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Abstract

Let Xn be the finite set {1, 2, 3 · · · , n} and Pn be the partial transformation on Xn. A
transformation α in Pn is called quasi-nilpotent if when α is raised to some certain power it
reduces to a constant map i.e αm reduces to a constant map for m ≥ 1. We characterize
quasi-nilpotents in Pn and show that the semigroup Pn is quasi-nilpotent generated. Moreover
if K(n, r) is the subsemigroup of Pn consisting of all elements of height r or less, where height
of an element α is defined as |imα|, we obtained quasi-nilpotents rank of K(n, r) that is the
cardinality of a minimum quasi-nilpotents generating set for Pn as the stirling number of the
second kind S(n+ 1, r + 1) which is the same as its idempotents rank.
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1 Introduction
Let Pn be the semigroup of partial transformation on a finite set Xn = {1, 2, 3 · · · , n}. Evseev and
Podran [2] considered the semigroup Pn consisting of all partial maps and showed that all elements
other than permutations are expressible as products of idempotents. Garba [4] generalised the work
of Evseev and Podran [2] to the ideals
K(n, r) = {α ∈ Pn : |imα| ≤ r} for 2 ≤ r ≤ n − 1 and studied product of idempotents as well as
the idempotents rank in the partial transformation semigroup by using the result of Vagner [12]
which says there is an isomorphism between Pn and a subsemigroup P∗

n of the full transformation
semigroup Un = {0, 1, 2 · · · , n} consisting of all maps α:{0, 1, 2 · · · , n}7→ {0, 1, 2 · · · , n} for which
0α = 0 .

Let S be a semigroup and let ∅ ≠ A ⊆ S, the smallest subsemigroup of S containing A is called
the subsemigroup generated by A and is denoted by ⟨A⟩. Clearly ⟨A⟩ is the set of all finite products

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://ijmso.unilag.edu.ng/article

55

https://doi.org/10.5281/zenodo.16740605
http://ijmso.unilag.edu.ng/article


International Journal of Mathematical Sciences and
Optimization: Theory and Applications

11(2), 2025, Pages 55 - 61
https://doi.org/10.5281/zenodo.16740605

of elements of A. If there exists a non-empty subset A of S such that S = ⟨A⟩, then A is called a
generating set of S. Also the rank of a finitely generated semigroup S is defined as

rank(S) = min{|A| : A ⊆ S and ⟨A⟩ = S}.

An element α ∈ Pn (Tn) is called a quasi-nilpotent if when raised to some certain power reduces to
a constant map and if S is generated by the set of only Quasi-nilpotent (QN) elements then the
quasi-nilpotent rank is defined by

qnilrank(S) = min{|A| : A ⊆ QN and ⟨A⟩ = S}

The concept of quasi-idempotents elements was studied by Umar [11] and showed that I−n = {α ∈
In : (∀x ∈ domα, xα ≤ x} the set of all decreasing maps in symmetric inverse semigroup is
quasi-idempotents generated and its rank is equal to n(n+1)

2 . Madu and Garba [10] proved that
each element in the semigroup IOn = {α ∈ IOn : (∀x, y ∈ domα, x ≤ y =⇒ xα ≤ yα}
the set of all order preservig maps in symmetric inverse semigroup is expressible as a product of
quasi-idempotents of defect one in IOn and that the quasi-idempotent rank and depth of IOn are
2(n− 1) and (n− 1) respectively. Garba et al [5] proved that Singn is quasi-idempotent generated
and that the quasi-idempotent rank of Singn is n(n−1)

2 . Imam et al [9] studied quasi-idempotet
in finite partial order-preservig transformation semigroup POn and showed that the semigroup is
quasi-idempotent generated and they also obtained an upper bound for quasi-idempotent rank of
POn to be ⌈ 5n−4

2 ⌉. Ali et al [1] investigated some rank properties on the semigroup of order-
preserving order-decreasing partial contraction mappings on a finite chain ODCPn and found the
rank of ODCPn to be 2n.
Garba and Madu [3] studied Quasi-nilpotent elements in finite full transformation semigroup and
showed that singn is quasi-nilpotent generated and that the quasi-nilpotent rank is equal to S(n, r)
stirling number of the second kind which is the same as its idempotent rank.

In this article, we prove a result corresponding to that of Garba and Madu [3] for the partial
transformations and that the quasi-nilpotents rank defined as the cardinality of a minimal generating
set of quasi-nilpotents of K(n, r) is S(n+ 1, r + 1), stirling number of the second kind.

2 Preliminaries
Let X be a finite set {1, 2, 3 · · · , n} and let Un be the semigroup of all full transformation on X0

where X0 = X ∪ {0}, by Vagner [12] For each α in Pn, we have the transformation α∗ of X0 by

xα∗ =

{
xα if x ∈ domα

0 otherwise.

Then α∗ belongs to the subsemigroup P ∗
n of Un consisting of all those transformation of X0 leaving 0

fixed. Conversely, if β ∈ P ∗
n then its restriction to X, βX = β∩ (X×X) is a partial transformation

of X. The domain of β \Xn is the set of all x in X for which xβ ̸= 0. Then the mapping α → α∗

and → β \X are mutually inverse isomorphism of Pn onto P ∗
n and vice-versa.

Lemma 2.1 (Garba and Madu (2003)). : An element α ∈ Singn is quasi-nilpotent if and only if
fix(α)= 1 and Aα ̸= A except fix(α) where A is a non-empty subset of Xn

Lemma 2.2. Every nilpotent element of height r in Pn correspond to a quasi-nilpotent in P ∗
n under

the Vagner isomorphism.

Proof. Let α =

(
A1 A2 · · ·Ar

b1 b2 · · · br

)
be a nilpotent element in Pn of height r where bi /∈ Ai and

Ai ∈ Xn for all i, then by definition of nilpotent element fix(α) = 0 and Aα ̸= A where A is a
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non-empty subset of Xn, then clearly the image of α ∈ Pn under the Vagner mapping representation
is α∗ ∈ P∗

n where

α∗ =

(
A0 A1 A2 · · ·Ar

0 b1 b2 · · · br

)
now α∗ is a quasi-nilpotent since fix(α) = 1 and Aα ̸= A except fix(α) and so the result follows
from lemma 2.1 above.

For example α =
(
1 3
2 1

)
is a nilpotent in P3 and it correspond to α∗ =

(
0 1 2 3
0 2 0 1

)
in P ∗

3 ,

because 2 is missing in the domain of α and by vagner [12], any element missing in the domain
should be mapped to 0 and also 0 is mapped to itself.

From the work of Garba [4] (Lemma 2.4): P ∗
n is a regular subsemigroup of Un. and By Howie [6],

L(P ∗
n) = L(Un) ∩ (P ∗

n × P ∗
n), R(P ∗

n) = R(Un) ∩ (P ∗
n × P ∗

n) and J (P ∗
n) = J (Un) ∩ (P ∗

n × P ∗
n).

A typical J -class of Un (consisting of elements of height r (1 ≤ r ≤ n + 1)) has S(n + 1, r)
R-classes,

(
n+1
r

)
L-classes, and each L-class corresponds to a subset of Un of cardinality r. Not

every L-class intersect P ∗
n . In fact an L-class intersect P ∗

n if and only if its corresponding subset
contains 0. So there are

(
n

r−1

)
L-classes containing 0, and

(
n
r

)
-classes not containing 0. (Observe

as a check that
(

n
r−1

)
+
(
n
r

)
=

(
n+1
r

)
.

By contrast, every R-class intersect P ∗
n , since for a given equivalence ρ on Un with r classes, we

can choose an α such that (0ρ)α = 0 and all other classes map in an arbitrary way.

Definition 2.3. An element α∗ ∈ P∗
n is called a Pseudo-Quasi-Nilpotent (PQN) if α ∈ Pn is a

quasi-nilpotent. Where α∗ ∈ P ∗
n is the image of α ∈ Pn under Vagner mapping representation.

Lemma 2.4. Every quasi-nilpotent element in Pn corresponds to a pseudo-quasi-nilpotent in P∗
n

under Vagner mapping representation.

Proof. Suppose α ∈ Pn is a quasi-nilpotent element, then by definition fix(α) = 1 and no non-
empty subset A of Xn such that Aα = A except fix(α), then the image of α ∈ Pn under Vagner
mapping representation is α∗ ∈ P∗

n and so clearly fix(α∗) = 2 and thus α∗ ∈ P∗
n becomes a

pseudo-quasi-nilpotent element.

Lemma 2.5 (Garba(1990)). : Every element α in P ∗
n of height r is expressible as a product of

idempotents of height r. that is α = ε1, ε2, ..., εm, thus the subsemigroup P ∗
n is idempotent generated.

The next result gives a complete characterization of Pseudo-quasi-nilpotent elements in P ∗
n .

Theorem 2.6. An element α∗ ∈ P∗
n is pseudo-quasi-nilpotent if and only if:

i fix(α∗) = 2 that is fix(α∗) = {0, i} for some i in Xn

ii No non-empty subset A of Xn such that Aα∗ = A except fix(α∗).

Proof. Let α∗ ∈ P∗
n, if fix(α∗) = 1, then fix(α) = 0 under the Vagner mapping representation

and by lemma 2.3, α cannot be reduced to a constant mapping and so α is not a quasi-nilpotent
element and as such α∗ cannot be a pseudo-quasi-nilpotent. If fix(α∗) ≥ 3, then clearly the image
of α under Vagner mapping representation will have fix(α) ≥ 2 and so by lemma 2.3, α cannot be
a quasi-nilpotent element.

Conversely, suppose that fix(α∗) = 2 that is fix(α∗) = {0, i} for some i in Xn and that No
non-empty subset A of Xn such that Aα∗ = A except fix(α∗), then by lemma 2.3, α can be reduced
to a constant mapping and so α becomes a quasi-nilpotent element.
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3 Products of pseudo-quasi-nilpotents
We begin this section with a result that shows every idempotent in partial transformation Semi-
group can be written in terms of two pseudo-quasi-nilpotents.

Theorem 3.1. Every Idempotent β∗ ∈ P∗
n is expressible as a product of two pseudo-quasi-nilpotent.

Proof. Let β∗ ∈ P∗
n be an idempotent of height r, that is |imβ∗| = r, then we write β∗ as β∗ =(

A0 A1 A2 · · ·Ar

0 a1 a2 · · · ar

)
where ai ∈ Ai for 0 ≤ i ≤ r, Without loss of generality, we may assume two

cases, when |Ai| = 1 for all i ≥ 1 and |Ai| ≥ 2 for some i ≥ 1:
Case 1: If |Ai| ≥ 2 for some i ≥ 1 that is A1 = {a1, a′1, · · · }, then

β∗ =

(
A0 A1 A2 · · ·Ar−1 Ar

0 a1 a3 · · · ar a′1

)(
0 Xn \ Z a3 a4 · · · ar a′1
0 a1 a2 a3 · · · ar−1 ar

)
Where Z = {a3, a4 · · · , ar, a′1, }, then clearly the two mappings on the right hand side are

pseudo-quasi-nilpotents.
Case 2: If |Ai| = 1 for all i, then clearly the block A0 must contain more than one elements , that
is |A0| > 1, since the mapping is not a permutation and so we can pick our a′1, from the block A0

to be any non-zero element and the result follows from the first case.

We now give two examples to explain the two cases considered.

Example 3.2. for Case 1: Let β∗ =

(
{034} {12} {57} {86} {9}
0 2 7 6 9

)
be an idempotent in P∗

9 .

Since |Ai| ≥ 2 for i ≥ 1, then we have Z = {6, 9, 1} and Xn \ Z = {2, 3, 4, 5, 7, 8}. then

β∗ =

(
{034} {12} {57} {86} {9}

0 2 6 9 1

)(
{0} {234578} {6} {9} {1}
0 2 7 6 9

)
clearly the two mappings on the right are pseudo-quasi-nilpotent elements.

For Case 2: Let β∗ =

(
{0123} {4} {5} {6} {7} {8}

0 4 5 6 7 8

)
be an idempotent in P∗

8 . Then Z =

{6, 7, 8, 2} where 2 ∈ A0 is the choosen non-zero element from the block A0 and Xn\Z = {1, 3, 4, 5},

now α∗ =

(
{0123} {4} {5} {6} {7} {8}

0 4 6 7 8 2

)(
{0} {1345} {6} {7} {8} 2
0 4 5 6 7 8

)
Clearly the two mappings on the right hand side are pseudo-quasi-nilpotent elements.

Remark: Products of two Pseudo-quasi-nilpotent elements need not be a pseudo-quasi-nilpotent
indicating that the pseudo-quasi-nilpotent do not generate themselves.

Example 3.3. Let α∗ =

(
{01} {2} {3}
0 1 3

)
and β∗ =

(
{01} {2} {3}
0 2 1

)
be two elements in P∗

3

then both α∗ and β∗ are pseudo-quasi-nilpotent, but

α∗β∗ =

(
{012} {3}
0 1

)
is not a pseudo-quasi-nilpotent.

Theorem 3.4. The Subsemigroup P∗
n of Un consisting of all those transformations of X0 leaving

0 fixed is pseudo-quasi-nilpotent generated.

Proof. By Lemma 2.4, Every element α∗ ∈ P∗
n of height r is expressible as a product of idempotents

of height r that is α∗ = ϵ∗1, ϵ
∗
2, · · · , ϵ∗m Thus the Subsemigroup P∗

n is idempotent generated and since
every idempotent in the Subsemigroup P∗

n is expressible as product of two pseudo-quasi-nilpotent
elements, then the result follows from theorem 3.1

Corollary 3.5. The semigroup of partial transformation Pn is Quasi-nilpotent generated.
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4 Pseudo-Quasi-Nilpotents Rank
We know that from the work of Garba and Madu [3], that for 1 ≤ r ≤ n, let K(n, r) = {α ∈ Tn :
|imα| ≤ r} then K(n, n) = Tn and K(n, n − 1) = singn. Each K(n, r) is a two sided ideal of Tn

and K(n, r)/K(n, r − 1) is a principal factor of Tn, which we can denote by Pr.
The quasi-nilpotent rank of the Semigroup K(n, r) = S(n, r) i.e the sterling number of the

second kind for all n ≥ 3 and for all r such that 2 ≤ r ≤ n − 1. Now we wish to investigate the
Pseudo-quasi-nilpotent rank in the partial transformation case K∗(n, r) by applying the Vagner
mapping representation.

Theorem 4.1. The pseudo-quasi-nilpotent rank of the Semigroup K∗(n + 1, r) is S(n + 1, r) for
r ≥ 2

Proof. Firstly, we would like to have a result like [ lemma 5 of Garba and Madu [3]] but referring
to elements of P ∗

n (i.e elements preserving zero (0)) which says "let A1, · · · , Am (where m =
(

n
r−1

)
and r ≥ 3) be a list of the 0 − subsets of X0 with cardinality r, that is subsets of X0 containing
0. Suppose there exist distinct equivalences π1, π2, · · · , πm of weight r on X0 satisfying the two
conditions below

i Ai−1, Ai are both transversal of πi(i = 2, 3, · · · ,m) and Am, A1 are both transversal of π1

ii Ai+1 is not a transversal of πi and A1 is not a transversal of πm

Then each non-group H-class (πi, Ai+1) and (πm, A1) contains a pseudo-quasi-nilpotent elements
αi,i+1 and αm,1 respectively and there exist pseudo-quasi-nilpotent qm+1, · · · , qp (where p = S(n+
1, r)) in P ∗

n such that
{α1,2, α2,3, · · · , αm−1,m, αm,1, qm+1, · · · qp} is a set of generators for K∗(n+ 1, r)."

By Howie and Mcfadden [8] each H-class (πi, Ai) contains idempotent ϵi and there exist idem-
potents (ϵm+1, ϵm+2, · · · , ϵp) where p = S(n, r) such that {ϵ1, ϵ2, · · · , ϵp} is a set of generators for
K(n, r). The idempotents ϵm+1, · · · , ϵp are chosen so that {ϵ1, · · · , ϵp} cover the R-classes in Pr.
Our objective is to show that {ϵ1, · · · , ϵp} ⊆ ⟨α1,2, · · · , αm−1,m, αm,1, qm+1, · · · , qp⟩. We choose
the pseudo-quasi-nilpotent qm+1, · · · , qp so that α1,2, · · · , αm−1,m, αm,1, qm+1, · · · , qp cover all the
R-classes in Pr.

To prove the listing of images and kernel equivalences postulated in the statement above can
actually be carried out. Let n ≥ 3 and 2 ≥ r ≥ n− 1 and consider the following proposition which
is the P∗

n version of the equivalent lemma 5 in Garba and Madu [3] which says "There is a way of
listing the 0-subsets of X0 of cardinality r as A1, · · · , Am ( with m =

(
n

r−1

)
),

A1 = {0, 1, · · · , r − 1}, Am = {0, n− r + 2, · · · , n}) so that there exist equivalences π1, · · · , πm

of weight r with the property that

i Ai−1, Ai are both transversal of πi(i = 2, 3, · · · ,m) and Am, A1 are both transversal of π1

ii Ai+1 is not a transversal of πi and A1 is not a transversal of πm

Then all we have to do here is to consider {0} as a singleton class for each πi(i = 1, 2, · · · ,m)
and the rest of the πi-classes as in Garba and Madu [3]. To exemplify the process, We Let n = 4 and
consider the set {1, 2, 3, 4}. The list given in Garba and Madu [3] of all the subsets of cardinality 2
with the equivalences is given below:

A′
1 = {1, 2} π′

1 = 13 \ 24

A′
2 = {1, 3} π′

2 = 14 \ 23

A′
3 = {1, 4} π′

3 = 12 \ 34

A′
4 = {2, 3} π′

4 = 124 \ 3
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A′
5 = {2, 4} π′

5 = 134 \ 2

A′
6 = {3, 4} π′

6 = 123 \ 4

Now for the set {0, 1, 2, 3, 4} we have the 0-subsets of cardinality 3 and the equivalences as given
below

A1 = {0, 1, 2} π1 = 0 \ 13 \ 24

A2 = {0, 1, 3} π2 = 0 \ 14 \ 23

A3 = {0, 1, 4} π3 = 0 \ 12 \ 34

A4 = {0, 2, 3} π4 = 0 \ 124 \ 3

A5 = {0, 2, 4} π5 = 0 \ 134 \ 2

A6 = {0, 3, 4} π6 = 0 \ 123 \ 4

Theorem 4.2. The Pseudo-quasi-nilpotent rank of K(n, r) is equal to its idempotent rank which
is the stirling number of the second kind S(n + 1, r + 1) for 2 ≤ r ≤ n − 1 where K(n, r) = {α ∈
Pn : |imα| ≤ r}.

Proof. By the isomorphism between Pn and P∗
n elements of height r in Pn correspond to element

of height r + 1 in P∗
n. It therefore follows that the image of K(n, r) under the isomorphism is

K∗(n+ 1, r + 1) and the result follows from theorem 4.1 above.

References
[1] Ali, B., Jada, M. A., Zubairu, M. M. (2024). On Rank of Semigroup of Order-Preserving

Order-Decreasing Partial Contraction Mappings on a Finite Chain. International Journal of
Mathematical Sciences and Optimization: Theory and Applications 10(4):1-11.

[2] Evseev, A. E.,Podran, N. E. (1988). Semigroup of transformations of a finite set generated by
idempotents with a given projection characteristics. American Mathematical Soceity Translated
139(2):69-76.

[3] Garba, G. U., Madu, B. A. (2003). Quasi-nilpotent rank in finite full transformation semi-
groups. JMI, International Journal of Mathematical Sciences 30:105-111.

[4] Garba, G. U. (1990). Idempotents in partial transformation semigroups. Proceedings of the
Royal Soceity of Edinburgh 116A:359-366.

[5] Garba, G. U.,Tanko, A. I., Madu, B. A. (2011). Products and rank of quasi-idempotents in
finite full transformations semigroups. JMI, International Journal of Mathematical Sciences
2(1):12-19.

[6] Howie, J. M. (1978). Idempotent generators in finite full transformation semigroups. Proceed-
ings of the Royal Soceity of Edinburgh 81A:317-323.

[7] Howie, J. M. (1980). Products of idempotents in a finite full transformation semigroup. Pro-
ceedings of the Royal Soceity of Edinburgh 86A:243-254.

[8] Howie, J. M., McFadden, R. B. (1990). Idempotent rank in finite full transformation semi-
groups. Proceedings of the Royal Soceity of Edinburgh 116A:161-167.

[9] Imam, A. T., Usman, L., Idris, A., Ibrahim, S. (2024). Product of Quasi-idempotet in finite
semigroup of partial order-preserving transformations. International Journal of Mathematical
Sciences and Optimization: Theory and Applications 10(1):53-59.

60

https://doi.org/10.5281/zenodo.16740605


International Journal of Mathematical Sciences and
Optimization: Theory and Applications

11(2), 2025, Pages 55 - 61
https://doi.org/10.5281/zenodo.16740605

[10] Madu, B. A., Garba, G. U. (2001). Quasi-idempotents in finite semigroups of order-preserving
charts. Research Journal of Sciences 7(1 and 2):61-64.

[11] Umar, A.. (1993). On the semigroup of partial one-one order-decreasing finite transformation.
Proceedings of the Royal Soceity of Edinburgh 123A:355-363.

[12] Vagner, V. V. (1964). Representations of ordered semigroups. American mathematical soceity
translated 36(2):295-336.

61

https://doi.org/10.5281/zenodo.16740605

	Introduction
	Preliminaries
	Products of pseudo-quasi-nilpotents
	Pseudo-Quasi-Nilpotents Rank

