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Abstract

Springer varieties are sub-varieties of the full (complete) flag variety Fℓn(C), which can be
thought of as the fiber over X of the Springer resolution of singularities of cone of nilpotent
endomorphism X : V −→ V , where X is a nilpotent endomorphism in its Jordan canonical
form of type λ and V is a n−dimensional vector space over C (V = Cn for convenience). The
geometry of Springer varieties is reviewed in this article, along with their Sk− fixed points. We
accomplish this by briefly reviewing nilpotent orbits in type A within the framework of integer
partition.
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1 Introduction and Preliminaries
Fixed points play an elegant role in various areas of Mathematics, including, Dynamical systems,
Optimization [1], and Topology [2]. In this article, we gives a review of the Sk−fixed points of
the Springer varieties, which are members of the family of Hessenberg varieties, which are also the
family of closed subvarieties of the full flag variety. Hessenberg varieties in [3] was introduced by
De Mari and Shayman in the late 1980′s in order to efficiently compute the eigenvalues and eigen
space of a linear operator in question related to numerical analysis. Ever since their introduction,
they have been objects of active research in Combinatorics, Geometry, Representation theory and
Topology.
For instance, Tymoczko [4] showed that Hessenberg Varieties are not always pure dimensional.
Jordan and Helmke [5] proved that the QR-algorithm restricted on the subset of Hessenberg varieties
is generically controllable. In the special case of Peterson varieties Petn (type A), Adeyemo in [6]
studied the combinatorial aspect of the Peterson varieties where he established its Galois connection
with Boolean poset and showed that its Hasse diagram admits EL- labeling and also show that it is
lexicographically shellable and hence Cohen macauley. Yukiko Fukukuwa, Harada and Masuda [7]
gave an efficient presentation of S1−equivariant cohomology ring of Peterson variety in type A as
a quotient of a polynomial ring. Insko [8] used the tight correlation between the geometry of the
Peterson variety and the combinatorics of the symmetric group to prove that the homology of the
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Peterson variety injects into the homology of the flag variety. Insko and Yong [9] described the
singular locus of the Peterson variety and gave explicit equivalent K-theory localization formula.
Harada and Tymoczko [10] identified a computationally convenient basis of H∗

S1(Petn) which they
named basis of Peterson shcubert classes, they also derived a manifestly positive, integral Chevalley-
Monk formula for the product of a cohomology-degree-2 Peterson Schubert class with an arbitrary
Peterson Schubert class. Darius and Megumi [11] Used the Monk formula derived in the work of
Megumi and Tymoczko above to prove a Gaimbelli formula for the Peterson Schubert classes in the
S1−equivariant cohomology ring of a type A Peterson variety. Hariku , etal [12] gave a systematic
method for producing an explicit presentation by generators and relations of the equivariant and
ordinary cohomology rings ( with coefficients in Q) of any regular nilpotent Hessenberg variety in
type A. Megumi and Tymoczko Introduced a combinatorial game which they called Poset Pinball
and construct computationally convenient module bases for the S1−equivariant cohomology of all
Peterson varieties of classical Lie type and subregular Springer varieties of Lie type A. Darius and
Megumi [11] developed the theory of poset pinball introduced by Megumi and Tymoczko for the
study of the equivariant cohomology rings of GKM-compatible subspaces of GKM space.
In our direction (Springer varieties), Precup and Tymoczko [13] related Springer and Schubert
varieties combinatorially and proved that the Betti numbers of the Springer varieties associated to
a partition with at most three rows or two columns are equal to the Betti numbers of a specific union
of Schubert varieties. Fresse [14], via an algorithm, determined the Betti numbers of the Springer
varieties through cell-decomposition of the springer varieties. The algorithms used in [15] and [14]
to compute the Betti number of Springer varieties were compared in [16]. Fresse [17] established
a necessary and sufficient condition of singularity for the components of the Springer varieties.
Horiguchi [18] gave an explicit presentation of the S1−equivariant cohomology ring of two row
(n− k, k) Springer varieties (in type A) as a quotient of polynomial ring in an ideal I. Hiraku and
Horiguchi [18] gave a presentation of the T l−equivariant cohomology ring of the Springer varieties
through an explicit construction of an action of the nth symmetric group on the T l−equivariant
cohomology group. Tymoczko [19] described a way that Springer and Schubert varieties are related.
Springer [20] noticed that the cohomology of Sprλ admits the action of the group of permutations
Sn. It was shown in [21] that Springer varieties has a partition into finite number of locally closed
affine spaces, such that this partition is determined by the Young diagram associated to a nilpotent
operator X. Fung in [22], described the irreducible components of Springer varieties for nilpotent
operator X of Jordan type λ = (n− k, 1k) and µ = (2, 2, 2, · · · , l), 1 ≤ l ≤ 2 as an iterated bundles
of the full flag varieties and Grassmannians and related the topology of pairwise intersection of
these components with the inner product of the kazhdan-Lustig basis. A topological construction of
Springer varieties corresponding to nilpotent operator with Jordan type λ = (k, k) was given in [23].
Row strict tableaux were used in [14] to determined the Betti numbers of the Springer varieties
through their cell-decomposition. Fresse in [17]considered Springer varieties, with the associated
Young daiagram having exactly two columns and established a necessary and sufficient condition
of singularity for the components of Springer varieties. Russel [24] gave an extension of this work
by using the combinatorial and diagrammatic properties of Khovanov’s construction to provide a
useful homology basis and construct the Springer representation with this basis. It was shown
in [25] that the unimodality of the distribution of Betti numbers of Springer varieties is limited to
the nilpotent operators X ∈ gln(C) of the following Jordan forms λ = (λ1, λ2), (λ1, λ2, 1), (λ1, 1

λ1)
and (λ2

1, 1
λ1).

Horiguchi in [18] gave an explicit presentation of the S1−equivariant cohomology ring of the two
row (n−k, k) Springer varieties (in type A) as a quotient of polynomial ring. Fresse, etal [26] stud-
ied the structure of the smooth irreducible components of Springer varieties and show that each
smooth component has a structure of iterated bundles of Grassmannian. Hiraku, etal [12] gave a
presentation of the T−equivariant cohomology ring of the Springer varieties through an explicit
construction of an action of the nth symmetric group on the T−equivariant cohomology group. [19]
described a way the Springer and Schubert varieties are related. In [27], combinatorial connections
were made between the Springer and Schubert varieties, and it was show that the Betti numbers
of the Springer varieties associated with a partition with not more than three rows or two columns
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are equivalent to the Betti numbers of a particular union of Schubert varieties.Invariants were at-
tached to each standard Young tableaux in [28] to study the geometry of Springer varieties in type A.

The break down of this work is as follows: Section two contains some basic definitions and exist-
ing theorems of some tools, such as partition of integers, young diagram and tableaux, group of
permutations as coxeter groups, which shall be needed often. In section three, we introduce the
family of Hessenberg varieties and hence our main object of study which is Springer varieties. Since
we work in type A, therefore, we quickly talk about the Lie algebra of the general linear group
GLn(C) in section four. Section five contains some fact about the Grassmannians and flag variety.
Classification of the nilpotent orbits in type A is discussed in section six. Resolution of singularities
of the closure of the nilpotent orbit is considered in section seven. Finally, we talk about the fixed
points of the Springer varieties section eight.

2 Basic Definitions and Existing Theorems
A partition λ of non negative integer n written as λ ⊢ n is a sequence of integers λ= (λ1, λ2, . . .,
λk) such that λ1 ≥ λ2 ≥ ... ≥ λk and

∑k
i=1 λi = n, where each λi is called the parts of λ. The

number of parts is the length of λ denote by ℓ(λ); and the sum of parts is the weight of λ denoted
by |λ| = λ1 + λ2 + λ3 + ...+ λk.

Example 2.1. Let n = 5, and λ = (2, 2, 1) is a partition of 5, ℓ(λ) = 3 and |λ| = 5

We denote the set of all partitions of n by Pn, and the set of partitions by P. Sometimes we use a
notation which indicates the number of times each integer occurs as a part:

λ = (am1
1 , am2

2 , · · · amk

k ).

Note that the number of times ai appears is mi, where 1 ≤ i ≤ k and we referrer to mi as the
multiplicity of ai in λ. For instance,

λ = (2, 2) = (22)

λ = (211) = (212).

Thus
P5 = {(5), (4, 1), (3, 2), (3, 12), (22, 1), (2, 13)(15)}.

Below is a table of n ≤ 14 and its corresponding |Pn|

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14
|Pn| 1 2 3 4 7 11 15 22 30 42 56 77 101 135 .

We take Pn = 0 for all n < 0 and P0 = 1. Integer partitions were first studied by Euler. For many
years one of the most intriguing and difficult questions about them was determining the asymptotic
properties of Pn as n gets large. Readers are encouraged to consult [29] for details on theory of
partitions.

Remark 2.2. The number of partitions in Pn increases quite rapidly with n. For example,P10 =
42, P20 = 627, P50 = 204226, P100 = 190569292, and P200 = 3972999029388.

Let Ln denote the reverse lexicographical ordering on the set Pn: that is to say, Ln is the set
of Pn × Pn consisting all (λ, µ) such that either λ = µ or the first non-vanishing difference λi − µi

is positive [29]. Ln is a total ordering.

Example 2.3. when n = 5, L5 arranges P5 in the sequence.

(5), (4, 1), (3, 2), (3, 12), (22, 1), (2, 13), (15).
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We define another ordering L′
n on Pn as follows: The ordering L′

n on Pn is the set of all
(λ, µ) such that either λ = µ or the first non-vanishing difference λ∗

i − µ∗
i is negative, where

λ∗
i = λn−i+1 [29].

Theorem 2.4. [30] Let λ, µ ∈ Pn. Then, (λ, µ) ∈ L′
n ⇐⇒ (µ′, λ′) ∈ Ln.

The dominance partial order on partitions of some fixed none-negative integer n written ⊵ is defined
as follows.
If both λ and µ are partitions of n then λ⊵ µ if for all

m ⩾ 1,
∑m

i=1 λi ⩾
∑m

i=1 µi. holds. For example if λ = (3, 2, 1), µ = (2, 2, 2) and ν = (3, 1, 1, 1)
then λ⊵ ν, λ⊵ µ and νand µ are incomparable.

Remark 2.5. The orderings Ln,L′
n are distinct for n ≥ 6 . For example, if λ = (3, 13) and µ = (23)

we have (λ, µ) ∈ L6 and (µ, λ) ∈ L′
6). Hence if λ, µ ∈ Pn, then (λ, µ) ∈ Ln ⇐⇒ (µ, λ) ∈ L′

6.

2.1 A Brief Survey of Some Theories of Young Tableaux
The Young diagram of an integer partition gives us an interesting and practical tool for visualising
partitions of integers, and in most cases for establishing identities. It is a collection of cells (boxes)
arranged in left justified rows such that the number of cells in each row corresponds to the size of
a part and is weakly decreasing from top to bottom.
For instance, the Young diagram of λ = (3, 2, 1) is shown in figure below.

Figure 1: Young diagram of λ = (3, 2, 1)

The size of a Young diagram is the total number of cells in the diagram. For instance, the size
the above diagram is 5. Suppose λ is a partition of n. The length of row i in the corresponding
Young diagram is λi. The column lengths λ′

i is equally a partition of n and it is called conjugate
or dual partition. It is noted that λ′

1 is the number of nonzero parts of λ. If λ=(4, 3, 1, 1) then λ′

= (4, 2, 2, 1).
Let λ ⊢ n and λ′ its dual, then λ′

i = number of λi ≥ i. In particular λ′
1 = ℓ(λ) and λ1 = l(λ′).

Obviously λ′′= λ.
Filling the cells of a Young diagram with non-negative integers in accordance to some certain rules,
results to a central objects of algebraic combinatorics and geometry, called, Young tableau(tableaux
for plural).
A row strict tableau (rst) is a filling of a Young diagram, from [n] whose entries strictly increase
(from left to right) along the row,with no condition on the columns.

[28]

1 4 6 8 9 10
3 5 13 14 16
2 12 15
7 11

Figure 2: row strict tableau
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We denote by (rst)λ the collection of all row-strict tableaux of shape λ. A column strict tableau
(cst) is a filling of a Young diagram, from [n] whose entries strictly increase down the column,with
no condition on the rows.

2 1 6 8 9 10
4 3 13 15 14
5 11 16
7 12

Figure 3: column strict tableau

For λ ⊢ n we define a standard Young tableau (SYT) as a filling of a Young diagram of shape λ
such that the integers from 1 to n appears exactly once and that its entries are increasing across
each row and column. In other words, a standard tableau is a filling of a Young diagram that is
both row and column strict. A filling of a Young diagram is called (h, λ)−filling if for any two

1 2 5 6 11 15
3 7 8 12 14
4 9 16
10 13

Figure 4: standard tableau

adjacent entries of the form k j , k ≤ hj . Where h : [n] −→ [n] is a non-decreasing function

called Hessenberg function is such that

i) i ≤ hi ≤ n,∀i ∈ [n]

ii) hi ≤ hi+1,∀i ∈ [n− 1]

[15]

Example 2.6. Let n = 5, λ = (2, 2, 1) and h = (1, 2, 3, 4, 5, ) then

3 4
2 5
1 is an (h, λ)−filling

since k ≤ hj for each k j

It is noted that if h = (1, 2, 3, · · · , n), (h, λ)−filling is the same as row strict.
The hook length hij of a given box (ij) in a frame of a young diagram of shape λ is the length
of the right-angled path in the frame with that box as the upper left vertex (i labels rows j labels

column). For example, the hook length of the asterisked box in

∗ • • • •
•
•
•
•

is 9. (i.e

h21 = 9)
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Hook length formula (Frame, Robinson, and Thrall). If λ is a Young diagram with n boxes,
then the number fλ of standard tableaux with shape λ is n! divided by product of the hook lengths
of the boxes.i.e. if λ ⊢ n, then

fλ =
n!∏

(i,j)∈λ hi,j

. For example, to compute the number of standard Young tableaux of shape λ = (2, 2, 1) ⊢ 5. The
hooklengths are given in the array

4 2
3 1
1

where hi,j is placed in (i, j). Thus

f221 =
5!

4 · 3 · 2 · 12
= 5.

Below is the list of all possible standard Young tableaux of shape λ = (2, 2, 1):

1 2
3 4
5 ,

1 2
3 5
4 ,

1 3
2 4
5 ,

1 3
2 5
4 ,

1 4
2 5
3

From the above, it is obvious to see that if λ = n, then f (n) = 1 also, if λ = 1n then, f (1n) = 1. In
a similar approach, let (rst)λ be the set of row strict tableaux of shape λ = (λ1, λ2, · · · , λk) , the
cardinality of (rst)λ denoted by |(rst)λ| is given as

|(rst)λ| =
n!∏k

i=1 λi!
. (2.1)

Example 2.7. Let n = 5 and λ = (2, 2, 1) |(rst)λ| = 5!
2!××2!×1! = 30.

2.2 Group of permutations as Coxeter Groups
Denote by Sn, the group of permutations of n letters, such that Sn = ⟨s1, s2, · · · , sn−1⟩ with the
following relations:

• s2i = e ∀ 1 ≤ i ≤ n− 1;

• sisj = sjsi if |i− j| ≥ 2;

• sisi+1si = si+1sisi+1, 1 ≤ i ≤ n− 1.

Where si = (i, i+ 1) is a simple transposition and e is the identity element of Sn.
We shall denote w ∈ Sn by the sequence w1w2 · · ·wn which is the one-line notation of w. For

instance, let w =

(
1 2 3 4 5
1 3 2 5 4

)
∈ S5 is written as 13254. For each w ∈ Sn, the inversion of

w is defined as inv(w)= {(i, j) : wi > wj and 1 ≤ i < j ≤ n} and the cardinality of inv(w) denoted
by l(w) and call it the length of w. For example, inv(13254)={(2, 3), (4, 5))} with l(13254) = 2.
In a similar manner, any w ∈ Sn can be written as a product of generators:

w = s1s2 · · · sk, si ∈ Sn.

If k is the minimal of all such expressions for w, then k is the length of w and we write l(w) = k.
The word s1s2 · · · sk is called a reduced word, reduced decomposition or reduced expression for w
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which is not necessarily unique. It is established in various literatures, [6, 7, 33] (wehre details on
this topic could be found) that the length of reduced word of w is equal to the cardinality of inv(w).
One important fact about the group of permutation that is note worthy is the existence of a longest
element. In oneline notation, it is of the form n, n − 1, · · · , 2, 1, and it has length n(n−1)

2 and we
denote this by w0

Proposition 2.8. [31] Let w ∈ Sn. Then

(1) l(w) = 0 if and only if w = e.

(ii) l(w) = 1 if and only if w = si (1 ≤ i ≤ n− 1).

(iii) l(w) = l(w−1).

(iv) Let w0 = (n, n− 1, · · · , 2, 1) ∈ Sn. Then l(w0w) = l(ww0) =
1
2n(n− 1)− l(w).

2.2.1 Bruhat Order

Bruhat order is a partial order defined on Sn which is in agreement with length function.
Because of the Coxeter groups’ usefulness in the partial order structure, which aids in their theory,
algebraic combinatorists and geometers place a high importance on them, as it helps in obtaining
the closure of a Schubert cell Cw for every w ∈ Sn.
We begin by defining a relation −→ on Sn by saying that, for any w, u ∈ Sn u −→ w if there is a
transposition (not necessarily simple) t such that w = tu ( or )u−1w = t and l(u) < l(w). We write
u ≤ w if there exists ui ∈ Sn such that
u = u0 −→ u1 −→ · · · −→ uk−1 −→ uk = w and l(w) = l(u) + k.

Remark 2.9. In a simple language, we say u ≤ w in the Bruhat order if for any reduced word
decomposition of w there is at least a subword of w which equals u. For instance, if w = s1s2s1 and
u = s1s2 then v ≤ w in Bruhat order since s1s2 is a subword of s1s2s1

Proposition 2.10. [31] For any u,w ∈ Sn the following are equivalent:

(i) u ≤ w.

(ii) Every reduced expression of w has a subword that is reduced expression of u.

(iii) Some reduced expression of w has subword that is a reduced expression of u.

Group of permutations Sn is ubiquitous and quite useful in Mathematics. In algebra for in-
stance, its representation theory has numerous applications in geometry, it parameterized the
CW−decomposition of the full flag variety [10]. Also, it is useful in the combinatorics of inte-
ger partions and tableaux [10]. The description of the Schubert variety as the closure of its cell
Cw (i.e Xw = Cw = ∪v≤wCv) leads to the inclusion relation of two Schubert varieties Xw ≤ Xu for
u,w, v ∈ Sn defines w ≤ u, v ≤ w in the bruhat order which has many connections to combina-
torics and representation theory. This leads to a strong interplay of Geometry, Combinatorics and
Representation theory which makes Hessenberg varieties more attractive to researchers.

3 Hessenberg Varieties
Hessenberg varieties are parameterized by an operator X : Cn −→ Cn and a non decreasing function

h : [n] −→ [n], called Hessenberg function. where

[n] = {1, 2, 3 · · · , n}, (3.1)

such that

i) h(i) ≥ i for all 1 ≤ i ≤ n,
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ii) h(i+ 1) ≥ h(i) for all 1 ≤ i ≤ n.

The Hessenberg varieties associated to a nilpotent operator X and a Hessenberg function h denoted
by H(X,h), is defined as

H(X,h) = {V• ∈ Fℓn(C) : XVi ⊆ Vh(i), ∀ i} (3.2)

For a fixed nilpotent operator X, there are three cases for the choice of Hessenberg function h. Viz:

i) the first occurs when h(i) = i for all i

ii) the second case occurs when h(i) = i+ 1, 1 ≤ i ≤ n− 1

iii) and the case third occurs when h(i) = n for all i.

In the first case, the obtained varieties are the Springer varieties which we denoted by Sprλ, where
λ = (λ1, · · · , λk) corresponds to the sizes of Jordan blocks of X. In the second case. The second
case yields Peterson variety, where in the third case, when h(i) = n, is the full flag variety.

Remark 3.1. In other words, Springer varieties Sprλ is the family of full flag in Cn fixed by
nilpotent operator X with Jordan blocks determined by λ.
In two opposites extremal cases, Sprλ are irreducible:

i) If X has only one nontrivial block, i.e. λ = (n), (in other words X is regular nilpotent) then
Sprλ consists of flags of the form V0 ⊂ V1 ⊂ · · · ⊂ Vn where Vi = ker(Xi).

ii) At the other extreme, if λ = (1n), implying that X = 0, then Sprλ coincides with the whole
flag variety Fℓn(C). .

In any other case, Sprλ are reducible into irreducible components.

4 Lie Algebra of GLn(C)
For the rest of this work, the underlying field shall be C, and we take GLn(C) = G, unless otherwise
stated. Let Mn(C) be the set of all n×n matrices whose entries are in C. We denote the entries of
any A ∈ Mn(C) by ai,j and also write A = [ai,j ]. We denote the identity and zero matrix in Mn(C)
by In and 0n respectively, and define Ei,j with entry ei,j = 1 and zero elsewhere. Ei,j form a basis
of Mn(C). Hence, the dimMn(C)=n2, Mn(C) is a ring with the usual addition and multiplication
of n× n matrices. Mn(C) is not commutative except n = 1.

Proposition 4.1. [32] The determinant function det : Mn(C) −→ C∗ has the following properties:

i) For A,B ∈ Mn(C), det(AB) = detAdetB.

ii) A ∈ Mn(C) is invertible if and only if detA ̸= 0.

iii) detIn = 1.

The collection of A ∈ Mn(C) that satisfy item (ii) in the above proposition forms a group with
respect to usual matrix multiplication, called the general linear group (also known as the set of
units in the ring Mn(C)) denoted by GLn(C) .
Bellow are some subgroups of GLn(C):

i) the spacial linear group SLn(C), defined as

SLn(C) = {A ∈ GLn(C) : detA = 1} ⊂ GLn(C). (4.1)

ii) the unitary group denoted by Un = {A ∈ GLn(C) : A∗A = In}. Where A∗ is the complex
conjugate of A.
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iii) The Borel subgroup B of GLn(C), defined as B = {A ∈ GLn(C) : A is Upper triangular}

iv) the n−dimensional torus Tn = {g ∈ Un : g = Diag(t1, t2, · · · , tn), |ti| = 1, i = 1, 2, · · · , n}.

Theorem 4.2. [32] The sets GLn(C) and SLn(C) are groups under multiplication. Furthermore
, SLn(C)) ≤ GLn(C).

Remark 4.3. GLn(C) is not just a group but a Lie group. The group structure of GLn(C) and
SLn(C) leads to the name "general linear group", and "special linear group" respectively. There
are other subgroup of GLn(C) which are not discussed here, readers are encouraged to consult [32]
for details on matrix group.

We like to recall at this juncture that the exponential of any A ∈ Mn(C) denoted by eA is defined
as

eA =
∑
k=0

Ak

k!
. (4.2)

This series converges for each A ∈ Mn(C).
Let An be a sequence of a complex matrices. We say that An converges to a matrix A if each entries
of An converges to the corresponding entry of A.
A matrix Lie group is a subgroup H of GLn(C) with the property that if An is a sequence of a
matrix in H and An converges to a matrix A, then either A belongs to H or A is not invertible.
The above definition implies that H must be a closed subgroup of GLn(C).
A matrix Lie group G is connected if for each E,F ∈ G, there is a continuous path A : [a, b] −→ G
such that A(t) ∈ G for each t ∈ [a, b], A(a) = E and A(b) = F.

Let G be a matrix Lie group. The Lie algebra of G denoted by g is the set of all matrices A
such that eαA belongs to G for each α ∈ R.

Example 4.4. If G = GLn(C) then its corresponding Lie algebra is gln(C) = {A ∈ Mn(C) : eαA ∈
GLn(C), α ∈ R}.
Also if G = SLn(C) then

sln(C) = {A ∈ Mn(C) : eαA ∈ SLn(C), α ∈ R}

= {A ∈ Mn(C) : det(eαA) = 1, α ∈ R}

= {A ∈ Mn(C) : eαtr(A) = 1, α ∈ R}

= {A ∈ Mn(C) : tr(A) = 0}

Remark 4.5. In addition to the above, GLn(C) is a connected Lie group of dimension n2. The Lie
algebra gln(C) corresponding to GLn(C) consists of all n×n complex matrices with the commutator
[., .] called the Lie bracket. If A ∈ Mn(C) we define the trace of A as tr(A) =

∑
ai,i. We note that

tr(AB) = tr(BA). This implies that if A is a matrix with respect to some basis, then tr(A) is
independent of the choice of basis.

Let G = GLn(C) and g = gln(C), we define a map ϕ : G −→ Aut(g) as ϕg(x) = gxg−1, g ∈ G
and x ∈ g. ϕ is called adjoint representation or adjoint action. A map ϕ is said to be nilpotent if
there exists an integer r > 0 such that ϕr = 0.

Lemma 4.6. [33] Let x ∈ g. If the linear map x : V −→ V is nilpotent, then the adx : g −→ g is
also nilpotent.

Remark 4.7. We once again like to remind ourselves that we are are working strictly on GLn(C)
and gln(C), and gln(C) being a classical Lie algebra, this is equivalent to x being nilpotent in the
sense of matrices. GLn(C) is a connected Lie group with a reductive Lie algebra gln(C).

82

https://doi.org/10.5281/zenodo.16740671


International Journal of Mathematical Sciences and
Optimization: Theory and Applications

11(2), 2025, Pages 74 - 92
https://doi.org/10.5281/zenodo.16740671

5 Grassmannians and Flag Varieties
In this section, we discuss the connection between Grassmanians and flag varieties. We see this as
a necessity to our work because flag varieties are seen as subvarieties of product of Grassmannians.

5.1 The Grassmannians
Let V be an n−dimensional vector space over K. For a positive integer d ≤ n, the Grassmannian
Gr(d, n) is defined to be the set of all d−dimensional subspace of V .

Example 5.1. Let d = 1, Gr(1, n) = Pn−1 the projective space (set of lines through the origin).
Pn−1 = {(x1, · · · , xn), xi ̸= 0}\(x1, · · ·xn) ∼ λ(x1, · · · , xn)
= {[x1 : x2 : · · · : xn]}, λ ∈ K∗.

In general,suppose A is a d × n matrix with rank d, then Gr(d, n) = {d × n matrix with rank
d}\row operation= GLn(K)\M (d,n)

∗ .Where GLn(K) is the group of invertible matrices over K and
M

(d,n)
∗ is the set of d × n matrices over K with rank d. The map Gr(d, n) ↪→ Pn−1, defined by

A 7→ [Y1,2, Y1,3. · · ·Yn−1,n] = P ∈ Pn−1, where Yi,j , 1 ≤ i < j ≤ n are the
(
n
d

)
minors for A in

Gr(d, n), is called the Plucker embedding. We call Yi,j projective coordinates on Gr(d, n).

Theorem 5.2. [34] The Plucker map is injective .

Remark 5.3. It is shown in [34] that Gr(d, n) is precisely the zero set of the well known Plucker
relations and hence they are projective varieties.

5.2 Flag Varieties
Let V be an n−dimensional vector space over C, by a flag, we mean a sequence of subspaces
Vi, i = 1, · · · , n ordered by inclusion
V• : V1 ⊂ V2 ⊂ · · · ⊂ Vn = Cn such that dimVi = i. The collection of all such flags is called the full
flag varieties (Whose points are complete flags)which we denote by Fℓn(C).

Example 5.4. Let {e1, e2, · · · , en} be the standard basis for V , and span{e1, e2, · · · , ei} = Vi, then
(the standard flag) is given by
V• = {0} ⊂ span {e1} ⊂ span {e1, e2} ⊂ · · · ⊂ span{e1, · · · en}

Remark 5.5. Any g ∈ GLn(C) can be seen as a flag if we express Vi as the span of the first i
columns of g

5.3 Flag Variety as a Homogeneous Spaces
A homogeneous space X is a topological space which admits a transitive group (G) action. Here,
G = GLn(C) and X = Fℓn(C).
The general linear group GLn(C) acts transitively on Fℓn(C). The implication of this is that, for any
V• ∈ Fℓn(C) there exists g ∈ GLn(C) which maps V• = {0} ⊂ span {e1} ⊂ span {e1, e2} ⊂ · · · ⊂
span{e1, · · · en} to V ′

• = {0} ⊂ gspan {e1} ⊂ gspan {e1, e2} ⊂ · · · ⊂ gspan{e1, · · · en}. Fℓn(C) can
be identified with elements of GLn(C) and Un modulo their respective subgroup which stabilizes
the flags.
This simply implies that Fℓn(C) can be written as

Fℓn(C) = GLn(C)/B ∼= Un/T
n. (5.1)

Hence, Fℓn(C) is called a homogeneous space and is of dimension n(n−1)
2

Remark 5.6. This relation between G/B and Fℓn(C) gives Fℓn(C) a variety structure. There is
an obvious embedding Fℓn(C) ↪→

∏n−1
d=1 Gr(d, n). The image of the map is a closed subset of this

product which is shown in [89] to be a projective variety.
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5.4 CW-decomposition of Flag Varieties
It is Possible to obtain a decomposition of Fℓn(C) by re-writing any g ∈ GL(C) in its column
reduced echelon form. In this sense, we say that g is column equivalence to h (i.e g ∼ h) if h is the
column echelon form of g. This relation partitions Fℓn(C) into disjoint classes.

If for instance, the echelon form of g is of the form


∗ 1 0 0
∗ 0 ∗ 1
1 0 0 0
0 0 1 0

 where ∗ denote free entries.

It is noted that the leading 1′s in each column, form a permutation matrix corresponding to
w = 2413 ∈ S4 in one-line notation. This permutation determines the position of g ∈ GLn(C)
denoted by pos(g) = w. Each w ∈ Sn determines a cell in Fℓn(C) called the Schubert cell
(Bruhat cell) denoted Cw.

Let w ∈ Sn,the closure Xw = Cw = ⊔v≤wCv is called Schubert varieties. Where ≤ is a Bruhat
order defined on Sn .

Proposition 5.7. [35] The flag variety is paved by affines ⊔w∈SnCw and has dimension l(w).Where
l(w) is the length of w.

Each Schubert variety Xw is a projective variety such that dim(Xw) = ℓ(w). In addition, Xw is an
affine space isomorphic to Cℓ(w).

Remark 5.8. The full flag varieties therefore can be written as a disjoint union of Schubert cells.
i.e. Fℓn(C) = ⊔w∈SnCw. This decomposition is not just a partition of the flag variety but it forms
a CW-decomposition of the flag variety.

5.5 Cohomology of Fℓn(C)
The cohomology of Fℓn(C) with coefficients in Z written as

H∗(Fℓn(C),Z) =
⊕

Hi(Fℓn(C),Z) (5.2)

is a graded ring.
As a module, it is well known that H∗(Fℓn(C),Z) is freely generated by the Schubert class [Xw]
indexed by the Weyl group W ≃ Sn of GLn(C). H∗(Fℓn(C),Z) has a multiplicative structure
called cup product. The degree of [Xw] is 2dim[Xw] = 2l(w). The kth Betti number of a projective
variety Y denoted bk(Y ) = dimHk(Y ). We recall that if Y is a projective variety with a cell
decomposition, then the cohomology of Y vanishes in odd degrees, and H2k(Y,Z) is the number of
k−dimensional cells.
Since Fℓn(C) is a non singular complex algebraic variety with CW−decomposition, then the coho-
mology only lives in even dimension. In other words,

H∗(Fℓn(C)) =
⊕

H2k, k = 0, 1, 2, · · · .

Hence, bk((Fℓn(C)) = dimH2k((Fℓn(C)). For instance, let n = 3. We recall that dim(Xw) = l(w).
Now let W ≃ S3 = {e, s1, s2, s1s2, s2s1, s1s2s1} Then,

• Xe = Ce

• Xs1 = Ce ∪ Cs1

• Xs2 = Ce ∪ Cs2

• Xs1s2 = Ce ∪ Cs1 ∪ Cs2 ∪ Cs1s2

• Xs2s1 = Ce ∪ Cs1 ∪ Cs2 ∪ Cs2s1

• Xs1s2s1 = Ce ∪ Cs1 ∪ Cs2 ∪ Cs1s2 ∪ Cs1s2s1
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With dim(Xe) = 0, dim(Xs1) = 1 = dim(Xs2), dim(Xs1s2) = 2 = dim(Xs2s1) and dim(Xs1s2s1) =
3 We also recall that bk = dimH2k(Fℓn(C) = number of k−dimensional cells.Hence

• b0 = dimH0(F(3)) = 1

• b1 = dimH2(F(3)) = 2

• b2 = dimH4(F(3)) = 2

• b3 = dimH6(F(3)) = 1

Therefore, the Poincare polynomial pk(t) =
∑

k=0 bkt
k = 1 + 2t+ 2t2 + t3.

Here,pk(t) is palindromic which implies that Fℓn(C) is smooth.
Some subvarieties of the full flag variety are: Torus Orbit closure; Richardson Varieties; Schu-
bert Varieties and the family of Hessenberg Varieties among which are Peterson and the Springer
Varieties.

6 Classification of Nilpotent Orbits in Type A

In this section we consider the classification of nilpotent orbits in gln(C) under the action of
GLn(C). This we do in the framework of partition of integers and Young diagram. Given
r > 0, α ∈ R we denote Jr(α) an r × r matrix of the form

Jr(α) =


α 1 0 · · · 0
0 α 1 · · · 0
...

...
. . . · · · 1

0 0 · · · 0 α

 (6.1)

Where α are the eigenvalues and they appear at the main diagonal, 1 appears at the super-diagonal
and zero elsewhere. Jr(α) is called Jordan block. We recall that nilpotent matrices in gln(C)
have all eigenvalues equal to zero. In view of this, Jr(α) in 6.1 becomes

Jr(0) =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . . · · · 1

0 0 0 · · · 0

 (6.2)

Let A ∈ gln(C) be nilpotent operator on Cn. We understand from linear algebra that there exists
a basis for Cn such that the matrix A with respect to this basis is of the form

Xλ =


Jλ1

(0) 0
Jλ2

(0)
. . .

0 Jλs
(0)

 (6.3)

where λ = (λ1, λ2, · · · , λs) and
∑s

i=1 λi = n.

Remark 6.1. Each Jλi
(0) is an elementary λi × λi Jordan block of type λi. Hence, we say that

Xλ is of Jordan type λ. Xλ is a nilpotent endomorphism of Cλ1+λ2+···+λs = Cn

Theorem 6.2. (Jordan form)
Any n× n nilpotent matrix is similar to precisely one matrix Xλ.
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Example 6.3. Let n = 4, every 4× 4 nilpotent matrix has one of the Jordan form below
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 ,


0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 ,


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 ,


0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


which are parametrized in an obvious way by partition and hence of Jordan types λ = (4) : (3, 1) :
(2, 2) : (2, 1, 1) and (1, 1, 1, 1) respectively.

The nilpotent cone of the Lie algebra gln(C), denoted by N , consists of all nilpotent elements in
gln(C). The general linear group acts on N by conjugation, this leads to an equivalence relation
on N which partition N into disjoint classes. The orbits of the action of G on N for each Xλ ∈ N ,
corresponding to λ ∈ Pn denoted by OXλ

, are the nilpotent orbit which contains nilpotent matrices
of Jordan type λ.

i.e,OXλ
= {B = AXλA

−1 : A ∈ gln(C}.

Proposition 6.4. [36] There is one-to-one correspondence between the set of nilpotent orbits of
the Lie algebra gln(C) and the set Pn of partitions of n. This correspondence sends a nilpotent
elements X to the partition determined by the block sizes in its Jordan canonical form.The zero
orbits corresponds to the partition (1n). In particular, the set of nilpotent orbits is finite.

Proposition 6.5. [36] If A is nilpotent and c ̸= o then, cA is also nilpotent. A and cA are
conjugate.

Remark 6.6. Following the above , it is obvious that every nilpotent orbit in gln(C) corresponds
to a unique partition of n, that is, the number of nilpotent orbits in gln(C) is at least |Pn|, in
other words, nilpotents orbits are disjoint by the uniqueness of the Jordan normal form. This gives
the classification of nilpotent orbits in type A. N is called nilpotent cone, since being nilpotent is
preserved by scaling.

7 Resolution of Singularities of OXλ

Now that we have been able to convince ourselves in the section above that for each λ ∈ Pn, there
exists a unique nilpotent orbit denoted by OXλ

. In this section, we shall describe the resolution of
the singularities of the closure of the algebraic variety OXλ

denoted by OXλ
. Suppose x ∈ gln(C)

be such that there is r ∈ Z+ and xr = 0. Let x acts on Cn, then, we have have a filtration

0 = ker(x0) ⊆ ker(x) ⊆ ker(x2) ⊆ · · · ⊆ ker(xn) = Cn. (7.1)

It is noted that all g ∈ B satisfies the condition in the equation below.

B = {g ∈ GLn(C) : gker(xi) ⊂ ker(xi)} (7.2)

and
b = {a ∈ gln(C) : a(ker(x

i)) ⊂ ker(xi)}. (7.3)

Where b is the corresponding Lie algebra of B. For a Borel subgroup B ⊂ G, the nilradical nb of
the Lie algebra of B is the nilpotent cone of b which we define as;

nb = {u ∈ gln(C) : u(ker(x
i)) ⊂ ker(xi−1)}. (7.4)

nb consists exactly of the nilpotent elements in b. Given a x ∈ OXλ
, the lemma below gives the

dimension of the space of ker(xi).

Lemma 7.1. [33] If λ = (λ1, · · · , λk) and µ = λ′ is the conjugate of λ with µ = (µ1, · · · , µl).
Then 0 ≤ s ≤ l, dim(ker(xs)) =

∑s
i=1 µi and for s > l dim(ker(xs)) = n.
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Given G = GLn(C) and B its Borel subgroup. Let G×B nb be the space obtained as the quotient
of G × nb by the right action of B given by (g, y)b = (gb, b−1y), b ∈ B, g ∈ G, y ∈ nb Recall that
the quotient G/B is a flag variety. In our settings, we identify gB ∈ G/B with {0 ⊂ g(ker(x)) ⊂
g(ker(x2)) ⊂ · · · ⊂ g(ker(xl))}

G/B = {0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vl = Cn : dim(Vi) = dim(ker(xi))}

where V is an l dimensional vector space. G/B is a projective variety, since it can be embedded
into product of the Grassmanians

∏n−1
i=1 Gr(i, n). as stated earlier.

Proposition 7.2. [33] Define a map ϕ : G×B nb −→ G/B×g by ϕ(g, y) = (gB, gyg−1). Then the
map ϕ is well defined and injective, hence giving ϕ : G ×B nb the structure of an algebraic variety
(as a closed subvariety of G/B × g). Furthermore, im(ϕ) = {((Vi), y) : yVi ⊂ Vi−1}

Corollary 7.3. [33] G×B nb is a vector bundle over G/B, with fibers isomorphic to nb

Proof. G×B nb is identified with the variety {((Vi), y) : yVi ⊂ Vi−1} . Suppose f if a projection onto
G/B from G×B nb, f is surjective. Fix gB = (Vi) ∈ G/B, the fibre f−1(Vi) = {y ∈ g : yVi ⊂ Vi−1}.
f−1(Vi) is a conjugate of nb and hence isomorphic to nb as a vector space.

The map π : G×B nb −→ g define by π(g, y) = gyg−1 is well defined. If G×B nb is considered
as the set {((Vi), y) : yVi ⊂ Vi−1}, the map π is projection (π : G×B nb −→ g).

Corollary 7.4. [33] The map π is a Projective morphism of varieties .

Theorem 7.5. [33] The map π : G×B nb −→ g is a resolution of singularities for the orbit closure
OXλ

. Equivalently the following four statements are true:

i) The image of π in g is precisely the orbit closure of OXλ
.

ii) π is injective when restricted to π−1(OXλ
). When π−1 is restricted to

OXλ
, π−1 : OXλ

−→ G×B nb is a morphism of algebraic varieties.

iii) As an algebraic variety, G×B nb is smooth and irreducible.

iv) π is a proper morphism of algebraic varieties .

7.1 Springer Varieties in Type A
Now that we have created a leveled plane ground for our object of study, we shall hence explain
what Springer fibers in type A is.
For any X ∈ b ⊂ N or OXλ

⊂ N the fibers over X i.e π−1(X) is called the Springer fibers. This
we denote by Sprλ

Given X ∈ OXλ
, we define the springer fibers

Sprλ = π−1(X) = {0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = Cn : XVi ⊂ Vi−1}.

Geometrically, we define

Sprλ = {0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = Cn : XVi ⊂ Vi}.

Remark 7.6. For any X,X ′ ∈ OXλ
, the springer fibers Sprλ and SprX′ are canonically isomor-

phic. Hence, saying that the Springer fibers over a nilipotent orbit also means the Springer fibers
over a nilpotent element in the orbit.
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7.2 Components of the Springer Fibers
The Springer components is not irreducible in general and the geometry of its irreducible compo-
nents has been an important topic for current researches. We shall therefore in this section discuss
the irreducible components of or dear Springer fibers using standard tableaux.
Let Yλ be the young diagram corresponding to a partition λ ∈ Pn and Stλ denotes the set of
standard tableaux of shape λ. By standard tableaux, we mean a filling of the Young diagram Yλ

with entries from [n] such that the entries strictly increase from top to bottom, left to right. We
refer readers to [10] for details on Young tableaux.
Again, we let Xλ ∈ N be of Jordan type as explained earlier. The dimension of Sprλ depends on
the diagram Yλ as shown by the theorem below.

Theorem 7.7. [14] The variety Sprλ is equidimensional. Moreover, denote by λ′
1, λ

′
2, · · · , λ′

r the
lengths of columns of Y, we have

dimSprλ =

r∑
q=1

λ′
q(λ

′
q − 1)

2

For any tableaux T ∈ Stλ, let Ti, i ≤ n be the tableau obtained by deleting boxes with numbers
i+ 1, · · · , n. The shape of the tableau Ti is a sub-diagram denoted by YTi

⊂ Yλ with i boxes. the
standard tableau can be written as the maximal chain of sub-diagrams
ϕ = YT0 ⊂ YT1 ⊂ · · · ⊂ YTn = Yλ

Let V• ∈ Sprλ, the restriction map X/Vi : Vi −→ Vi is a nilpotent endomorphism. Take Yi(V•) =
Y(X/Vi) as the Young diagram corresponding to the Jordan form of J(X/Vi). J(X/Vi) is a partition
of i, and(J(X/Vi))

n
i=1 forms an increasing sequence.

Clearly Yi differs from Yi+1 by a corner box. So we obtain a chain of increasing sequence of Young
diagrams Y0(V•),Y1(V•), · · · ,Yn(V•) which is equivalent to standard tableau T . Let

SprXT = {V• ∈ Sprλ : Yi(V•) = YTi
,∀i}.

Theorem 7.8. [17] For each T ∈ Stλ the subset SprXT is a smooth irreducible sub-variety of
Sprλ. Every component of Sprλ is obtained this way.

The set SprXT for each T ∈ Stλ form a partition of Sprλ . Hence, we get a decomposition
SprX = ⊔T∈StλSprXT parametrized by the standard tableaux of shape λ. For each T , the set
SprXT is a locally closed, irreducible subset of SprX and dim(SprXT ) = dim(SprX)

Example 7.9. For λ = 2, 2, 1 SprX has five irreducible components parametrized by the standard
tableaux

1 2
3 4
5

1 4
2 5
3

1 2
3 5
4

1 5
2 3
4 and

1 4
2 5
3

Corollary 7.10. Let d = dim(SprX). For m ≥ 0, the Betti number bm := dimH2m(SprX ,Q) is
the number of row-standard tableaux T of shape λ such that (inv)τ = d−m [14]

8 Fixed Points of the Springer Fibers in Type A
Springer fibers associated to a nilpotent operator on Cn of Jordan type λ admits a natural action
of the k−dimensional subtorus Sk where k gives the number of Jordan blocks (or equivalently, the
number of parts in a partition λ). We stated ealier that the n−dimensional torus Tn naturally acts
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on the flag variety Fℓn(C) with the fixed points (Fℓn(C))T
n ∼= Sn, but Tn does not preserve Sprλ

in general.Hence the introduction of k−dimensional torus Sk

Tn =




t1
t2

. . .
tn

 ∈ GLn(C) : ti ∈ C∗, |ti| = 1, i = 1, 2, · · · , n


And

Sk =




t1Nλ1

t2Nλ2

. . .
tkNλk

 ∈ Tn : ti ∈ C∗ |ti| = 1, i = 1, 2, · · · , n


Where each Ni is an i × i regular nilpotent matrix. For a Springer fiber associated to a nilpotent
operator, the Sk−fixed points denoted (Sprλ)

Sk

are in bijective correspondence with the set of row
strict tableaux of shape λ, as we now describe.
Let w = w1, w2, · · · , wn be an element of Sn in one-line notation. For each τ ∈ (rst)λ we associate
a permutation wτ ∈ Sn by reading the entries of a row-strict tableau τ from left to right, top to
bottom. The inverse of wτ (i.e (wτ )−1) is a fixed point of Sprλ. All other fixed points of Sprλ are
written this way.

Example 8.1. Let n = 5 with λ = (2, 2, 1) and τ =

3 4
2 5
1 , the associated wτ ∈ Sn is wτ = 34251

by taking its inverse, we have (wτ )−1 = 53124.

Remark 8.2. (wτ )−1 a fixed points of Sprλ and every other fixed points of Sprλ are obtained this
way. Hence

(Sprλ)
Sk

= {(wτ )−1 : wτ ∈ Sn, τ ∈ (rst)λ}.
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