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Abstract
The increasing world population has raised significant concerns about matching food pro-

duction to demand, prompting extensive research in scientific fields aimed at enhancing plant
and animal productivity. However, some of these advances have introduced unintended conse-
quences, such as uncontrolled cell growth that leads to cancer. Effective regulation of cell size
is essential to maintaining organismal health. This study focuses on the utilization of a numer-
ical method to develop a mathematical model that optimizes ion transport within an animal
cell as a mechanism to ensure a physiologically healthy cell. Through this model, optimal ion
concentrations were identified using MATLAB-SIMULINK. The results were validated using
experimental data to ensure that they promote healthy cell growth and stability.The results
provide valuable insights for treating disorders associated with abnormal cell growth initiated
by unregulated ions concentration. This research contributes to understanding cellular home-
ostasis and lays the groundwork for future bioengineering applications.

Keywords: Optimization, Homeostasis, Partial Differential Equations, Mathematical Modeling,
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1 Introduction

1.1 Background of the Study: Ion Optimization in Animal Cells
All living things require cellular homeostasis to be maintained, and this is achieved by the basic
mechanism of ion control within cells. Ions like sodium Na+, potassium (K+), and calcium (Ca2+)
are essential for a number of biological functions, including sustaining the membrane potential at
rest, and assisting in signal transduction [Alberts B.(2002)], [Matejczyk(2019)]. For life to continue,
cells must be able to precisely regulate the amount of these ions across the membrane.

The field of ion dynamics in cells has been studied since the early 1900s, when researchers like
Alan Hodgkin and Julius Bernstein made important discoveries that helped to establish the foun-
dation for our knowledge of the electrical characteristics of cells [Hodgkin A. L.(1952)], [Hodgkin
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A. L.(1949)]. A significant turning point in the study of cell membrane concentration gradi-
ent maintenance was the 1957 discovery of the Na+/K+ − ATPase pump by Jens Christian
Skou [C.(1957)].This discovery found that this pump keeps the intracellular content of K+ high
and Na+ low in animal cells. The groundbreaking work of Hodgkin and Huxley’s in the 1950s
gave a quantitative explanation of ion mobility during action potentials [Hodgkin A. L.(1952)]. In
order to control ion concentrations, cells employ a number of strategies, such as secondary active
transport linked to the movement of other ions, active transport via ATP-powered pumps, and
passive diffusion through ion channels. When certain stimuli are met, like voltage changes (for
voltage-gated channels) or ligands binding (for ligand-gated channels), ion channels open and close
with great selectivity [B.(2001)].

The selective permeability of the membrane distinctions sustains the membrane potential, which
is the voltage differential across the cell membrane. For animal cells to operate correctly, membrane
potential must be maintained within the ranges of −60mV to−70mV [Alberts B.(2002)], [B.(2001)].
Comprehending ion optimization is crucial for both fundamental biology and its applications in
bioengineering. Cell homeostasis disturbances are linked to a variety of cell abnormalities, including
cancer [Alberts B.(2002)], [Blaustein M. P.(2016)], [A.C. and S(2011)]. The therapeutic potential of
ion channel modulation has been the subject of recent research, wherein development of treatments
for conditions related to ion imbalances is ongoing, offering a strategic approach to restoring or
maintaining healthy ion levels in cells. The understanding of ions transport in cells has been
greatly improved by developments in computer modelling and technology. In order to replicate the
movement of ions across the cell membrane, mathematical models have recently been constructed
[Matejczyk(2019)], [Cuevas E.(2024)], [J. and X.(2020)]. These models have developed into vital
resources for investigating the intricate relationships between diverse ion channels transport and
forecasting cellular responses to varied stimuli. Improvement of these models to accurately simulate
various conditions in bioengineering, enhancing relevance and applicability in designing artificial
cells and optimizing cell-based biotechnological processes is a growing area of interest for current
studies. Technological and computational modelling developments keep expanding our knowledge
and providing fresh perspectives on the intricate interactions among ions, cellular functions, and
health. Building on this rich history, the goal of this work is to get a deeper knowledge of ion
optimization and its implications for applied biotechnology.

1.2 Literature Review
In animal cells, ion regulation is an essential process that affects many cellular processes as signal
transmission, osmotic equilibrium, and membrane potential. Maintaining homeostasis and facilitat-
ing cellular functions including ion transport, apoptosis, and the maintenance of a normal cell size
depend on the optimization of ion concentrations within the cell [Keener J.(2009)], [Wilfred(2012)].
This overview of the literature delves into the workings of ion channels, how ions are regulated,
and the latest developments in ion dynamics modelling in animal cells. Animal cells maintain
specific concentrations of ions such as sodium (Na+), potassium (K+), calcium (Ca2+), across
their membranes. Cells are able to actively manage these ion concentrations due to the selective
permeability of the cell membrane, which is regulated by ion channels [B.(2001)]. According to
Blaustein et al. (2016) [Blaustein M. P.(2016)], the Na+/K+ − ATPase pump is an important
component that keeps intracellular K+ and Na+ concentrations high and low, respectively. This
allows the cell to perform a variety of tasks, such as preserving the resting membrane potential
and promoting secondary active transport. Proteins in the cell membrane called ion channels
help ions pass across cell membranes more easily. Two important mechanisms for preserving ion
homeostasis are voltage-gated and ligand-gated ion channels. According to Hille and Kandel et
al. , cellular signaling pathways closely control the operation of ion channels, guaranteeing that
ion concentrations stay optimal under a range of physiological circumstances [B.(2001)], [Kandel
E. R.(2012)].Voltage-gated channels are extremely selective for a particular ion, such as Na+,K+

and Ca2+ and react to changes in cell membrane potential [Wilfred(2012)]. Based on the predomi-
nant ion, these channels can further be separated into families [Alberts B.(2002)], [B.(2001)], [Jeremy
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M B. and S.(2002)]. Voltage-gated Na+ channel are the source of long-lasting action potentials,
making them the choice for local anaesthetics. Voltage-gated Ca2+ channels control intracellular
calcium ions concentrations and, as a result, are in charge of numerous cellular metabolic reactions.
Voltage-gated K+ channels make up the biggest and most varied group of voltage-gated ion chan-
nels. Their role in producing the resting membrane potential is crucial. Ligand-Gated Ion Channels
(LGIC) are trans-membrane proteins that are opened by the binding of a neurotransmitter (car-
rier protein) [Wilfred(2012)]. The ligands bind to a site which causes structural modifications, that
change the permeability of the ion channel, and thus allow only specific ions to pass through. These
proteins bind a substance which triggers a change in its own shape, moving the bound molecule
from the outside of the cell to its interior or vice versa depending on the gradient. Only one kind
of ion can pass through the cell channel in voltage-gated ion channels. An electrical potential
difference, known as the membrane potential, is created between the cell’s internal and external
environments as a result of the ion flux. Many physiological activities, including signal transduc-
tion, muscle contraction, growth, motility, hormone secretion, volume regulation, and apoptosis,
depend critically on this membrane potential. Animal cells have a resting membrane potential of
−60mV to − 70mV [Alberts B.(2002)], [B.(2001)], which is mainly sustained by the unequal dis-
tribution of Na+ and K+ across the membrane. The equilibrium potential of K+, also known as
the Nernst potential, and the activity of the Na+/K+ −ATPase both affect this potential, which
is essential for the operation of excitable cells [Alberts B.(2002)]. By taking into account the per-
meability and concentration of different ions, the Goldman-Hodgkin-Katz (GHK) equation offers a
quantitative description of the membrane potential [E.(1943)], [Hodgkin A. L.(1949)], [Murase and
Kitano(2011)]. The control of cell volume is closely related to ion concentrations, especially those
of Na+, K+ and Ca2+. The concentration of these ions determines the osmotic balance, which
in turn affects the size and shape of cells by influencing the passage of water over the membrane.
Cells can resist osmotic stress by regulating ion channels through the regulatory volume increase
(RVI) and regulatory volume decrease (RVD) pathways [Hoffmann E. K.(1995)], [F.(2007)]. Stud-
ies have shown that ion channels functionally participate in cancer progression, which implies that
the in-depth understanding of ion concentration optimisation is potentially useful for tumour de-
tection and treatment. [Gerisch A.(2014)], [V’yacheslav L. and P.(2011)], [Yang N. J.(2015)] New
developments in mathematical modelling have shed further light on how ions move through ani-
mal cells. Frameworks for comprehending the dynamics of ion flow and its influence on cellular
activities are provided by models like the Hodgkin-Huxley model for action potentials and the
more recent ion flux models [Hodgkin A. L.(1952)], [Keener J.(2009)]. The way in which cells
maintain homeostasis under different conditions can be predicted by computational models that
mimic the interaction between ion channels, transporters, and cellular metabolism [Coalson and
Kournikova(2005)], [Smith N. P.(2017)], [Yang N. J.(2015)]. Studying pathological situations such
as cancer, where ion imbalance can cause uncontrolled cell development, makes these models very
helpful [Hoffmann E. K.(1995)], [A.C. and S(2011)]. It takes a multifaceted approach incorporating
several ion channels to optimize ion concentrations in animal cells. It is essential to comprehend
these processes through computational methods in order to clarify the mechanisms that underlie
cellular homeostasis. New insights into the regulation of ion homeostasis in health and disease
are predicted to result from future research focusing on merging models of ion dynamics based on
computational mathematics with experimental evidence. With a focus on important mechanisms,
models, and directions for future investigation, this literature review offers a thorough summary of
the state of knowledge regarding ion optimization in animal cells.

1.3 Objective
The objective of this study is to develop a mathematical model that optimizes ion transport within
an animal cell as a mechanism to ensure a physiologically healthy cell.
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1.4 Significance of the Study
Ion optimization in animal cells is an important field of study that has implications for fundamental
science as well as real-world applications in environmental science, biotechnology, and medicine.
First, it deepens our understanding of cellular homeostasis by exploring how ion concentrations
within cells are regulated, which is essential for critical cellular functions such as nutrient transport,
energy production, and signal transduction. Disruptions in ion homeostasis are linked to diseases
such as cancer and neurodegenerative disorders, making this research a potential foundation for
new therapeutic approaches. Second, the study advances medical research by identifying potential
drug targets in ion channels and transporters, which could aid in developing new or personalized
treatments for conditions caused by ion dysregulation. Furthermore, the study contributes to
biotechnology by applying principles of ion optimization to synthetic biology, potentially improving
the efficiency of engineered cells for use in pharmaceuticals or biofuels and enabling cells to adapt
to extreme environments. In addition, the development of computational models in this study
enhances our ability to simulate ion dynamics, promoting interdisciplinary research and reducing
the need for extensive in vivo testing. Finally, this research offers educational value by providing
insights into cellular physiology and ion regulation, laying a foundation for future research in areas
like physiology, biophysics, and medical sciences. Overall, this study addresses critical challenges
in health, biotechnology, and sustainability, with implications for food security, disease treatment,
and environmental adaptation.

2 Materials and Methods

2.1 Numerical Solution-Finite difference method(FDM)
This numerical approach is appropriate for partial differential equations (PDEs) that take into
account spatial fluctuations in ion concentration [Allman E. S.(2013)], [Morton and Mayer(2005)],
[Smith J.(2020)]. Time and space must be discretized. This study encounters inhomogeneous PDEs
governing the flow of ions across cell membrane with spatial fluctuations in ion concentrations on the
inside and outside of the cell. The particular method for this problem is the central finite difference
method, with a uniform time step (n) and spatial step (m). The following partial derivatives are
expressed as follows

∂2u

∂y2
= uyy =

ui,j+1 − ui,j + ui,j−1

m2
(1)

∂u

∂y
= uy =

ui,j+1 − ui,j
n

(2)

Let the mesh point at time t be denoted by n . Then the forward difference for the first order
derivative with respect to time t will be

∂u

∂t
= ut =

ui+1,j − ui,j
n

(3)

2.2 Mathematical Model for Ion Optimization in Animal Cells
The mathematical model for ion optimization in animal cells involves differential equations that
describe the movement of ions across the cell membrane and their interactions with various cellular
processes [Allman E. S.(2013)], [Matejczyk(2019)]. Goldman-Hodgkin-Katz equation (GHK)

Vm =
RT

F
ln
PNa[Na

+]o + PK [K+]o + PCa[Ca
2+]o

PNa[Na+]i + PK [K+]i + PCa[Ca2+]i
(4)

This formula calculates the resting membrane potential by putting into consideration the perme-
abilities and concentrations of various ions [Keener J.(2009)], [Murase and Kitano(2011)]. Where
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Vm is membrane potential ,P is permeability of the membrane to the ion, and subscripts o and i
denote the extra cellular and intracellular concentrations of the ion respectively. Poisson equation
This formula determines the electric potential ψ(x, t) that helps us to calculate the ions flux using
the Nernst-Planck equation. The electrochemical potential ψ for a given charge distribution can be
solved using the Poisson equation, which is stated as follows [Matejczyk(2019)]:

ϵ∆2ψ = σizieCi (5)

where i is the ith species, z is the ion valence, e is the elementary charge, C is the ion concentration,
and ϵ is the electrolyte permittivity.To discretize this equation the second spatial derivative for the
electric potential is expressed using central difference formula as follows

−ϵψ
n(j + 1)− 2ψn(j) + ψn(j − 1)

∆2
=

∑
i

zieC
n
( j) (6)

Nernst-Planck equation The Nernst-Planck equation for the ion concentration Ci(x, t) of ion i
species in differential form is given by [Murase and Kitano(2011)], [Coalson and Kournikova(2005)];

∂Ci

∂t
= Di∇2Ci −

zie

kBT
∇ · (Ci∇ϕ) (7)

Where Di is the diffusion coefficient of ion i, zi is the valence of ion i ,e is the elementary charge,
kB is the Boltzmann constant, ϕ is the temperature and is the electric potential. Discretizing this
equation using a time step ∆t and a one-dimensional grid with spacing ∆x , the spatial derivatives
are expressed by use of the central difference formula while temporal derivatives uses the forward
difference formula [Morton and Mayer(2005)], [Murase and Kitano(2011)], [Wang C.X. and Z.(2022)]
.

Cn+1
i (j)− Cn

i (j)

∆t
=

Di

∆x2
(Cn

i (j + 1)− 2Cn
i (j) + Cn

i (j − 1))

− Dizie

kBT∆x
· 1
2
(Cn

i (j + 1)Ψn(j + 1)− Cn
i (j − 1)ψn(j − 1)) t (8)

Where Cn
i (j) is the concentration of ion i at grid point j and time step n and ψn(j) is the electric

potential at grid point j and time step n.

2.3 Numerical Simulation and Optimization
Here we formulate the algorithm that finds the minimum of constrained nonlinear multivariable
function using MATLAB fmincon [Cohen(2023)], [Paluszek and Thomas(2011)]. This is a nonlinear
programming algorithm that finds the minimum of a problem specified by

minf(x) such that



c(x) ≤ 0,

ceq(x) = 0,

A · x ≤ b,

Aeq · x = beq,

lb ≤ x ≤ ub.

(9)

Where, b and beq are vectors, A and Aeq are matrices,c(x) and ceq(x) are functions that return
vectors, and f(x) is a function that returns a scalar. f(x),c(x), and ceq(x) can be nonlinear
functions. x,lb, and ub can be passed as vectors or matrices. We then construct this problem in
MATLAB as follows;

x = fmincon(problem)orx = fmincon(fun, x0, A, b, Aeq, beq, lb, ub, nonlcon, options) (10)
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This algorithm minimizes the objective function fun subject to the following constraints; Home-
ostasis constraint: To ensure stable internal conditions in an animal cell, the appropriate ions
concentration ranges are maintained by employing the following constraint;

(ion)min ≤ (ion)actual ≤ (ion)max (11)

Membrane potential constraint:To ensure that the voltage difference across a cell membrane is
maintained within physiologically healthy ranges the conditions prescribed by the GHK equation
are observed.

Vm = (RT/F )log(PK ∗Kout + PNa ∗Naout + PCa ∗ Caout)...
/(PK ∗Kin + PNa ∗Nain + PCa ∗ Cain)
ceq = Vm + 70 (12)

Formulation of the objective function is done by considering the minimum sum of the squared
differences between actual and observed ion concentrations, subject to homeostasis and membrane
potential constraints. The objective is to minimize the deviation of actual ion concentrations from
their observed values. The square is to make the differences positive. We thus write:

fun = minimize
∑
ion

([ion]actual − [ion]observed)
2 (13)

The summation is taken over all ions under consideration, with [ion]actual being the actual concen-
tration of a given ion and [ion]observed the observed concentration of that ion. In this problem we
start with an initial guess or set of actual concentrations (x0). The optimization algorithm then
adjusts x iteratively to minimize the objective function [Danjuma T. and T.(2020)] [Bello J. F. and
Adinya(2024)], thereby making x converge toward the optimal concentrations.In this problem we
determine observed values based on theoretical models and previous experiments that are known
to be beneficial for cell function.

2.4 Solve the Optimization Problem
To solve the optimization problem a MATLAB code is developed, computation is done by adjusting
the ions concentrations in the direction that reduces the objective function while convergence is
achieved by looping the code for sufficient iterations.

3 Results

3.1 Findings and Discussion
The optimal levels of ions concentrations in a cell are presented.

3.1.1 Optimal Levels of Concentration of Ions in a cell.

The bar plot below shows the optimal ion concentrations of a cell while the line plot shows the ion
concentrations in a healthy cell over time.

Figure 1 displays a bar graph;
Figure 2 displays a line graph
The two graphs displays the optimal ions concentration levels both on the outside and on the

inside of a cell. These ion levels ensure that a cell remains physiologically healthy. The line plot
shows the optimal ion levels of a cell over time. It shows that as long as physiological constraints
are observed the ion concentrations remain optimally constant. The figures for the optimal ion
concentration levels are as shown in the table below.
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Figure 1: optimal and exceeded ion concentrations 1

cyan!20yellow!20 Parameters Intracellular Extracellular
cyan!20Potassium(K+) K_in:140.1236mM K_OUT:3.5mM
cyan!20Sodium(Na+) Na_in:10.0054mM Na_out:139.8965mM

cyan!20Calcium(Ca2+) Ca_in:1e-04mM Ca_out:2mM

Table 1: optimal ion concentration values

3.1.2 Effect of each ion

Calcium: Elevated intracellular calcium (levels above 1e − 04mM) can lead to uncontrolled cell
growth and reduced apoptosis, contributing to cancer progression [Atkins and de Paula(2014)]
Potassium: Abnormal potassium levels (levels above 140.1236mM)can disrupt cell cycle regulation
and promote survival in environments where cells would normally undergo apoptosis [J.O.(1995)].
Sodium: Elevated sodium levels (levels above 10.0054mM) can lead to increased cellular volume
and changes in cell shape, contributing to a pro-cancerous environment [House CD(2010)]

3.2 Comparison with Other Studies
The results obtained from the mathematical model on optimal ion concentrations are compared
with experimental data for validation. The experimental data available from the relevant literature
expresses the ion concentrations as a range of values while the data from our model computes an
optimal value. According to Alberts et al, 2014 [Alberts B.(2002)] experimental results for sodium,
potassium, and calcium ion concentrations in an animal cell which are also corroborated by Gadsby
and Nakao, 2003) [Gadsby D. C.(2003)] are stated as follows:

Sodium (Na+)
Intracellular Concentration: Approximately 5− 15mM
Extracellular Concentration:Approximately 135− 145mM

Potassium (K+)
Intracellular Concentration:Approximately 120− 150mM
Extracellular Concentration: Approximately 3.5− 5mM

Calcium (Ca2+)
Intracellular Concentration:Approximately 100nM (resting)
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Figure 2: optimal and exceeded ion concentrations
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Extracellular Concentration:Approximately 1− 2mM
According to our model, the optimal ions concentration levels are listed as follows:

Kin : 140.1236mM
Kout : 3.5mM
Nain : 10.0054mM
Naout : 139.8965mM
Cain : 1e− 04mM
Caout : 2mM

gray!30 Optimal values Experimental bounds
yellow!20 Parameter X LB UB cyan!20LB≤ X ≤ UB

K_in 140.1236 120 150 cyan!20Yes
K_out 3.5 3.5 5 cyan!20Yes
Na_in 10.0054 5 15 cyan!20Yes
Na_out 139.8965 135 145 cyan!20Yes
Ca_in 0.0001 0.0001 0.0001 cyan!20Yes
Ca_out 2 1 2 cyan!20Yes

Table 2: Analysis of the results

The analysis in the table 2 shows that the model results (X) are within the experimental bounds,
this gives our results validity and justification.These values are also supported by the literature
benchmark especially the work of Hille, 2001 and Cohen, 2023 [B.(2001)] [Cohen(2023)].

3.3 Limitations
It is important to recognize the limitations of this study. First, the results are purely theoretical,
derived from simulations and models rather than an experimental investigation. Furthermore, the
study’s consideration of animal-specific cells may have limited the conclusions’ application to other
biological systems. Lastly, other ions that might also be important for cellular functions were
not included in the analysis; only sodium, calcium, and potassium ions were considered. These
limitations imply that additional experimental verification and wider ion inclusion are required for
more thorough understanding.

3.4 Conclusion
In this research construction of a mathematical model that investigates the optimal levels of ions
concentration in relation to the electrochemical gradient in a cell using a numerical computational
technique was undertaken. Ions transport governing equations were used to create a suitable model
and finite difference numerical method used to solve the problem. Matlab software was used for
simulation and visualization of the results. The optimization of the ion concentrations of K+,Na+ ,
and Ca2+ using the mathematically developed model determined the optimal levels of these ions in
an animal cell. By determining these optimal ion levels, the model effectively controls desired cell
growth, reducing the need for costly and time-consuming trial-and-error methods. This approach
to ion concentration optimization is crucial for understanding how cells regulate their internal
environment and maintain stability under varying conditions. The model’s applications extend to
the medical field, where it can be used to develop treatments for conditions related to ion imbalances,
offering a strategic approach to restoring or maintaining healthy ion levels in cells. Furthermore, this
model can be improved to accurately simulate various conditions in bioengineering, enhancing its
relevance and applicability in optimizing cell-based biotechnological processes. This research thus
contributes to a deeper understanding of cellular ion regulation and presents practical applications
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that are valuable in both medical and biotechnological fields. It is however important for more
studies to be carried out to improve this mathematical model by adding biological components
like genetic regulation and environmental effects in order to improve the model’s precision and
suitability for use in a variety of biological systems.

3.5 Recommendations
The following recommendations are made in order to optimize the potential of this mathematical
model in scientific research and practical applications, with a view to advancing fields that rely on
precise control of cellular processes.

1. Cost Reduction: By forecasting ideal circumstances for desired cell sizes without requiring a
great deal of trial and error, the model can be used in research and industrial operations to
optimize resources and lower the cost of manufacturing and trials.

2. Cell Growth Regulation: This model can be applied to control and accurately regulate ion
concentrations and in effect cell growth during cell culture procedures. By increasing the yield
of cells with the desirable sizes, this can boost the effectiveness of biotechnological applications
for industrial applications.

3. Development of Targeted Therapies: Application of this model to create treatment plans that
alter ion concentrations to regulate cell proliferation in diseases like cancer where cell size is
a crucial component is recommended.

4. Validation Studies: To guarantee the model’s resilience and dependability, we recommend
thorough experimental validation process on various cell kinds and situations. This will
support the model’s establishment as a common tool in academic and professional contexts.

5. Educational Tool: This model can be used to instruct students in the connection between ion
concentrations and cell physiology in academic settings. This provides a practical orientation
for Students who may find it easier to comprehend the fundamentals of mathematical models
and cellular biology.

6. Training for Research: This model can be included in research training courses for scien-
tists and technicians working in bio-informatics and cell biology to provide them advanced
knowledge of mathematical modelling and how it applies to biological processes.

7. Ethical Considerations: We recommend strict adherence to ethical standards when using this
model to manipulate ion concentrations to change cell sizes, especially when it comes to fields
like synthetic biology and genetic engineering or experimental treatments.
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