
International Journal of Mathematical Analysis and
Optimization: Theory and Applications

Vol. 2018 , pp. 261 - 275

Modeling crude oil spot price as an Ornstein - Uhlenbeck
process

Chisara Peace Ogbogbo

Department of Mathematics, University of Ghana, Legon. Accra-Ghana.
chisaraogbogbo@yahoo.com

Article Info
Received: 17 December 2017 Revised: 10 April 2018
Accepted: 8 May 2018 Available online: 14 June 2018

Abstract

Unexpected downturn in crude oil price in recent years has led to recession in economies of
countries like Nigeria, and Venezuela. Search for a stochastic model that could give a good
description of the movement of crude oil price led to the use of Ornstein Uhlenbeck process,
since mean reversion is exhibited by the price of a number of commodities. We consider crude
oil price series for four Niger-Delta crude types, over a five year period, and analyse same using
the Ornstein-Uhlenbeck process. Parameters of the Ornstein-Uhlenbeck process were estimated
for the data set using regression approach in R. These parameters were employed to simulate the
Ornstein-Uhlenbeck process using an R-computational scheme. In-sample and Out-of-sample
forecast were done. It is found that in the absence of the unusual price movements (jumps),
the O-U model can be used to model crude oil price movement.
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1 Introduction
Crude oil is an important commodity, which is considered both a consumption and investment
commodity. [1]. Records from the past few years have shown that movement in price of crude
oil has been very rapid, leading to severe consequences for economies and companies. We study
crude oil price using empirical data obtained from DPR Lagos for four Niger Delta crude types, for
period, 2005- 2009.
By oil price, we mean the spot price of a barrel of bench mark crude oil. There are different types
of crude in the crude oil market, which includes West Texas intermediate crude, (WTI), Brent
Ice, Bonny Light, Western Canadian Select (WCS) etc. Crude oil price fluctuates rapidly over
time. Trends of this movement have been of interest to researchers, market participants such as
speculators, buyers, sellers and end -users.
The study in this paper is motivated by effort to understand crude oil price trend. Apart from
non-economic, non-stochastic factors such as political arm flexing of OPEC giant countries and
other conflicts, in mathematical finance, effort is made at identifying a model that describes oil
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price dynamics. Here we consider a mean reverting process. Mean reversion theory was introduced
by Ornstein and Uhlenbeck [2] and has been used by other researchers to model commodities
and asset prices. Gibson and Schwartz [3], studied financial and real assets contingent on price
of oil. They used mean reverting two factor model. Convenience yield has been studied largely
using mean reverting process. Convenience yield is the effect which evolves from the ownership
of physical commodity compared to ownership of futures contract. It is also seen as a reflection
the market’s expectation concerning the future availability of commodity. This points to the fact
that much work has been done on oil-linked financial instruments such as leases, contracts and
futures than on spot. Bessembinder et al [4] studied some agric products such as wheat, sugar,
and metals- gold, silver, platinum. They used their test to detect mean reversion in prices arising
from correlation between convenience yield and prices, and correlation between I-rate and prices.
They proved that there is mean reversion in spot asset prices of these wide range of commodities.
Gibson and Schwarz compared three models of commodity prices that takes mean reversion into
account. Dixit A.K. and Pindyck R.S [5] used some statistical tests, to study price of crude oil and
copper. They confirmed that the prices are mean reverting. These studies motivate the study in
this paper to analyse oil spot price with the Ornstein- Uhlenbeck process. The remainder of the
paper is organised as follows; in section 2 we present the data used for the work, the O-U process is
discussed and the model for crude oil spot price formulated in section 3. The estimated parameters
and computational scheme for in-sample and out-of - sample forecasts are presented in section 4.
Results are presented, analysed, and conclusion drawn in section 5.

2 Ornstein-Uhlenbeck mean reverting process
In recent work by Roger et al [6],the Ornstien-Uhlenbeck (O-U) process which is a volatility process,
has been used in finance as a model of volatility of asset price process. Since the crude oil price is
considered as both consumption commodity and an investment (asset) commodity, we analyse its
price fluctuations using the O-U process. Let {St : t ≥ 0} denote the crude oil price process.

A process {St : t ≥ 0} is an Ornstien-Uhlenbeck process if St satisfies the following O-U stochastic
differential equation given as

dSt = αStdt+ σdWt (2.1)

where σ and α are constants and represent volatility and rate of reversion of the process respec-
tively. Wt is the Wiener process.

The Ornstien-Uhlenbeck process, is the most popular of the type of mean reverting processes and
are generally used in finance to model interest rates and commodities. The idea behind the mean
reverting process (Ornstien-Uhlenbeck), the economic principle that when prices become too high,
forces of demand and supply will “act" such that demand will fall as supply increases, producing
a counter balancing effect that yields equilibrium. Also when price is too low, the opposite event
will occur, prices are then pushed towards equilibrium which may be described as a long run mean.
Mean reversion is also induced by negative relationships between I-rate and prices.

When St in equation 2.1 is described to include long run mean value of price denoted µ, then
we have equation

dSt = α(µ− St)dt+ σdWt (2.2)

The O-U equation has a closed form solution. There are three parameters for the O-U process,
namely mean, µ, volatility, σ, and rate of reversion, α. These parameters were estimated in this
paper for the crude oil price data. The speed of reversion is proportional to the distance between
the current position and the equilibrium level. So the variance grows at first but then stabilizes.
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The O-U process is driven by a Brownian motion.

The Ornstein and Uhlenbeck, process has only two major parameters that influence results, the
mean and volatility. The O-U process sometimes generates both positive and negative values (oil
prices) over time. Negative values may be obtained sometimes for the crude oil price St from the
computational scheme of the O-U model. This limitation can be made up for, by modifying the
process away from pure O-U process, that is, modulating the volatility parameter as S tends to-
wards zero. This can be seen in the modification of Cox et al [10] which expresses variations for
interest rate r . Also the log of the spot price can be used instead. However negative values were
not obtained here.

3 The model
Let St be the spot price of crude oil at time t. Crude oil price fluctuates over time with volatility
σ > 0, and is expected to return to a long-run mean value µ at a rate (mean reversion rate) denoted
α > 0.

Ignoring random fluctuations in the process, dWt, then St has an overall drift towards a mean
value µ. The process reverts to µ at a rate α, with a magnitude proportional to distance between
current value of St and µ.

The crude oil price process St is expected to satisfy the following equation

dSt = αStdt+ σdWt, S(0) = S0 (3.1)

Wt is a standard Brownian motion, t ∈ [0,∞].

Choosing a suitable function

F (t, s) = e−αtS

Yt = F (t, St) (3.2)

dYt = −αe−αtStdt+ e−αtdSt (3.3)
= −αe−αtStdt+ e−αt(αStdt+ σdWt)

dYt = σe−αtdWt (3.4)

From 3.2
dYt = d(e−αtSt) (3.4a)

Equating 3.4 and 3.4a we have
d(e−αtSt) = σe−αtdWt (3.4b)

Integrating on both sides of 3.4 from s to t we have

Yt − Ys = σ

∫ t

s

e−αtdWt

From 3.4b integrating from 0 to t

eαtSt − eα0̇S0 = σ

∫ t

0

eαsdWs

e−αtSt = S0 + σ

∫ t

0

e−αsdWs
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dividing through by e−αt

St = eαtS0 + σ

∫ t

0

eα(t−s)dWs (3.5)

Equation 3.5 is the closed form solution of equation 3.1
Second term of equation 3.5 is a Wiener integral, and from definition by Roger et al [6]∫ t

0

eα(t−s)dWs ∼ N
(

0,

∫ t

0

e2α(t−s)dS

)
≈ N

(
0,
e2αt − 1

2α

)
Equation 3.1 can be rewritten as

dSt = α(µ− St)dt + σdWt (3.6)

(in which case St in 3.1 is deviated from long run mean value µ)
Now for

Yt = eαtSt (3.7)

dYt = αeαtStdt+ eαtdSt

= αeαtStdt+ eαt[α(µ− St)dt+ σdWt]

= αeαtStdt+ αeαtµdt− αeαtStdt+ eαtσdWt

= αeαtµdt+ eαtσdWt (3.7a)

From equation 3.7
dYt = d

(
eαtSt

)
(3.7b)

From equation 3.7a
dYt = αeαtµdt+ eαtσdWt (3.7c)

equating 3.7b and 3.7c

d
(
eαtSt

)
= αeαtµdt+ eαtσdWt

d
(
eαtSt

)
= eαt[αµdt+ σdWt] (3.8)

integrating equation 3.8 and evaluating from 0 to t, we have

eαtSt − eα·0S0 = α

∫ t

0

eαtµdt+

∫ t

0

eαsσdWs

eαtSt − S0 = eαsµ

∣∣∣∣t
0

+

∫ t

0

eαsσdWs

eαtSt − S0 = eαtµ− e0µ+

∫ t

0

eαsσdWs

eαtSt − S0 = µ(eαt − 1) +

∫ t

0

eαsσdWs

dividing through by eαt, we have

St = S0e
−αt + µ(1− e−αt) + σ

∫ t

0

e−α(t−s)dWs (3.8a)
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For purpose of simulation, discretizing equation 3.8a we use

St = e−α∆tSt−1 +
(
1− e−α∆t

)
µ+ σ

√
(1− e−2α∆t)

2α
dWt (3.9)

Wt ∼ N(0, 1)

3.1 Callibration of data for the parameters of the oil price process
Callibration of data for the parameters of the Ornstein-uhlenbeck (O-U) process was done for
empirical crude oil spot price St using Regression approach by Smith [7]. The R-Code for the
estimation process is attached.

Crude
type

Mean (µ) Volatility(σ) Mean reversion rate(α)

BL 77.990269 28.320770 1.054858
BB 78.881217 27.948929 0.973454
PL 80.0346053 27.8207744 0.9473295
ANTAN 76.430276 28.987445 1.003883

Table 1: The estimated O-U parameters for oil price

In this work actual prices are used because actual price St is used in the model formulation. Most
financial studies involve returns instead of price for two reasons. For the average investor return
on an asset is a complete and scale free summary of investment opportunity. By the work of Tsav
[8] return series are easier to handle than price series because the former have more attractive
statistical properties. However an investor in a field project may be more concerned about analysis
using actual price of crude oil. We therefore used price series in the analysis.

3.2 Computational scheme for theoretical price data
O-U process is simulated using estimated parameters for mean, volatility, and rate of reversion i.e.
µ, σ, and α, respectively given in Table 1. The computational scheme written in R-programming
language follows an algorithm adapted from the work of Smith. It is an iterative procedure, that
starts with initial values S0. Initial price values S0 and the estimated parameters are imputed.
Depending on the value of α, we compute dWt =

√
∆tWt . Here, Wt is generated as a standard

normal random variable i.e. Wt ∼ N(0, 1). If α = 0, the limit is used, i.e.
√

∆tN(0, 1), otherwise

we compute σ

√
(1− e−2α∆t

2α
N(0, 1). The foregoing procedure yields S1, the process is iterated to

obtain S2 from S1, S3 based on S2 · · ·Sn based on Sn−1.

St = e−α∆tSt−1 + dSt,where dSt interprets the O-U SDE in the algorithm. i.e.
St = e−α∆tSt−1 + α(µ− St−1)∆t+ σdWt

This approach for simulation of price paths is as given in Gillespie [9]. Codes for the Computational
Scheme is given in Appendix B.

For initial values 44.1667, 44.2267, 44.2967 and 42.7717 for BL, BB, PL, ANTAN, St values are
randomly generated from this computational scheme, for each crude type.
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3.3 Computation of crude oil price using the model; In- sample forecast
and Out-of sample forecast

The R-program computational scheme for O-U simulation described above, was used to compute St
values as given in equation 3.8a. The values obtained for the in-sample forecast, for the process are
given in Table 1. The table displays together the empirical and computed values obtained from the
O-U process, for quick comparison. These computed price values are also referred to as theoretical
price values.

Results
We may write the model equations in line with equation 3.8a as follows;

For Bonny Light (BL), the model equation for the crude oil spot price is

St = 44.1667e−1.0548t + 78.881(1− e−1.0548t) + 27.948

∫ t

0

e−1.0548udWu (a)

For Brass Blend (BB), the model equation for the crude oil spot price is:

St = 44.2267e−0.9734t + 77.990(1− e−0.9734t) + 28.320

∫ t

0

e−0.9734udWu (b)

For Pennington Light (PL), the model equation for the crude oil spot price is:

St = 44.2967e−0.9473t + 80.034(1− e−0.9473t) + 27.820

∫ t

0

e−0.9473udWu (c)

For Antan (ANTAN), the model equation for the crude oil spot price is:

St = 42.7717e−1.0038t + 76.430(1− e−1.0038t) + 28.987

∫ t

0

e−1.0038udWu (d)

Equations a, b, c and d are solved and the results are shown in Tables 2,3 and 4 and Figure 1
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BL BB PL ANTAN

Month Empirical Computed Empirical Computed Empirical Computed Empirical Computed

1 44.1667 41.66700 44.2267 44.22670 44.297 44.29670 42.7717 42.77170
2 45.2401 47.43367 45.3001 49.90632 45.37 43.37090 45.874 49.90391
3 52.9998 52.23230 53.0598 49.35153 53.13 52.90592 51.6048 48.61238
4 51.8679 49.72159 51.9279 47.43308 51.998 46.94257 50.4729 53.06749
5 48.936 56.52354 48.996 50.11351 49.066 52.05549 47.541 58.27146
6 54.898 57.83155 54.958 69.20631 55.028 70.55239 53.503 63.39716
7 58.0465 54.52253 58.1065 63.33078 58.177 78.48543 56.6515 69.90806
8 65.945 60.69544 66.005 74.65364 66.075 76.80124 64.55 59.91308
9 65.1395 50.45600 65.1995 69.24294 65.27 72.16463 63.7445 47.29118
10 60.1407 49.73182 60.2007 76.45841 60.271 61.48250 58.7457 45.48306
11 55.8968 48.92676 55.9568 100.16742 56.027 61.23749 54.5018 55.64199
12 57.154 56.70354 57.214 95.86338 57.284 69.78391 55.759 72.06037
13 63.3527 61.17013 63.4127 94.63160 63.483 71.85430 61.9567 71.53486
14 60.74 63.67812 60.8 107.91350 60.87 84.08268 59.344 60.82734
15 63.2524 59.81300 63.3124 97.34751 63.382 86.21255 61.8564 64.66190
16 72.1166 54.92595 72.1766 88.41918 72.247 92.46888 70.3206 51.82987
17 71.164 61.35969 71.224 77.93862 71.294 87.35507 69.571 47.53672
18 69.5066 70.48500 69.5666 75.69837 69.637 89.13135 69.989 44.36505
19 75.2569 86.04181 75.3169 70.65420 75.387 79.93386 73.8609 42.57357
20 74.4721 78.99376 74.5321 80.71907 74.602 63.90042 73.0761 56.93465
21 61.94 76.60859 62 81.13169 62.07 70.35043 60.544 46.08053
22 58.757 77.72866 58.817 81.56856 58.887 60.85054 57.361 42.29501
23 60.3197 72.95170 60.3797 86.50901 60.45 54.24445 58.9237 45.32685
24 64.2745 72.57435 64.3345 92.53920 64.405 63.38928 62.8785 50.43963
25 55.5622 59.36490 55.6222 88.79971 55.692 62.96146 54.12 56.78713
26 59.395 66.07659 59.455 98.52625 59.525 58.89604 58.005 57.09746
27 64.058 73.80190 64.118 93.60172 64.188 69.02160 58.331 63.32086
28 70.332 79.35955 70.392 95.89198 70.462 67.30953 64.73 68.59395
29 70.104 77.76714 70.164 86.00331 70.234 77.09301 66.584 70.41388
30 73.801 72.10914 73.861 77.02278 73.931 70.07364 68.401 71.10848
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BL BB PL ANTAN
Month Empirical Computed Empirical Computed Empirical Computed Empirical Computed
31 79.456 77.03370 79.516 84.82500 79.586 74.29352 73.421 83.83560
32 73.344 80.77479 73.404 100.84791 73.474 74.73757 73.344 89.64958
33 79.465 81.67353 79.525 106.60526 79.595 74.66236 79.465 90.40844
34 84.584 68.25922 84.644 97.33675 84.714 68.51354 84.584 93.01963
35 94.461 80.46156 94.521 101.39300 94.591 72.74077 94.461 97.79276
36 92.8548 91.35458 92.9148 92.24391 92.985 86.55666 92.8548 95.55891
37 94.0321 94.43542 93.4394 95.57106 92.851 83.30716 87.75 111.83627
38 99.2161 85.90044 97.5285 99.86483 98.09 91.38968 96.252 104.65552
39 95.5473 94.12988 106.817 90.55823 105.26 87.17604 101.39 111.90591
40 114.0519 88.81098 113.093 87.85896 114.36 104.70790 113.178 103.56445
41 129.1207 85.22240 128.595 89.91474 129.57 123.13966 126.2017 101.99229
42 130.4259 93.90251 140.727 87.18653 137.96 113.53481 140.249 89.37027
43 132.6695 91.69036 133.428 93.51601 137.07 115.47080 130.885 83.94756
44 115.1328 86.17292 113.94 92.80068 117.89 112.08761 109.7788 87.54776
45 98.9226 82.34907 96.8924 97.94952 98.673 118.89777 89.6836 97.67127
46 66.7688 86.38346 70.3236 91.90131 72.584 107.69950 59.3712 88.99821
47 52.1634 88.52181 52.8436 91.40409 54.212 105.25454 45.404 90.95963
48 43.1876 101.93840 41.944 98.69697 44.569 102.32254 37.2078 87.02977
49 45.54142 106.90631 45.3806 98.04400 46.158 110.10463 41.3517 99.64655
50 45.02294 95.40848 45.9318 86.37208 48.348 94.46201 39.8582916 95.32308
51 51.85602 92.16217 49.8717 80.26828 48.444 101.89059 46.5591827 85.22161
52 52.3576 87.32683 53.2512 76.69073 48.444 106.13368 49.7834 70.82256
53 62.7257 80.39869 61.1513 83.50707 62.677 103.56543 59.2899 77.80016
54 69.0588 75.38852 69.9299 75.65975 70.87 93.25381 66.4178 79.14109
55 68.23453 84.54474 66.4206 69.62545 69.728 99.78968 66.0467896 78.13330
56 71.19531 77.21906 72.1659 64.87678 74.086 101.90740 71.5394438 89.62917
57 68.79465 80.60658 68.4615 66.33830 70.483 87.90602 66.8443707 92.32398
58 75.66168 100.17531 77.1753 58.84420 72.966 94.79761 74.918345 88.92973
59 78.03899 99.51410 78.0614 67.13717 79.492 87.55082 76.4878708 88.02889
60 76.87649 107.52623 77.0659 51.15576 79.942 95.40997 76.4167254 95.29407

Table 2: Empirical and computed St values for the crude types (2005-2009): in-sample values.

Month BL BB PL ANTAN
61 107.52620 51.15570 95.40990 95.29400
62 93.38448 65.30055 92.74331 83.51294
63 84.89283 74.01729 98.89090 85.38763
64 85.81999 75.90186 100.19331 87.04141
65 89.09493 80.12267 85.48451 89.86838
66 80.27032 83.16689 93.70087 81.80172
67 88.41165 75.11808 90.22491 78.66721
68 78.17387 91.47837 88.23089 78.21191
69 72.20130 86.49417 86.38484 93.60420
70 66.73577 73.76189 100.97459 99.61995
71 70.20471 63.62807 98.79806 91.42792
72 67.86930 61.41196 89.47490 72.96200

Table 3: Computed St Values for 2010(Out-of-sample forecast)

268



International Journal of Mathematical Analysis and
Optimization: Theory and Applications

Vol. 2018 , pp. 269 - 275

PL ANTAN

Month Empirical Computed Empirical Computed

61 75.213 95.40990 71.503 95.29400
62 76.495 92.74331 77.819 83.51294
63 83.228 98.89090 81.6748 85.38763
64 84.3782 100.19331 84.331772 87.04141
65 81.681 85.48451 70.531 89.86838
66 74.2882 93.70087 73.591 81.80172
67 83.194 90.22491 74.690512 78.66721
68 77.6853 88.23089 72.649 78.21191
69 80.6194 86.38484 78.76617 93.60420
70 84.4912 100.97459 84.143179 99.61995
71 88.687 98.79806 83.841 91.42792
72 92.8277 89.47490 92.446032 72.96200

Table 4: Empirical and Computed St values for 2010 (Out-of-sample forecast)

Figure 1:

Figure 1 1 showing price path for PL crude type

4 Discussion

4.1 In-sample Forecasts
From the results on Table 1 , it can be seen that theoretical price values approximate empirical
price values well only over certain periods of time (some months together). For other periods
the theoretical and empirical prices are not close. The periods of fit basically account for those
periods when empirical price differences were not much from month to month, that is periods of
price stability for a few months. These periods are on the average of five to six months, and occur
intermittently through the data set. For all crude types about the last twenty months were out of
fit. These are the months where unusual, unexpected, price movements/deviations occurred. From
Table 1 , we also observe that high St values were generated but not exactly where the prices were

1Empirical price path coincides with computed price path except for periods exhibiting unusual price shifts(jumps).
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high in the empirical data set. This indicates that the O-U model does well, in modeling crude
oil spot price process for periods of steady, continuous, normal price change, but not for periods
of unexpected abnormal price changes. However considering trend of price movement rather than
price fit, the crude oil spot price trends well as a mean reverting process.

4.2 Out-Of-Sample Forecast
Computation of future values for crude oil price St ,using the O-U model

Crude oil price for December 2009 (60th month) was used as initial price, S0 in the program to
generate St values for 2010. The program generated values iteratively for 12 months for the mean
reverting O-U model. The values obtained are displayed on Tables 2 and 3. In order to compare
results, we used crude oil price data for the year 2010. We obtained 2010 complete data for only
ANTAN and PL crude types. Remarks about out-of-sample forecast results, is made in comparison
with these two data sets. Crude oil price data for 2005-2010 obtained from DPR compares very
well with NYMEX crude oil price, WTI, which is available on Yahoo finance.

The model was used to forecast oil price data for 2010, results are shown on Tables 2 and 3.
For the out-of - sample forecast results, we also observe that theoretical price values approximate
empirical price values well only for some for months. Outside these months the theoretical and
empirical prices are not close, as the computed values differ from the empirical values by an average
of fifteen to twenty dollars. For PL crude type, the 65th, 69th, and 72nd months have good fit.
Computed values for 63rd, 64th as well as 66th to 68th months are close in the case of ANTAN
crude type. The out-of-sample forecast has not done well, this can be accounted for by the last
month values of the in-sample forecast, which were out of fit.

5 Conclusion
Since only periods in the price series with absence of abnormal values, seem to fit the model we
conclude that the model will do well to capture crude oil pattern in the absence of unusual price
movement. Though the model has done well with other commodity prices and crude oil contingents,
it is not perfect for crude oil spot price, because such unusual or abnormal price movement occur
from time to time. The result signifies existence of abnormal price shifts (jumps) in the crude
oil price movement, an indication that a Lévy model may be considered. Since the price trends
mimics the Ornstein-Uhlenbeck mean reverting trend, considering a model of crude oil price as an
Ornstein-Uhlenbeck process driven by a Lévy process could yield more interesting results.
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Appendix A

###########################################################
OU_Reg<−f unc t i on (S , d e l t a t )
{

end<−l ength (S)
SLr<−lm(S [ 2 : end ]~S [ 1 : ( end −1 ) ] ) ;
a = coe f ( SLr ) [ 1 ] ; b = coe f ( SLr ) [ 2 ] ;
alpha = −l og (b)/ d e l t a t ;
mu = a/(1−b ) ;
sigma = sd ( r e s i d u a l s ( SLr ) ) ∗ s q r t ( 2∗ alpha/(1−b^2) ) ;
r e turn ( as . vec to r ( c (mu, alpha , sigma ) ) )
}
OUREG<−sapply ( Price , f unc t i on (x )OU_Reg(S=x , d e l t a t =1/12))
rownames (OUREG)<−c ("mu" ," alpha " ," sigma ")
OUREG

Table 5: R-Code for Parameter Estimation
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Appendix B

##########################################################################
OUSim<−f unc t i on (S0 ,mu, sigma , lambda , de l ta t , n , T i t l e )
{
S<−numeric (n)
S[1]<−S0
i f ( lambda == 0){

#dWt<−s q r t ( d e l t a t )∗ rnorm (n , mean = 0 , sd=sq r t ( d e l t a t ) )
dWt<−s q r t ( d e l t a t )∗ rnorm (n , mean = 0 , sd=1)

} e l s e {
# dWt<−s q r t ((1−exp(−2∗ lambda∗ de l t a t ) )/ (2∗ lambda ) )∗
rnorm (n , mean = 0 , sd=sq r t ( d e l t a t ) )

dWt<−s q r t ((1−exp(−2∗ lambda∗ de l t a t ) )/ (2∗ lambda ) )∗ rnorm (n , mean = 0 , sd=1)
}

f o r ( i in 2 : n)S [ i ]<−S [ i −1]∗ exp(−lambda∗ de l t a t )+mu∗(1−exp(−lambda∗ de l t a t ) )
\\+sigma∗dWt[ i ]
#Price<−sapply ( 2 : n , f unc t i on ( i ) S [ i −1]∗
exp(−lambda∗ de l t a t )+mu∗(1−exp(−lambda∗ de l t a t ))+sigma∗dWt[ i ] )
p l o t (S , type="b" , ylab="Pr i ce " ,main=T i t l e )
p r i n t (S)
re turn (S)
}

BL<−OUSim(41 . 667 , 71 . 493 , 21 . 236 , 0 . 00062 , 1/12 , 60 , "BL")
BB<−OUSim(44 . 2267 , 71 . 827 , 21 . 895 , 0 . 00063 , 1/12 , 60 , "BB")
PL<−OUSim(44 . 2967 , 72 . 207 , 22 . 079 , 0 . 00063 , 1/12 , 60 , "PL")
ANT<−OUSim(42 . 7717 , 69 . 443 , 22 . 054 , 0 . 00062 , 1/12 , 60 , "ANTAN")

Table 6: R-Code for Computational Scheme generating St values
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Appendix C
Oil price data for the 4 Crude types

MONTH / YEAR BL (US$) BB (US$) PL (US$) AT (US$) 

2005         

JAN 44.1667 44.2267 44.2967 42.7717 

FEB 45.2401 45.3001 45.3701 45.874 

MAR 52.9998 53.0598 53.1298 51.6048 

APR 51.8679 51.9279 51.9979 50.4729 

MAY 48.936 48.996 49.066 47.541 

JUN 54.898 54.958 55.028 53.503 

JUL 58.0465 58.1065 58.1765 56.6515 

AUG 65.945 66.005 66.075 64.55 

SEP 65.1395 65.1995 65.2695 63.7445 

OCT 60.1407 60.2007 60.2707 58.7457 

NOV 55.8968 55.9568 56.0268 54.5018 

DEC 57.154 57.214 57.284 55.759 

2006 BL (US$) BB (US$) PL (US$) AT (US$) 

JAN 63.3527 63.4127 63.4827 61.9567 

FEB 60.74 60.8 60.87 59.344 

MAR 63.2524 63.3124 63.3824 61.8564 

APR 72.1166 72.1766 72.2466 70.3206 

MAY 71.164 71.224 71.294 69.571 

JUN 69.5066 69.5666 69.6366 69.989 

JUL 75.2569 75.3169 75.3869 73.8609 

AUG 74.4721 74.5321 74.6021 73.0761 

SEP 61.94 62 62.07 60.544 

OCT 58.757 58.817 58.887 57.361 

NOV 60.3197 60.3797 60.4497 58.9237 

DEC 64.2745 64.3345 64.4045 62.8785 

2007 BL (US$) BB (US$) PL (US$) AT (US$) 

JAN 55.5622 55.6222 55.6922 54.12 

FEB 59.395 59.455 59.525 58.005 

MAR 64.058 64.118 64.188 58.331 

APR 70.332 70.392 70.462 64.73 

MAY 70.104 70.164 70.234 66.584 

JUN 73.801 73.861 73.931 68.401 

JUL 79.456 79.516 79.586 73.421 

AUG 73.344 73.404 73.474 73.344 

SEP 79.465 79.525 79.595 79.465 

OCT 84.584 84.644 84.714 84.584 

NOV 94.461 94.521 94.591 94.461 

DEC 92.8548 92.9148 92.9848 92.8548 
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MONTH / YEAR BL (US$) BB (US$) PL (US$) AT (US$) 

2008         

JAN 94.0321 93.4394 92.8512 87.75 

FEB 99.2161 97.5285 98.0903 96.252 

MAR 95.5473 106.8165 105.256 101.39 

APR 114.0519 113.0931 114.3591 113.178 

MAY 129.1207 128.5945 129.574 126.2017 

JUN 130.4259 140.727 137.959 140.249 

JUL 132.6695 133.4284 137.0709 130.885 

AUG 115.1328 113.9404 117.885 109.7788 

SEP 98.9226 96.8924 98.673 89.6836 

OCT 66.7688 70.3236 72.584 59.3712 

NOV 52.1634 52.8436 54.212 45.404 

DEC 43.1876 41.944 44.569 37.2078 

2009 BL (US$) BB (US$) PL (US$) AT (US$) 

JAN 45.54141886 45.38057343 46.158 41.35170087 

FEB 45.02294382 45.93184663 48.348 39.85829155 

MAR 51.85602396 49.87174229 48.444 46.55918275 

APR 52.3576 53.2512 48.444 49.7834 

MAY 62.7257 61.1513 62.6772 59.2899 

JUN 69.0588 69.9299 70.87 66.4178 

JUL 68.2345291 66.42060408 69.728 66.04678958 

AUG 71.19531051 72.16594376 74.086 71.53944376 

SEP 68.79464947 68.4614642 70.483 66.84437075 

OCT 75.66167712 77.17534434 72.966 74.91834501 

NOV 78.03899299 78.06138685 79.492 76.48787075 

DEC 76.87649492 77.06592552 79.94190281 76.41672541 
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