert space of square integrable functions on SE(n). For u ∈ H and
x, x′ ∈ R2, the right and left regular representations TR and TL of SE(2) are defined respectively
as

(TR
(x2,α2)

u)[(x1, α2)] = u[(x1, α1)(x2, α2)]

= u[(x1 + x2α1, α1 + α2)]
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and

(TL
(x2,α2)

u)[(x1, α1)] = u[(x2, α1)
−1(x1, α1)]

= u[(−x2−α′ + x12π−α′ , 2π − α2 + α1)].

Let g(ti) be the one-parameter subgroups of SE(2) generated by Xi, i = 1, 2, 3.. Then

Xiu = lim
t→0

(
TL
g(ti)

− I

ti
u

)
where u is an element of the Garding domain [6]. Explicitly,

X1 = − ∂

∂x1
,

X2 = − ∂

∂x2
,

X3 = x2
∂

∂x1
− x1

∂

∂x2
− ∂

∂α
.

The generators of the left invariant Lie algebra of G are given as

Y1 = cosα
∂

∂x1
+ sinα

∂

∂x2
,

Y2 = −sinα ∂

∂x1
+ cosα

∂

∂x2
,

Y3 =
∂

∂α
,

and they obey the following commutation relations [Y1, Y2] = 0, [Y2, Y3] = Y1 and [Y3, Y1] = Y2,
where [A,B] is the standard Lie bracket defined as [A,B] = AB −BA.

The Laplace Beltrami operator defined on SE(2) is given as [1]

∇2 =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
(1.1)

A sub-laplacian on SE(2) has the form L = −
∑

j Xj , where Xj = αjX3 +Uj for some αj ∈ R and
Uj ∈ Span{X1, X2}. A radial solution (see [1]), by method of separation, of the Laplace-Beltrami
equation below

∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
= 0 (1.2)

yields the following function

Jλ(mr) = Γ(1)(

√
λr

2
)0I 2−2

2
(
√
λr) (1.3)

= I0(
√
λr). □ (1.4)

I0 is the Bessel function of order zero. It is the spherical function of SE(2).
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2 Spaces of Distributions on SE(2)
In this section, descriptions of spaces of distributions and their respective topologies are presented.
Further more, Fourier transform of functions on SE(2) is discussed

3.1 The space C∞(G). Given a solvable Lie group G endowed with invariant measure dµ(g),
and g its Lie algebra. Lets denote by m the dimension of g. Fix {X1, ..., Xm} a basis of g. To each
α = (α1, ..., αm) ∈ Nm, we put |α| = α1 + ...+ αn and associate a differential operator Xα, which
is left invariant, on G acting on f ∈ C∞(G), by

Xαf(g) =
∂α1

∂tα1
1

...
∂αm

∂tαm
m

f(g exp(t1X1)...exp(tmXm))|t1=...=tm=0..

The space C∞(G) may be given a topology defined by a system of seminorms specified as

|f |α,m = Sup|α|≤m|Xαf(g)|.

With this topology, C∞(G) is metrizable, locally convex and complete, hence, it is a Frechet space.
This Frechet space may be denoted as ξ(G)

3.2 The space C∞
c (G). This space C∞

c (G) is the space of complex-valued C∞ function on G
with compact support. For any ϵ > 0, put

Bϵ =
{
(ξ, θ) ∈ G : ||ξ|| ≤ ϵ

}
and

Dϵ = D(Bϵ) =
{
f ∈ C∞

c (G) : f(ξ, θ) = 0, if ||ξ|| > ϵ
}
.

Then D(Bϵ) is a Frechet space with respect to the family semi norms defined as{
Pα(f) = ∥Dαf∥∞ : α ∈ N3

}
.

D(G) =
⋃∞

n=1 D(Bn) is topologised as the strict inductive limit of D(Bn). A linear functional on
the topological vector space D that is continuous is known as a distribution on G denoted by D′(G).

Given a manifold M and a distribution T , T is said to vanish on a subset V ⊂ M , which is
open, if T = 0. Let {Uα}α∈ω represents the collection of all open sets on which T vanishes and let
U stand for the union of {Uα}α∈ω. M − U , regarded as the closure of the complement of M , is the
support of T . We denote ξ′(G) a distributions space with compact support.

3.3 The Schwartz space S(G). Consider the Euclidean motion group SE(2) realised as R ⋊ T
where T ∼= R/2πZ. If we choose a system of coordinates( [8]) (x, y, θ) on G with x, y ∈ R and θ ∈ T,
then a complex - valued C∞ function f on G = SE(2) is called rapidly decreasing if for any N ∈ N
and α ∈ N3 we have

pN,α(f) = Supθ∈T,ξ∈R2 | (1 + ||ξ||2)N (Dαf)(ξ, θ) |< +∞, (2.1)

where

Dα =

(
∂

∂x

)α1
(
∂

∂y

)α2
(
∂

∂θ

)α3

,

(α = (α1, α2, α3); ξ = (x, y)). The space of all rapidly decreasing functions on G is denoted
by S = S(G). Then S is a Frechet space in the topology given by the family of semi-norms
{PN,α : N ∈ N, α ∈ N3}. This result is stated formally with proof in the next proposition,

3.4 Proposition. The Schwartz space S(SE(2)) is a Frechet space.
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Proof. Let us denote the system of seminorm defined in (5) by ||.||∞n,α, n ∈ N, α ∈ Nm. ||.||∞n,α is
countable and separable on S(SE(2)). This is because ||ς||∞0,0 = ||ς||∞L1(G) = 0 ⇒ ς = 0. This sepa-
rability condition defines a locally convex topology on S(SE(2)). Next is to prove that S(SE(2))
is a Frechet space. In order to do this, we need to show that it is complete. To this end, let
{ς}n∈N ⊂ S(SE(2)) be a sequence that is Cauchy in nature for the semi norms ||.||∞n,α. Let Xα

be as defined in 2.1, Xαςn converges to a bounded function ςn,α uniformly for every n ∈ N and
α ∈ Nm. Next is for us to prove that

ςn,α = Xας0,0 n ∈ N, α ∈ Nm. (2.2)

The prove of (6) is to establish that ς0,0 ∈ S(SE(2)) and ςn → ς0,0 in S(SE(2)) and by implication,
it will mean that S(SE(2)) is complete. Therefore, let us prove that (6) is true. For n = 0 and α
of length one, say α = αi with all coordinates equal to zero but the ith equal to one, we have for
all t ∈ N

ςn(gexp(tXi) = ςn(g) +

∫ t

0

Xiςn(ηXi))dη, (2.3)

when n→ ∞ (7) becomes

ς0,0(gexp(tXi)) = ς0,0(g) +

∫ t

0

ς0,αi(gexp(ηXi))dη. (2.4)

If we differentiate (8) with respect to t at 0, it shows that ς0,0 is continuously differentiable in the
direction Xi with

Xiς0,0(g) = ς0,αi
g.

If this argument is repeated, it shows that ς0,0 ∈ C∞(G) with Xας0,0 = ς0,α, ∀α ∈ Nm. This means
that for all n ∈ N and α ∈ Nm, Xαςn converges pointwise to Xας0,0. By hypothesis, Xαςn converges
to ςn,α, therefore ςn,α = Xας0,0. Since ςn,α ∈ L∞(G), this shows that ς0,0 ∈ S(SE(2)) and that ςn
converges to ς0,0 in S(SE(2)). Hence, S(SE(2)) is complete and therefore Frechet. □

The space S ′(G) of (continuous) linear functionals on S(G) is referred to as the space of tempered
distributions on G = SE(2). This space can be topologised by strong dual topology, which is defined
as the topology of uniform convergence on the bounded subsets of S(G) generated by the seminorms
pφ(u) = |u(φ)|, where u : S(G) → R and φ ∈ S(G).

Let f1, f2 ∈ S(G) or L2(G). The convolution of f1 and f2 is defined as

(f1 ∗ f2)(g) =
∫
G

f1(h)f2(h
−1g)dµG(h)

=

∫
G

f1(gh)f2(h
−1)dµG(h).

The convolution operation obeys the associativity property

(f1 ∗ f2) ∗ f3 = f1 ∗ (f2 ∗ f3),

whenever all the integrals are absolutely convergent (cf: [2, 8, 9]).
The next result shows continuity of convolution of functions in S(SE(2)). It is presented below

as proposition 3.5 with proof.

3.5 Proposition. Convolution of functions is continuous from S(SE(2))×S(SE(2)) to S(SE(2))

Proof. Let us recall that the convolution of two functions on SE(2), provided the integral con-
verges, is defined as

(f1 ∗ f2)(g) =
∫
G

f1(h)f2(h
−1g)dµG(h)

=

∫
G

f1(gh)f2(h
−1)dµG(h).
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Since the differential operators Xα are left invariant, they act on the convolution as follows

Xα(f1 ∗ f2) = f1 ∗Xαf2,

therefore,

|Xα(f1 ∗ f2)(g)| = |
∫
G

Xαf1(h)f2(h
−1g)dh|

We note that SE(2) is unimodular (see [10], p.326), this means∫
G

f(hg)dg =

∫
G

f(gh)dg =

∫
G

f(g−1)dg =

∫
G

f(g)dg.

So, by putting g = hg, we get

|Xα(f1 ∗ f2)(g)| = |
∫
G

Xαf1(h)f2(h
−1(hg)dh|

= |
∫
G

Xαf1(h)f2(g)dh|

≤
∫
G

|Xαf1(h)f2(g)dh|.

We know that
Xα(f1 ∗ f2)(g) = f1 ∗Xαf2(g).

But
f1 ∗Xαf2(h) =

∫
G

f1(h)X
α(h−1g)dh.

Therefore

|Xα(f1 ∗ f2)(g)| ≤
∫
G

|f1(h)||Xαf2(g)|dh

≤
∫
G

|f1(h)|dh
C

|(1 + ||ξ||2)m|
,

because |Xαf2(g)| ≤ Cα,N

|(1+||ξ||2)m| . Since ||ξ|| is a positive real constant, we may put QN = |(1 +

||ξ||2)N |, so that

|Xα(f1 ∗ f2)(g)| ≤
∫
G

|f1(h)||Xαf2(g)|dh

≤
∫
G

|f1(h)|dh
C

|(1 + ||ξ||2)N |

≤ C

QN

∫
G

|f1(h)|dh

=
C

QN
∥f1∥L1(G)

|(1 + ||ξ||2)NXα(f1 ∗ f2)(ξ, θ)| = |(1 + ||ξ||2)N ||Xα(f1 ∗ f2)(ξ, θ)|
≤ C||f ||L1(G) < +∞.

On taking supremum, we have

Pα,N (f1 ∗ f2) = supθ∈T,ξ∈R2 |(1 + ||ξ||2)NXα(f1 ∗ f2)(ξ, θ)| < +∞.

4. Radial Distribution on SE(2)

101

https://doi.org/10.5281/zenodo.15176025


International Journal of Mathematical Sciences and
Optimization: Theory and Applications

11(1), 2025, Pages 96 - 106
https://doi.org/10.5281/zenodo.15176025

Let G be an arbitrary locally compact group andK its subgroup that is compact, the pair (G,K)
is known as a Gelfand pair if L1(K\G/K) is abelian under convolution. Also, let Cc(K\G/K) stand
for the space of continuous functions with support on G that are compact. Any f ∈ Cc(K\G/K)
that satisfies f(k1gk2) = f(g) ∀k1, k2 ∈ K is called a spherical function and Cc(K\G/K) equipped
with convolution as a binary operation forms a Banach algebra that is commutative (see [10,14]).

4.1 Definition. A function f : Rn → R is called radial if ∃ ϕ defined on [0,∞) in such a way that
f(x) = ϕ(|x|), ∀ x ∈ Rn. For a transformation ρ on Rn, ρ is called orthogonal if ∃ linear operator
on Rn such that ⟨ρx, ρy⟩ = ⟨x, y⟩ ∀ x, y ∈ Rn.

A Schwartz function φ is called radial if for all A ∈ O(n) (that is to say, for all rotations on n)
the following equation holds

φ = φoA.

A collection of all radial Schwartz functions is denoted as Srad() and S ′() the space of tempered
distributions on n. A distribution u ∈ S ′() is called radial if for all A ∈ O(n), we have

u = uoA.

This means that for all Schwartz functions φ on n, we have

⟨u, φ⟩ = ⟨u, φoA⟩

and S ′
rad() is the space of all radial tempered distributions on n.

4.2 Definition. A positive definite function

f : G→ C

satisfies the following inequality ∑
i,j=1m

αiαkf(g
−1
i gk) ≥ 0 (2.5)

for all subsets {g1, ..., gm} ∈ G and all sequences {α1, ..., αm} ∈ C. The integral analogue of the
inequality (5) is given by ∫

G

∫
G

f(g−1
i gk)φ(gi)φ(gk)dgidgk ≥ 0 (2.6)

where φ ranges over L1(G) or Cc(G). If f is a continuous functions, (9) and (10) are equivalent.
A spherical function that also satisfies (5) is referred to as positive definite spherical function.

Let (G,K )̂ stand for the set of spherical functions on G and let (G,K )̂+ denotes the subset of
(G,K )̂ that is positive definite. The set (G,K )̂+ is isomorphic with R+. A measure π on (G,K )̂
such that for f ∈ L1(G,K) the plancherel theorem holds, that is∫

(K\G/K)

|f(a)|2d(kak) =
∫
(G,K )̂

|f̂(φ)|2dπ(φ).

π is referred to as plancherel measure and its support is the full set (G,K )̂.

4.3 Definition [11]. A positive definite distribution T on a Lie group G is a distribution that
satisfies T (ϕ̃ ∗ ϕ) ≥ 0 ∀ϕ ∈ D(G). If in addition to the above condition, ϕ ∈ Cc(K\G/K), such a
distribution is known as a K-bi-invariant distribution on G.

Let us look at the following regular distributions on SE(n)

1. Let f be a continuous function on R2, µ a Radon measure on the compact subgroup of G.
The linear functional f ⊗ µ on D(G) defined by

φ 7→
〈
φ, f ⊗ µ

〉
=

∫
R2

∫
SO(2)

f(a)φ(g)dadA

is a distribution on G = SE(2), φ ∈ D(G).
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2. The character function χa is a linear functional on D(G) or distribution on G defined by

χa : f 7→
∞∑

n=−∞

∫
G

f(g)
(
Ua
g χn, χn

)
dg =

∞∑
n=−∞

(
Ua
g χn, χn

)
= TrUa

f ,

where
Ua
f =

∫
G

f(g)Ua
g dg.

It is our interest in this section to show that the type of distribution mentioned in 2 above is a
radial, positive definite, tempered and bounded. We proceed as follows.

There is a relationship between the spherical function I0 of SE(2) and χa on D(G). This may
be found in [8] as theorem 3.3. It is stated here as theorem 4.4, without proof.

4.4 Theorem For any fixed σ > 0, the linear functional

χaf 7→ TrUσ
f

is a distribution on G = SE(2). In fact, χa is equal to I0(t||ξ||)⊗δ(t) where I0 is the Bessel function
of order 0 and δ is the Dirac measure of order zero on T ∼= K and TrUσ

f stands for the trace of the
representation Uσ

f . That is to say, our distribution under consideration is K(λ, t) = I0(λ) ⊗ δ(t),
where λ = t||ξ||. □

S ′(SE(2)), as earlier defined, is the space of tempered distributions on SE(2). There are three
kinds of topology that can be given to S ′(SE(2)), namely, strong dual topology, weak topology and
the weak ∗ topology. A tempered distribution u ∈ S ′(SE(2)) is a continuous linear functional on
S(SE(2)).

Let T ∈ S ′(SE(2)) and let f be an arbitrary C∞ function on G. There is a condition for
fT ∈ S ′(SE(2)). This leads us to the following definition of a Lie group with polynomial growth.

4.5 Definition [12], p.7 Let G be a Lie group and let µ be the left Haar measure of G. G is said to
have polynomial growth if ∃ a compact symmetric neighborhood U of e ∈ G that generates G and
such that the sequence (µ(Un)n∈N has polynomial growth as n→ ∞. A function f ∈ C∞(G) is said
to have a polynomial growth if G has a polynomial growth. A Gelfand pair (G,K) has polynomial
growth if G has polynomial growth ( [12], p.7). The Gelfand pair (SE(2), SO(2) ∼= T) is a pair with
polynomial growth, it follows from Def. 4.5 that SE(2) is a a Lie group with polynomial growth.

Given T ∈ S ′(G) and f ∈ C∞(G), the condition for fT ∈ S ′(G) is that f must be a function
with polynomial growth. I0 is the spherical function on SE(2). It is bounded, positive definite
and has polynomial growth.(see [10]). Also, δ(t) ∈ C∞(G). Following this development, we have
that I0(λ)δ(t) ∈ S ′(G), where λ = σ||ξ||. Further more, I0 being the spherical function of SE(2)
is also a radial function. This is because elementary spherical functions are also radial functions.
Since Io(λ) is radial, bounded and positive definite (see [10],Prop. 2.4) and K(λ, t) = I0(λ)δ(t) is
compactly supported in S ′() at the identity, it therefore means that it also belongs to the space of
tempered radial distributions S ′

rad(G) on G = SE(2).

5. Temperature function on the motion group SE(2)

In this section, we extend results obtained in [13] for Heisenberg group to the Euclidean motion
group.
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5.1 Definition. Let △SE(2) be the Laplace-Beltrami operator on SE(n). A temperature function
on SE(2) is a C∞ function F ∈ S(G) that satisfies((

∂

∂ξ
−△G

)
F

)
(ξ, θ) = 0, (ξ, θ) ∈ G.

Let f ∈ L∞(SE(2)), then f is positive definite on G if∫
G

f(ξ, θ)(φ ∗ φ∗)(ξ, θ)dξdθ ≥ 0, φ ∈ S(SE(2), φ∗(ξ, θ) = φ((ξ, θ)−1).

A function f that is continuous on SE(n) is called U(n)- invariant if

f(αξ, θ) = f(ξ, θ), (ξ, θ) ∈ SE(2),∀α ∈ U(n),

where U(n) stands for a collection of square unitary matrices of order n. Let f ∈ S ′(SE(2)), then
for all α ∈ U(n), fα is defined as

fα(φ) = f(φα−1),

where φ ∈ S(SE(2)) and φα−1(ξ, θ) = φ(α−1ξ, θ). A function φ ∈ S(SE(2) is U(n)-invariant if

φα = φ,

a distribution f ∈ S ′(SE(2)) is U(n)-invariant if and only if f = f ♮ where

f ♮(φ) = f(φ♮),

and
φ♮(ξ, θ) =

∫
U(n)

φ(αξ, θ)dα,

dα is the normalized measure on U(n) such that∫
U(n)

dα = 1.

It therefore means that φ ∈ S(SE(2)) is U(n)-invariant if and only if φ♮ = φ. Let f ∈ S ′(SE(2))
and φ ∈ S(SE(2), then the convolution f ∗ φ is defined as

(f ∗ φ)(ξ, θ) =
∫
df(ξ′, θ′)φ((ξ′, θ′)−1(ξ, θ)), (ξ, θ) ∈ SE(2), (ξ′, θ′).

and
(φ ∗ f)(ξ, θ) =

∫
df(ξ′, θ′)φ((ξ, θ)(ξ′, θ′)−1), (ξ, θ) ∈ SE(2), (ξ′, θ′).

The linear map
S ′(SE(2))× S(SE(2)) ∋ (f, φ) 7→ f ∗ φ ∈ S ′(SE(2))

is separately continuous and the convolution f ∗ φ is a smooth function on SE(2) (see prop. 2.5
above). The following lemma is needed in the proof of theorem 5.3, which is the main result of this
section. Following [13], we have the following lemma.

5.2 Lemma. The Bessel function {J0(λ) : λ > 0} associated with the Laplace-Beltrami Oper-
ator of SE(2) satisfies the following conditions.
(i) J0(λ) ∈ S(G), λ > 0.
(ii) For every ψ ∈ S(G), J0(λ) ∗ ψ → ψ in S(G) as λ→ 0.

The following result is the main result of this research.
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5.3 Theorem.Let f ∈ S ′(SE(2)). The function F defined on G by

F (ξ, θ) = (f ∗ J0(λ))(ξ, θ)

satisfies the following conditions.
(i) (( ∂

∂λ −△G)F )(ξ, θ) = 0, (ξ, θ) ∈ SE(2).
(ii) There exist positive constants C and N such that

|F (ξ, θ)| ≤ C sup
θ∈T,ξ∈R2

|(1 + ||ξ||2)−N ||f ||L1(SE(2)),

where ||f ||L1(SE(2)) is the L1- norm of SE(2).

Proof.(i) Let f ∈ S ′(SE(2)). Then by (i) of lemma 4.2, the function defined by F (ξ, θ) =
(f ∗J0(λ))(ξ, θ) is a smooth function on SE(2). Also, since the linear map S ′(SE(2))×S(SE(2)) ∋
(f, φ) 7→ f ∗ φ ∈ S ′(SE(2)) is separately continuous, it therefore means that f ∗ φ is smooth. Let
U(g) be the the universal enveloping algebra of SE(2). Elements of this algebra are left invariant
differential operators on SE(2). The Laplace-Beltrami operator on SE(2) is a member of this
algebra, therefore △G is a left vector field on SE(2). Therefore, it stands to reason that((

∂

∂r
−△G

)
F

)
(ξ, θ) = 0.

(ii) For f ∈ S ′(SE(2)), there exists C and N such that

|f(φ)| ≤ C sup
θ∈T,ξ∈R2

|(1 + ||ξ||2)N (Dαf)(ξ, θ)|.

By (2.1),

|F (ξ, θ)| = |(f ∗ J0(λ))(ξ, θ)| ≤ sup
θ∈T,ξ∈R2

|(1 + ||ξ||2)N (Dαf ∗ J0(λ))(ξ, θ)|.

But

|Dα(f ∗ J0(λ))(ξ, θ)| = |f ∗DαJ0(λ)(ξ, θ)|

≤
∫
SE(2)

|f(η)||Dα(η−1ζ)|dη

≤
∫
SE(2)

|f(η)||Dαζ)|dη since SE(2) is unimodular

≤
∫
SE(2)

|f(η)|dη C

|(1 + ||ξ||2)N |

= C|(1 + ||ξ||2)−N |
∫
SE(2)

|f(η)|dη

= |(1 + ||ξ||2)−N ||f ||L1(SE(2))

η = (ξ, θ) and ζ = (ξ′, θ′).
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