

On Quasi-Nilpotents in Finite Partial Transformation Semigroups

B. Ali ¹, M. Yahuza ^{2*}, A. T. Imam ³

- 1. Department of Mathematical Sciences, Nigerian Defence Academy, Kaduna-Nigeria.
- 2. Department of Mathematics, Federal University of Education, Zaria-Nigeria.
- 3. Department of Mathematics, Ahmadu Bello University, Zaria-Nigeria.
- * Corresponding author: myahuza85@gmail.com*, bali@nda.edu.ng, atimam@abu.edu.ng

Article Info

Received: 21 February 2025 Revised: 12 May 2025

Accepted: 19 May 2025 Available online: 30 May 2025

Abstract

Let X_n be the finite set $\{1, 2, 3 \cdots, n\}$ and \mathcal{P}_n be the partial transformation on X_n . A transformation α in \mathcal{P}_n is called quasi-nilpotent if when α is raised to some certain power it reduces to a constant map i.e α^m reduces to a constant map for $m \geq 1$. We characterize quasi-nilpotents in \mathcal{P}_n and show that the semigroup \mathcal{P}_n is quasi-nilpotent generated. Moreover if K(n,r) is the subsemigroup of \mathcal{P}_n consisting of all elements of height r or less, where height of an element α is defined as $|im\alpha|$, we obtained quasi-nilpotents rank of K(n,r) that is the cardinality of a minimum quasi-nilpotents generating set for \mathcal{P}_n as the stirling number of the second kind S(n+1,r+1) which is the same as its idempotents rank.

Keywords: Nilpotents, Quasi-Nilpotent, Pseudo-Quasi-Nilpotent, Generating Sets, Rank.

MSC2010: 03G27, 16N40.

1 Introduction

Let \mathcal{P}_n be the semigroup of partial transformation on a finite set $X_n = \{1, 2, 3 \cdots, n\}$. Evseev and Podran [2] considered the semigroup \mathcal{P}_n consisting of all partial maps and showed that all elements other than permutations are expressible as products of idempotents. Garba [4] generalised the work of Evseev and Podran [2] to the ideals

 $K(n,r) = \{\alpha \in \mathcal{P}_n : |im\alpha| \le r\}$ for $2 \le r \le n-1$ and studied product of idempotents as well as the idempotents rank in the partial transformation semigroup by using the result of Vagner [12] which says there is an isomorphism between \mathcal{P}_n and a subsemigroup \mathcal{P}_n^* of the full transformation semigroup $U_n = \{0, 1, 2 \cdots, n\}$ consisting of all maps $\alpha: \{0, 1, 2 \cdots, n\} \mapsto \{0, 1, 2 \cdots, n\}$ for which $0\alpha = 0$.

Let S be a semigroup and let $\emptyset \neq A \subseteq S$, the smallest subsemigroup of S containing A is called the subsemigroup generated by A and is denoted by $\langle A \rangle$. Clearly $\langle A \rangle$ is the set of all finite products

of elements of A. If there exists a non-empty subset A of S such that $S = \langle A \rangle$, then A is called a generating set of S. Also the rank of a finitely generated semigroup S is defined as

$$rank(S) = min\{|A| : A \subseteq S \text{ and } \langle A \rangle = S\}.$$

An element $\alpha \in \mathcal{P}_n(\mathcal{T}_n)$ is called a quasi-nilpotent if when raised to some certain power reduces to a constant map and if S is generated by the set of only Quasi-nilpotent (QN) elements then the quasi-nilpotent rank is defined by

$$qnilrank(S) = min\{|A| : A \subseteq QN \ and \ \langle A \rangle = S\}$$

The concept of quasi-idempotents elements was studied by Umar [11] and showed that $I_n^- = \{\alpha \in \mathbb{R} \mid \alpha \in \mathbb{R} \}$ $I_n: (\forall x \in dom\alpha, x\alpha \leq x)$ the set of all decreasing maps in symmetric inverse semigroup is quasi-idempotents generated and its rank is equal to $\frac{n(n+1)}{2}$. Madu and Garba [10] proved that each element in the semigroup $\mathcal{IO}_n = \{ \alpha \in \mathcal{IO}_n : (\forall x, y \in dom\alpha, x \leq y \implies x\alpha \leq y\alpha \} \}$ the set of all order preservig maps in symmetric inverse semigroup is expressible as a product of quasi-idempotents of defect one in \mathcal{IO}_n and that the quasi-idempotent rank and depth of \mathcal{IO}_n are 2(n-1) and (n-1) respectively. Garba et al [5] proved that $Sing_n$ is quasi-idempotent generated and that the quasi-idempotent rank of $Sing_n$ is $\frac{n(n-1)}{2}$. Imam et al [9] studied quasi-idempotet in finite partial order-preserving transformation semigroup \mathcal{PO}_n and showed that the semigroup is quasi-idempotent generated and they also obtained an upper bound for quasi-idempotent rank of \mathcal{PO}_n to be $\lceil \frac{5n-4}{2} \rceil$. Ali et al [1] investigated some rank properties on the semigroup of orderpreserving order-decreasing partial contraction mappings on a finite chain \mathcal{ODCP}_n and found the rank of \mathcal{ODCP}_n to be 2n.

Garba and Madu [3] studied Quasi-nilpotent elements in finite full transformation semigroup and showed that $sing_n$ is quasi-nilpotent generated and that the quasi-nilpotent rank is equal to S(n,r)stirling number of the second kind which is the same as its idempotent rank.

In this article, we prove a result corresponding to that of Garba and Madu [3] for the partial transformations and that the quasi-nilpotents rank defined as the cardinality of a minimal generating set of quasi-nilpotents of K(n,r) is S(n+1,r+1), stirling number of the second kind.

2 **Preliminaries**

Let X be a finite set $\{1, 2, 3 \cdots, n\}$ and let U_n be the semigroup of all full transformation on X_0 where $X_0 = X \cup \{0\}$, by Vagner [12] For each α in P_n , we have the transformation α^* of X_0 by

$$x\alpha^* = \begin{cases} x\alpha \text{ if } x \in dom\alpha \\ 0 \text{ otherwise.} \end{cases}$$

Then α^* belongs to the subsemigroup P_n^* of U_n consisting of all those transformation of X_0 leaving 0 fixed. Conversely, if $\beta \in P_n^*$ then its restriction to X, $\beta X = \beta \cap (X \times X)$ is a partial transformation of X. The domain of $\beta \setminus X_n$ is the set of all x in X for which $x\beta \neq 0$. Then the mapping $\alpha \to \alpha^*$ and $\rightarrow \beta \setminus X$ are mutually inverse isomorphism of P_n onto P_n^* and vice-versa.

Lemma 2.1 (Garba and Madu (2003)). : An element $\alpha \in Sing_n$ is quasi-nilpotent if and only if $fix(\alpha) = 1$ and $A\alpha \neq A$ except $fix(\alpha)$ where A is a non-empty subset of X_n

Lemma 2.2. Every nilpotent element of height r in P_n correspond to a quasi-nilpotent in P_n^* under the Vagner isomorphism.

Proof. Let $\alpha = \begin{pmatrix} A_1 & A_2 \cdots A_r \\ b_1 & b_2 \cdots b_r \end{pmatrix}$ be a nilpotent element in \mathcal{P}_n of height r where $b_i \notin A_i$ and $A_i \in X_n$ for all i, then by definition of nilpotent element $fix(\alpha) = 0$ and $A\alpha \neq A$ where A is a

International Journal of Mathematical Sciences and Optimization: Theory and Applications

11(2), 2025, PAGES 55 - 61

HTTPS://DOI.ORG/10.5281/ZENODO.16740605

non-empty subset of X_n , then clearly the image of $\alpha \in \mathcal{P}_n$ under the Vagner mapping representation is $\alpha^* \in \mathcal{P}_n^*$ where

$$\alpha^* = \begin{pmatrix} A_0 & A_1 & A_2 \cdots A_r \\ 0 & b_1 & b_2 \cdots b_r \end{pmatrix}$$

now α^* is a quasi-nilpotent since $fix(\alpha) = 1$ and $A\alpha \neq A$ except $fix(\alpha)$ and so the result follows from lemma 2.1 above.

For example $\alpha = \begin{pmatrix} 1 & 3 \\ 2 & 1 \end{pmatrix}$ is a nilpotent in P_3 and it correspond to $\alpha^* = \begin{pmatrix} 0 & 1 & 2 & 3 \\ 0 & 2 & 0 & 1 \end{pmatrix}$ in P_3^* , because 2 is missing in the domain of α and by vagner [12], any element missing in the domain should be mapped to 0 and also 0 is mapped to itself.

From the work of Garba [4] (Lemma 2.4): P_n^* is a regular subsemigroup of U_n . and By Howie [6], $\mathcal{L}(P_n^*) = \mathcal{L}(U_n) \cap (P_n^* \times P_n^*)$, $\mathcal{R}(P_n^*) = \mathcal{R}(U_n) \cap (P_n^* \times P_n^*)$ and $\mathcal{J}(P_n^*) = \mathcal{J}(U_n) \cap (P_n^* \times P_n^*)$.

A typical \mathcal{J} -class of U_n (consisting of elements of height r $(1 \leq r \leq n+1)$) has S(n+1,r) \mathcal{R} -classes, $\binom{n+1}{r}$ \mathcal{L} -classes, and each \mathcal{L} -class corresponds to a subset of U_n of cardinality r. Not every \mathcal{L} -class intersect P_n^* . In fact an \mathcal{L} -class intersect P_n^* if and only if its corresponding subset contains 0. So there are $\binom{n}{r-1}$ \mathcal{L} -classes containing 0, and $\binom{n}{r}$ -classes not containing 0. (Observe as a check that $\binom{n}{r-1} + \binom{n}{r} = \binom{n+1}{r}$.

By contrast, every \mathcal{R} -class intersect P_n^* , since for a given equivalence ρ on U_n with r classes, we can choose an α such that $(0\rho)\alpha = 0$ and all other classes map in an arbitrary way.

Definition 2.3. An element $\alpha^* \in \mathcal{P}_n^*$ is called a Pseudo-Quasi-Nilpotent (PQN) if $\alpha \in \mathcal{P}_n$ is a quasi-nilpotent. Where $\alpha^* \in \mathcal{P}_n^*$ is the image of $\alpha \in \mathcal{P}_n$ under Vagner mapping representation.

Lemma 2.4. Every quasi-nilpotent element in \mathcal{P}_n corresponds to a pseudo-quasi-nilpotent in \mathcal{P}_n^* under Vagner mapping representation.

Proof. Suppose $\alpha \in \mathcal{P}_n$ is a quasi-nilpotent element, then by definition $fix(\alpha) = 1$ and no non-empty subset A of X_n such that $A\alpha = A$ except $fix(\alpha)$, then the image of $\alpha \in \mathcal{P}_n$ under Vagner mapping representation is $\alpha^* \in \mathcal{P}_n^*$ and so clearly $fix(\alpha^*) = 2$ and thus $\alpha^* \in \mathcal{P}_n^*$ becomes a pseudo-quasi-nilpotent element.

Lemma 2.5 (Garba(1990)). : Every element α in P_n^* of height r is expressible as a product of idempotents of height r. that is $\alpha = \varepsilon_1, \varepsilon_2, ..., \varepsilon_m$, thus the subsemigroup P_n^* is idempotent generated.

The next result gives a complete characterization of Pseudo-quasi-nilpotent elements in P_n^* .

Theorem 2.6. An element $\alpha^* \in \mathcal{P}_n^*$ is pseudo-quasi-nilpotent if and only if:

$$i\ fix(\alpha^*) = 2\ that\ is\ fix(\alpha^*) = \{0,i\}\ for\ some\ i\ in\ X_n$$

ii No non-empty subset A of X_n such that $A\alpha^* = A$ except $fix(\alpha^*)$.

Proof. Let $\alpha^* \in \mathcal{P}_n^*$, if $fix(\alpha^*) = 1$, then $fix(\alpha) = 0$ under the Vagner mapping representation and by lemma 2.3, α cannot be reduced to a constant mapping and so α is not a quasi-nilpotent element and as such α^* cannot be a pseudo-quasi-nilpotent. If $fix(\alpha^*) \geq 3$, then clearly the image of α under Vagner mapping representation will have $fix(\alpha) \geq 2$ and so by lemma 2.3, α cannot be a quasi-nilpotent element.

Conversely, suppose that $fix(\alpha^*) = 2$ that is $fix(\alpha^*) = \{0, i\}$ for some i in X_n and that No non-empty subset A of X_n such that $A\alpha^* = A$ except $fix(\alpha^*)$, then by lemma 2.3, α can be reduced to a constant mapping and so α becomes a quasi-nilpotent element.

Products of pseudo-quasi-nilpotents 3

We begin this section with a result that shows every idempotent in partial transformation Semigroup can be written in terms of two pseudo-quasi-nilpotents.

Theorem 3.1. Every Idempotent $\beta^* \in \mathcal{P}_n^*$ is expressible as a product of two pseudo-quasi-nilpotent.

Proof. Let $\beta^* \in \mathcal{P}_n^*$ be an idempotent of height r, that is $|im\beta^*| = r$, then we write β^* as $\beta^* = r$ $\begin{pmatrix} A_0 & A_1 & A_2 \cdots A_r \\ 0 & a_1 & a_2 \cdots a_r \end{pmatrix}$ where $a_i \in A_i$ for $0 \le i \le r$, Without loss of generality, we may assume two cases, when $|A_i| = 1$ for all $i \ge 1$ and $|A_i| \ge 2$ for some $i \ge 1$:

Case 1: If $|A_i| \geq 2$ for some $i \geq 1$ that is $A_1 = \{a_1, a'_1, \dots\}$, then

$$\beta^* = \begin{pmatrix} A_0 & A_1 & A_2 \cdots A_{r-1} & A_r \\ 0 & a_1 & a_3 \cdots & a_r & a_1' \end{pmatrix} \begin{pmatrix} 0 & X_n \setminus Z & a_3 & a_4 & \cdots & a_r & a_1' \\ 0 & a_1 & a_2 & a_3 & \cdots & a_{r-1} & a_r \end{pmatrix}$$

Where $Z = \{a_3, a_4 \cdots, a_r, a_1', \}$, then clearly the two mappings on the right hand side are pseudo-quasi-nilpotents.

Case 2: If $|A_i| = 1$ for all i, then clearly the block A_0 must contain more than one elements, that is $|A_0| > 1$, since the mapping is not a permutation and so we can pick our a_1' , from the block A_0 to be any non-zero element and the result follows from the first case.

We now give two examples to explain the two cases considered.

Example 3.2. for Case 1: Let $\beta^* = \begin{pmatrix} \{034\} & \{12\} & \{57\} & \{86\} & \{9\} \\ 0 & 2 & 7 & 6 & 9 \end{pmatrix}$ be an idempotent in \mathcal{P}_9^* . Since $|A_i| \geq 2$ for $i \geq 1$, then we have $Z = \{6, 9, 1\}$ and $X_n \setminus Z = \{2, 3, 4, 5, 7, 8\}$. then $\beta^* = \begin{pmatrix} \{034\} & \{12\} & \{57\} & \{86\} & \{9\} \\ 0 & 2 & 6 & 9 & 1 \end{pmatrix} \begin{pmatrix} \{0\} & \{234578\} & \{6\} & \{9\} & \{1\} \\ 0 & 2 & 7 & 6 & 9 \end{pmatrix}$ clearly the two mappings on the right are pseudo-quasi-nilpotent elements.

For Case 2: Let $\beta^* = \begin{pmatrix} \{0123\} & \{4\} & \{5\} & \{6\} & \{7\} & \{8\} \\ 0 & 4 & 5 & 6 & 7 & 8 \end{pmatrix}$ be an idempotent in \mathcal{P}_8^* . Then $Z = \{6,7,8,2\}$ where $2 \in A_0$ is the choosen non-zero element from the block A_0 and $X_n \setminus Z = \{1,3,4,5\}$, now $\alpha^* = \begin{pmatrix} \{0123\} & \{4\} & \{5\} & \{6\} & \{7\} & \{8\} \\ 0 & 4 & 6 & 7 & 8 & 2 \end{pmatrix} \begin{pmatrix} \{0\} & \{1345\} & \{6\} & \{7\} & \{8\} & 2 \\ 0 & 4 & 5 & 6 & 7 & 8 \end{pmatrix}$

Clearly the two mappings on the right hand side are pseudo-quasi-nilpotent elements.

Remark: Products of two Pseudo-quasi-nilpotent elements need not be a pseudo-quasi-nilpotent indicating that the pseudo-quasi-nilpotent do not generate themselves.

Example 3.3. Let
$$\alpha^* = \begin{pmatrix} \{01\} & \{2\} & \{3\} \\ 0 & 1 & 3 \end{pmatrix}$$
 and $\beta^* = \begin{pmatrix} \{01\} & \{2\} & \{3\} \\ 0 & 2 & 1 \end{pmatrix}$ be two elements in \mathcal{P}_3^* then both α^* and β^* are pseudo-quasi-nilpotent, but
$$\alpha^*\beta^* = \begin{pmatrix} \{012\} & \{3\} \\ 0 & 1 \end{pmatrix}$$
 is not a pseudo-quasi-nilpotent.

Theorem 3.4. The Subsemigroup \mathcal{P}_n^* of U_n consisting of all those transformations of X_0 leaving 0 fixed is pseudo-quasi-nilpotent generated.

Proof. By Lemma 2.4, Every element $\alpha^* \in \mathcal{P}_n^*$ of height r is expressible as a product of idempotents of height r that is $\alpha^* = \epsilon_1^*, \epsilon_2^*, \cdots, \epsilon_m^*$ Thus the Subsemigroup \mathcal{P}_n^* is idempotent generated and since every idempotent in the Subsemigroup \mathcal{P}_n^* is expressible as product of two pseudo-quasi-nilpotent elements, then the result follows from theorem 3.1

Corollary 3.5. The semigroup of partial transformation \mathcal{P}_n is Quasi-nilpotent generated.

Pseudo-Quasi-Nilpotents Rank

We know that from the work of Garba and Madu [3], that for $1 \le r \le n$, let $K(n,r) = \{\alpha \in T_n : 1 \le r \le n \}$ $|im\alpha| \leq r$ then $K(n,n) = T_n$ and $K(n,n-1) = sing_n$. Each K(n,r) is a two sided ideal of T_n and K(n,r)/K(n,r-1) is a principal factor of T_n , which we can denote by P_r .

The quasi-nilpotent rank of the Semigroup K(n,r) = S(n,r) i.e the sterling number of the second kind for all $n \geq 3$ and for all r such that $2 \leq r \leq n-1$. Now we wish to investigate the Pseudo-quasi-nilpotent rank in the partial transformation case $K^*(n,r)$ by applying the Vagner mapping representation.

Theorem 4.1. The pseudo-quasi-nilpotent rank of the Semigroup $K^*(n+1,r)$ is S(n+1,r) for $r \ge 2$

Proof. Firstly, we would like to have a result like [lemma 5 of Garba and Madu [3]] but referring to elements of P_n^* (i.e elements preserving zero (0)) which says "let A_1, \dots, A_m (where $m = \binom{n}{r-1}$) and $r \geq 3$) be a list of the 0-subsets of X_0 with cardinality r, that is subsets of X_0 containing 0. Suppose there exist distinct equivalences $\pi_1, \pi_2, \cdots, \pi_m$ of weight r on X_0 satisfying the two

- i A_{i-1}, A_i are both transversal of $\pi_i (i=2,3,\cdots,m)$ and A_m, A_1 are both transversal of π_1
- ii A_{i+1} is not a transversal of π_i and A_1 is not a transversal of π_m

Then each non-group \mathcal{H} -class (π_i, A_{i+1}) and (π_m, A_1) contains a pseudo-quasi-nilpotent elements $\alpha_{i,i+1}$ and $\alpha_{m,1}$ respectively and there exist pseudo-quasi-nilpotent q_{m+1}, \cdots, q_p (where p = S(n+1)(1,r) in P_n^* such that

 $\{\alpha_{1,2},\alpha_{2,3},\cdots,\alpha_{m-1,m},\alpha_{m,1},q_{m+1},\cdots q_p\}$ is a set of generators for $K^*(n+1,r)$."

By Howie and Mcfadden [8] each \mathcal{H} -class (π_i, A_i) contains idempotent ϵ_i and there exist idempotents $(\epsilon_{m+1}, \epsilon_{m+2}, \dots, \epsilon_p)$ where p = S(n,r) such that $\{\epsilon_1, \epsilon_2, \dots, \epsilon_p\}$ is a set of generators for K(n,r). The idempotents $\epsilon_{m+1}, \dots, \epsilon_p$ are chosen so that $\{\epsilon_1, \dots, \epsilon_p\}$ cover the \mathcal{R} -classes in P_r . Our objective is to show that $\{\epsilon_1, \dots, \epsilon_p\} \subseteq \langle \alpha_{1,2}, \dots, \alpha_{m-1,m}, \alpha_{m,1}, q_{m+1}, \dots, q_p \rangle$. We choose the pseudo-quasi-nilpotent q_{m+1}, \dots, q_p so that $\alpha_{1,2}, \dots, \alpha_{m-1,m}, \alpha_{m,1}, q_{m+1}, \dots, q_p$ cover all the \mathcal{R} -classes in P_r .

To prove the listing of images and kernel equivalences postulated in the statement above can actually be carried out. Let n > 3 and 2 > r > n - 1 and consider the following proposition which is the \mathcal{P}_n^* version of the equivalent lemma 5 in Garba and Madu [3] which says "There is a way of listing the 0-subsets of X_0 of cardinality r as A_1, \dots, A_m (with $m = \binom{n}{r-1}$),

 $A_1 = \{0, 1, \dots, r-1\}, A_m = \{0, n-r+2, \dots, n\}$ so that there exist equivalences π_1, \dots, π_m of weight r with the property that

- i A_{i-1}, A_i are both transversal of $\pi_i (i=2,3,\cdots,m)$ and A_m, A_1 are both transversal of π_1
- ii A_{i+1} is not a transversal of π_i and A_1 is not a transversal of π_m

Then all we have to do here is to consider $\{0\}$ as a singleton class for each $\pi_i (i = 1, 2, \dots, m)$ and the rest of the π_i -classes as in Garba and Madu [3]. To exemplify the process, We Let n=4 and consider the set {1, 2, 3, 4}. The list given in Garba and Madu [3] of all the subsets of cardinality 2 with the equivalences is given below:

$$A'_{1} = \{1, 2\} \quad \pi'_{1} = 13 \setminus 24$$

$$A'_{2} = \{1, 3\} \quad \pi'_{2} = 14 \setminus 23$$

$$A'_{3} = \{1, 4\} \quad \pi'_{3} = 12 \setminus 34$$

$$A'_{4} = \{2, 3\} \quad \pi'_{4} = 124 \setminus 3$$

$$A'_5 = \{2, 4\}$$
 $\pi'_5 = 134 \setminus 2$
 $A'_6 = \{3, 4\}$ $\pi'_6 = 123 \setminus 4$

Now for the set $\{0, 1, 2, 3, 4\}$ we have the 0-subsets of cardinality 3 and the equivalences as given below

$$A_{1} = \{0, 1, 2\} \quad \pi_{1} = 0 \setminus 13 \setminus 24$$

$$A_{2} = \{0, 1, 3\} \quad \pi_{2} = 0 \setminus 14 \setminus 23$$

$$A_{3} = \{0, 1, 4\} \quad \pi_{3} = 0 \setminus 12 \setminus 34$$

$$A_{4} = \{0, 2, 3\} \quad \pi_{4} = 0 \setminus 124 \setminus 3$$

$$A_{5} = \{0, 2, 4\} \quad \pi_{5} = 0 \setminus 134 \setminus 2$$

$$A_{6} = \{0, 3, 4\} \quad \pi_{6} = 0 \setminus 123 \setminus 4$$

Theorem 4.2. The Pseudo-quasi-nilpotent rank of K(n,r) is equal to its idempotent rank which is the stirling number of the second kind S(n+1,r+1) for $2 \le r \le n-1$ where $K(n,r) = \{\alpha \in \{n,r\}\}$ $P_n: |im\alpha| \leq r\}.$

Proof. By the isomorphism between \mathcal{P}_n and \mathcal{P}_n^* elements of height r in \mathcal{P}_n correspond to element of height r+1 in \mathcal{P}_n^* . It therefore follows that the image of K(n,r) under the isomorphism is $K^*(n+1,r+1)$ and the result follows from theorem 4.1 above.

References

IJMSO

- [1] Ali, B., Jada, M. A., Zubairu, M. M. (2024). On Rank of Semigroup of Order-Preserving Order-Decreasing Partial Contraction Mappings on a Finite Chain. International Journal of Mathematical Sciences and Optimization: Theory and Applications 10(4):1-11.
- [2] Evseev, A. E., Podran, N. E. (1988). Semigroup of transformations of a finite set generated by idempotents with a given projection characteristics. American Mathematical Society Translated 139(2):69-76.
- [3] Garba, G. U., Madu, B. A. (2003). Quasi-nilpotent rank in finite full transformation semigroups. JMI, International Journal of Mathematical Sciences 30:105-111.
- [4] Garba, G. U. (1990). Idempotents in partial transformation semigroups. Proceedings of the Royal Society of Edinburgh 116A:359-366.
- [5] Garba, G. U., Tanko, A. I., Madu, B. A. (2011). Products and rank of quasi-idempotents in finite full transformations semigroups. JMI, International Journal of Mathematical Sciences 2(1):12-19.
- [6] Howie, J. M. (1978). Idempotent generators in finite full transformation semigroups. Proceedings of the Royal Society of Edinburgh 81A:317-323.
- [7] Howie, J. M. (1980). Products of idempotents in a finite full transformation semigroup. Proceedings of the Royal Society of Edinburgh 86A:243-254.
- [8] Howie, J. M., McFadden, R. B. (1990). Idempotent rank in finite full transformation semigroups. Proceedings of the Royal Society of Edinburgh 116A:161-167.
- [9] Imam, A. T., Usman, L., Idris, A., Ibrahim, S. (2024). Product of Quasi-idempotet in finite semigroup of partial order-preserving transformations. International Journal of Mathematical Sciences and Optimization: Theory and Applications 10(1):53-59.

International Journal of Mathematical Sciences and Optimization: Theory and Applications $11(2),\ 2025,\ Pages\ 55$ - 61

HTTPS://DOI.ORG/10.5281/ZENODO.16740605

- [10] Madu, B. A., Garba, G. U. (2001). Quasi-idempotents in finite semigroups of order-preserving charts. *Research Journal of Sciences* 7(1 and 2):61-64.
- [11] Umar, A.. (1993). On the semigroup of partial one-one order-decreasing finite transformation. *Proceedings of the Royal Society of Edinburgh* 123A:355-363.
- [12] Vagner, V. V. (1964). Representations of ordered semigroups. American mathematical society translated 36(2):295-336.