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Abstract

This study addresses a general class of quadratic optimal control problems (OCPs) constrained
by ordinary differential equations (ODEs) with vector-matrix coefficients. Due to the in-
tractability of analytical solutions for complex dynamic systems, the focus is on developing
and comparing efficient numerical methods. An analytical framework is first established by
applying first-order optimality conditions to the Hamiltonian, yielding a system of first-order
ODEs. The associated Riccati differential equation is then solved using a state transforma-
tion approach. For numerical solutions, the objective functional is discretized using Simpson’s
1
3

rule, and the system dynamics are approximated using a fifth-order implicit integration
scheme. The discretized problem is reformulated as an unconstrained optimization problem
via the Augmented Lagrangian Method and solved using both the CGM and FICO Xpress
Mosel. Comparative results reveal that FICO Xpress Mosel provides faster convergence and
greater numerical stability, especially for high-dimensional problems. These findings underscore
the effectiveness of commercial solvers like FICO Xpress Mosel in solving large-scale quadratic
OCPs with enhanced accuracy and efficiency.

Keywords: Halmitonian function, Vector-Matrix coefficient, Discretization, Augmented Lagrangian
Method, Conjugate Gradient Method, Fico Xpress Mosel.
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1 Introduction
Optimization entails determining the minimum or maximum value of a function referred to as
an extremum. Various practical scenarios, such as those in engineering and epidemiology, require
decision-makers to make numerous technological and managerial choices across different stages.
The primary objective is to minimize the effort needed or maximize the benefits obtained. These
decisions play a critical role in ensuring the optimal utilization of available resources. Prior re-
search focused on determining a control law applicable to a dynamic system, aiming to optimize
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an objective function within a specified time frame. This theory applies to systems that can be
manipulated or controlled. Over several decades, optimal control theory has been extensively de-
veloped. It requires a performance index or cost function which is denoted as J(t;x(t);u(t)), along
with a defined set of state variables (t;x(t) ∈ X ) and control variables (u(t) ∈ U) at any given time
t, where t0 ≤ t ≤ tf . To maximize a specific objective functional, it is imperative to obtain the
corresponding state variable x(t) and a control u(t) that is piecewise continuous [1, 17].

[11] investigated the challenges of optimal control problems involving linear degenerate ellip-
tic equations featuring mixed boundary conditions, with controls represented as matrices. Such
equations often demonstrate the presence of multiple weak solutions. This issue was addressed by
employing the concept of convergence in variable spaces and leveraging the direct method from
Calculus of Variations, thereby ensuring the solvability of the optimal control problem within the
domain of weak admissible solutions. [12] offered a rigorous first installment in a two-part study on
optimal control of nonlinear monotone Dirichlet problems, focusing on matrix-valued coefficients
in L(Ω;RN×N ); it establishes first-order optimality conditions for a tracking-type cost functional
under general hypotheses, laying the groundwork for the second part, which will address the special
case of diagonal matrices. [21] investigated the geometric convergence ratio as the central feature
of a discretized scheme for a constrained quadratic control problem, employing time discretization
and Euler’s method to derive a finite-dimensional approximation. By applying the penalty function
approach, the problem was reformulated into an unconstrained functional minimization, ultimately
leading to an operator construction that demonstrated geometric convergence.

Beyond traditional engineering domains. Recent work extends optimal control to financial sys-
tems. [3] studies a defined contribution pension plan with mortality-dependent redistribution,
where fund managers refund deceased members accumulations at predetermined interest rates.
Key findings show the elasticity parameter β significantly impacts investment strategies, while op-
timal controls are inversely proportional to risk aversion,fund size, volatility, and interest rates but
proportional to time horizon. This analytical approach addresses Optimal Control Problems with
mortality constraints but faces computational limitations for high dimensional cases.

Analytical and numerical solutions for the general continuous linear quadratic optimal control
problem were explored. This resulted in a comprehensive Riccati differential equation, which was
solved using a numerical-analytical approach with the variational iteration method. Numerical
solutions for the constrained optimal control problem were obtained using the shooting method
and the conjugate gradient method (CGM) via quadratic programming for discretized continuous
optimal control problems. This illustrated a strong agreement between the analytical and numerical
solution [2, 20].

A recent study, [23] combined analytical solutions of OCPs with numerical schemes using Simp-
son’s rule and a fifth-order implicit method, solving the resulting problem via Augmented La-
grangian and CGM/FICO Xpress Mosel. The results confirmed the superior performance of FICO
Xpress Mosel in high-dimensional problems. Another effective approach for solving optimal control
problems (OCPs) governed by nonlinear ordinary differential equations is the Variational Itera-
tion Method (VIM). Unlike traditional numerical schemes, VIM does not require discretization,
linearization, or perturbation. It has been widely applied to nonlinear problems, including Riccati
equations, due to its ability to reduce computational complexity and handle boundary value formu-
lations derived from Pontryagin’s Maximum Principle. Recent studies in [22] have demonstrated
its effectiveness through illustrative examples and proposed enhancements to address potential lim-
itations.

Optimal control of linear plants or systems was addressed [18] under closed-loop conditions,
incorporating a quadratic performance index. This investigation gave rise to the linear quadratic
regulator (LQR) system, which encompasses aspects of state regulation, output regulation, and
tracking. The focus of this system lies in the design of optimal linear systems with quadratic
performance indices.

A method for solving initial-valued first-order Ordinary Differential Equations (ODEs) was
devised by utilizing sixth-order Lagrangian Interpolation formula, resulting in a fifth-order implicit
approach. This method demonstrated superior performance in comparison to implicit formulas
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based on Euler and Runge-Kutta methods [9]. To further enhance accuracy, a Romberg scheme
was incorporated into the methodology [24].

Recent advances in numerical methods for differential equations include [19]’s development of a one-
step fourth derivative block integrator for third-order singularly perturbed problems, prevalent in
fluids dynamics,optimal control, and reaction-diffusion systems. Their approach employs: Shifted
Cherbyshev polynomials astrial functions, collocation techniques to handle boundary conditions
and fourth-order accuracy surpassing existing methods.

The FICO Xpress Optimizer is a widely-used optimization solver that supports various prob-
lem types, including linear programming (LP), mixed-integer linear programming (MIP), convex
quadratic programming (QP), convex quadratically constrained quadratic programming (QCQP),
second-order cone programming (SOCP), and their mixed-integer counterparts. Additionally, Xpress
Mosel features a flexible nonlinear solver, Xpress NonLinear, which employs techniques such as suc-
cessive linear programming, interior point methods, and Artelys Knitro (second-order methods) [7].

Furthermore, [4] explored algorithms designed to tackle mixed-integer nonlinear programming prob-
lems (MINLPs) which are widely recognized as NP-hard. It also showcases applications in signal
processing and leverages advancements in addressing these challenges through Xpress and its suite
of powerful nonlinear solvers. The computational results demonstrate the efficient and accurate
resolution of nonlinear signal processing problems, capitalizing on the seamless interaction between
Xpress-Mosel’s algebraic modeling and procedural programming language, along with the diverse
Xpress solver engines. This synergy is facilitated by a unified modeling interface that supports all
types of solvers, from linear to general nonlinear solvers.

A fully developed functional basic unit problem was executed and tested in Xpress Mosel, suitable
for application in power market modeling. A detailed discussion on the model’s constraints was
provided, and solutions were presented for implementation challenges that remained open. This
offers guidance on managing data input (from both databases and Excel) and data output to Excel
[5].

1.0.1 Definition of terms

Left Half-Plane Eigenvalues: It refers to the region in the complex plane where the real part of
the eigenvalues is negative.
For a linear system described by a matrix A, the eigenvalues are the solutions to the characteristic
equation |A− λI| = 0, where I is the identity matrix. The eigenvalues are complex numbers of the
form λ = α+ βi, where α is the real part and β is the imaginary part.
If all the eigenvalues of a system have negative real parts, the system is said to have eigenvalues
in the left half-plane. This region generally associated with stability in control systems. Systems
with eigenvalues in the left half-plane typically exhibit behavior that converges toward a stable
equilibrium over time. Stability analysis: In control theory, it involves studying the location of
eigenvalues in the complex plane. Ensuring that the eigenvalues are in the left half-plane is a key
criterion for stability. State Transformation: It refers to the process of defining a new set of
variables or coordinates that represent the system’s state. This transformation is often employed
to simplify the mathematical representation of the system dynamics or to address specific control
objectives more effectively. The state transformation is typically denoted by a function that maps
the original state variables to the new set of variables. A function f from S ⊂ Rn → Rm is
Lipschitz Continuous at x ∈ S if ∃ C such that

||f(y)− f(x)|| ≤ C||y − x|| (1.1)

∀y ∈ S Sufficiently near S. This indicates that the Lipschitz continuity at a specific point is deter-
mined solely by the behavior of the function in the vicinity of that point. For a function f to be

113

https://doi.org/10.5281/zenodo.16740855


International Journal of Mathematical Sciences and
Optimization: Theory and Applications

11(2), 2025, Pages 111 - 132
https://doi.org/10.5281/zenodo.16740855

Lipschitz continuous at x, the condition (1.1) must be satisfied for all y that are sufficiently close
to x , but it does not have to hold for values of y that are further away from x. Additionally, f can
exhibit Lipschitz continuity at other points, although different constants C may be necessary for
the condition (1.1) to be satisfied near those points [26].

A function f from S ⊂ Rn → Rm is called Lipschitz function if ∃ C such that

||f(y)− f(x)|| ≤ C||y − x|| (1.2)

∀x, y ∈ S. For a function f to qualify as a Lipschitz function, the constant C must satisfy condition
(2) for every x and y within the set S. However, according to definition 1.4, the constant C is
defined for all y in S that are sufficiently near to x [26] . Integral of a Subset: Let (X ,M, µ)
be a measure spaces, let f be a measurable function on X, and let E be a measurable subset of X.
Then the lebesgue integral of f on E is defined as follows:∫

E

fdµ =

∫
X
fXEdµ (1.3)

We say that f is lebesgue integrable on E, if the function fXE is Lesbegue integrable on X . [15]

Theorem 1.1. The Halmitonian is a Lipschitz Continuous function of time t on the optimal path
[13]

Proof. Given that the standard optimal control problem is:

max J (u) =

∫ t1

t0

f(t, x(t), u(t))dt

Subject to: ẋ(t) = g(t, x(t), u(t))

x(t0) = x0, x(t1) is free. (1.4)

let u∗, x∗ be an optimal pair for (1.4) and λ the associated adjoint for t ∈ [t0, t1]. Suppose
M(t) = H(t, x∗(t)u∗(t), λ(t))
As u∗ is piece wise continuous on a compact interval ∃ some bounded interval p ∋ u∗ ∈ P ∀ t ∈
[t0, t1]. Similarly ∃ bounded intervals Q and R ∋ x∗(t) ∈ Q and λ(t) ∈ R ∀t ∈ [t0, t1]
Given the Hamitonian function of four variables H(t, x, u, λ) for choices f and g and H is contin-
uously differentiable in all four arguments. Therefore it is possible to choose a constant k1 such
that

|Ht(t, x, u, λ)| ≤ k1, |Hx(t, x, u, λ)| ≤ k1 and |Hλ(t, x, u, λ)| ≤ k1 (1.5)

For all (t, x, u, λ) in the compact set [t0, t1] × P × q × R. Fix s, t ∈ [t0, t1]. Let xt = x∗(t) and
xs = x∗(s). Define ut, us, λt, λs. Similarly, let τ ∈ P . Using the Mean Value Theorem,

|H(t, xt, τ, λt)−H(s, xs, τ, λt)| ≤ |Ht(c1, xt, τ, λt)||t−s|+|Hx(s, c2, τ, λt)||xt−xs|+|Hλ(s, xx, τ, c3)||λt−λs|

≤ k1|t− s|+ k1|xt − xs|+ k1|λt − λs|

for some c1 ∈ [t0, t1], c2 ∈ Q and c3 ∈ R.
Suppose x∗ and λ are piecewise differentiable on a compact interval, thus Lipschitz continuous.
Let k2 be the max of the two Lipschitz constant. Then

|H(t, xt, τ, λt)−H(s, xs, τ, λt)| ≤ k1|t− s|+ k1|xt − xs|+ k1|λt − λs| (1.6)

≤ (k1 + 2k1k2)|t− s|

let k = k1 + 2k1k2 and note that this holds for all τ ∈ P . M(t) = H(t, xt, ut, λt) and M(s) =
H(t, xs, us, λs). If u∗(t) and x∗(t) are optimal for (1.4). ∃ a piecewise differentiable adjoint variable
λ(t) such that

H(t, xt(t), u(t), λ(t)) ≤ H(t, x∗(t), u∗(t), λ(t)) (1.7)
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for all controls at each time t, where the Halmitonian H is:

H = f(t, x(t), u(t)) + λ(t)g(t, x(t), u(t))

and
λ′(t) =

∂H(t, x∗(t0, u∗(t), λ(t))

∂x

λt1 = 0

the Halmitonian is maximized pointwise by u∗, so

H(t, xt, us, λt) ≤ H(t, xt, ut, λt) and H(s, xs, ut, λs) ≤ H(s, xs, us, λs) (1.8)

Applying (1.7) for τ = us, τ = ut and combining (1.8) we have

−k|t− s| ≤ H(t, xt, us, λt)−H(s, xsus, λs)

≤ H(t, xt, ut, λt)−H(s, xs, us, λs)

=M(t)−M(s)

≤ H(t, xt, ut, λt)−H(s, xs, ut, λs)

≤ K|t− s|
Therefore |M(t)−M(s)| ≤ k|t− s| as t, s are abitrary. M is lipchitz continuous [13]

Theorem 1.2. Let the Set of controls for (1.4) be Lessbegue Integrable functions (instead of just
piecewise continuous functions) on t0 ≤ t ≤ t1 with values in R. Suppose that f(t, x, u) is Convex
in U, and there exist Constants C4 and C1, C2, C3 > 0 and β > 1 ∋

g(t, x, u) = α(t, x) + β(t, x)u

|g(t, x, u)| ≤ C1(1 + |x|+ |u|)

|g(t, x1, u)− g(t, x, u)| ≤ C2|x1 − x|(1 + |u|)

f(t, x, u) ≥ C3|u|β − C4

∀ t with t0 ≤ t ≤ t1 and x, x1, u ∈ R. Then ∃ an optimal control u∗ maximixing J(u) with J(u∗)
finite. [13]

This study develops a numerical scheme for quadratic optimal control problems constrained by
matrix-coefficient ODEs. Key objectives include:

• deriving optimality conditions and solving the Riccati equation analytically;

• discretizing the problem using Simpson’s rule and a fifth-order implicit method;

• applying the Augmented Lagrangian Method for unconstrained optimization;

• comparing Conjugate Gradient and FICO Xpress Mosel solvers;

• analyzing convergence and computational efficiency

The results will benchmark commercial versus classical solvers for high-dimensional control prob-
lems.
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2 Methodology
2.0.1 Analytical Solution of quadratic optimal control problem constrained by ordi-

nary differential equation with Vector Matrix Coefficients

Consider a Quadratic Optimal Control Problem Constrained By Ordinary Differential Equation
with Vector Matrix Coefficients. This is given as:

Min J (x, u) =

∫ T

0

(xT (t)Px(t) + uT (t)Qu(t))dt (2.1)

Subject to ẋ(t) = Ax(t) +Bu(t) (2.2)

x(0) = x0 t ∈ [0, T ]

Where Pn×n, Qm×m are symmetric positive definite and An×n and Bn×m are not necessarily
symmetric positive definite and T denotes the terminal time.

By introducing the adjoint varible µ(t), the constrained OCP given in equations (2.1) and (2.2) is
converted to an unconstrained problem. Hence, the hamiltonian is given as:

H(x, u, µ) = a+ bx+ cu+ dx2 + eu2 + µ(px+ qu) (2.3)

The Euler-Lagrange system of equations for this hamiltonian function can be written as:

d

dt

[
∂H

∂µ̇

]
=
∂H

∂µ
(2.4)

d

dt

[
∂H

∂ẋ

]
=
∂H

∂x
(2.5)

d

dt

[
∂H

∂u̇

]
=
∂H

∂u
(2.6)

Equations (2.4)-(2.6) give:
ẋ∗ = Ax∗ +Bu∗ (2.7)

µ̇∗(t) = −2Px−ATµ∗ (2.8)

u∗ = −1

2
Q−1BTµ (2.9)

From equation (2.7), in view of equation (2.9):

ẋ∗ = Ax∗ − 1

2
BQ−1BTµ∗ (2.10)

Expressing equation (2.10) and equation (2.8) in matrix form:(
ẋ∗

µ̇∗

)
=

(
A −D

−2P −AT

)(
x∗

µ∗

)
(2.11)

Where D =
1

2
BQ−1BT .

To solve the above system of equation, we first assume a kind of Ricatti Transformation

x∗(t) =M(t)µ∗(t) (2.12)

ẋ∗ = Ṁµ∗ +Mµ̇∗ (2.13)

In view of equation (2.8), equation (2.13) becomes:

ẋ∗ = Ṁµ∗ − 2MPx−MATµ∗ (2.14)
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In view of equation (2.10), equation (2.14) becomes:

Ax∗ − 1

2
BQ−1BTµ∗ = Ṁµ∗ − 2MPx−MATµ∗ (2.15)

In view of equation(2.12), equation (2.15) becomes:

Ṁ = AM − 1

2
BQ−1BT + 2MPM +MAT (2.16)

Equation (2.16) is called the Ricatti differential Equation.
Using the Boundary Conditions,
x(0) = x0, Note that x(0) ̸= 0

x(0) = x0 −→M(t0)µ(0) (2.17)

For abitrary µ(0), then
M(t0) = x0 (2.18)

Thus to solve the matrix Ricatti Differential equation (2.16), using initial condition (2.18).
From equation (2.11), Let

H =

(
A − 1

2D
−2P −AT

)
(2.19)

The Solution M(t) of equation (2.16) can be obtain analytically in terms of eigenvalues and eigen-
vectors of the Halmitonian Matrix H.

Theorem 2.1. If τ is an eigenvalue of H, then −τ is also an eigenvalue of H. [18]

Proof. Define

G =

(
0̄ I
−I 0̄

)
(2.20)

Where I and 0̄ are m×m matrix.
Then

H = GHTG

if τ is an eigenvalue of H, then
Hv = τv (2.21)

GHTGv = τv

G−1GHTGv = G−1τv

note that G−1 = −G
HTGv = G−1τv

HTGv = −Gτv

HTGv = −τGv

(HTGv)T = −(τGv)T

(Gv)THTT = −τ(Gv)T

Where Gv is a left eigenvector of H with eigenvalue of −τ . Rearrange the eigenvalue of H gives:

F =

(
−S 0
0 S

)
(2.22)
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Where S is an eigenvalue of H. S(−S) is a diagonal matrix with right half plane(left half-plane)
eigenvalues.
Let N be a modal matrix of eigenvectors corresponding to F.

N =

(
N11 N12

N21 N22

)
(2.23)

The modal matrix plays a crucial role in diagonalizing a matrix. Diagonalization involves finding a
matrix N such that N−1HN is a diagonal matrix, where F is the original matrix. The columns of
the modal matrix N are the eigenvectors of H.
By multiplying the modal matrix N with the original matrix H and then multiplying the result by
the inverse of the modal matrix N−1, the diagonal matrix F is obtained. The diagonal elements of
this matrix F are said to be the eigenvalues of H.
[N11, N21]

T are the n eigenvectors of the left half-plane (stability) eigenvalues of H

N−1HN = F (2.24)

Let the state transformation variables be n(t) and z(t).(
x(t)
µ(t)

)
= N

(
n(t)
z(t)

)
=

(
N11 N12

N21 N22

)(
n(t)
z(t)

)
(2.25)

In view of equation (2.24):(
ṅ(t)
ż(t)

)
= N−1

(
ẋ(t)
µ̇(t)

)
= N−1H

(
x(t)
µ(t)

)
= N−1HN

(
n(t)
z(t)

)
= F

(
n(t)
z(t)

)
(2.26)

Solving equation (2.26) in terms of the known initial condition t0, we have(
n(t)
z(t)

)
=

(
e−S(t−t0) 0

0 eS(t−t0)

)(
n(t0)
z(t0)

)
(2.27)

From equation (2.25) and using the initial condition

x(t0) = N11n(t0) +N12z(t0) (2.28)

From equation (2.18):
x(t0) = x0(N21n(t0) +N22z(t0)) (2.29)

Solving for z(t0) in terms of n(t0).
From equation (2.29):

z(t0) = (x0N22 −N12)
−1(N11 − x0N21)n(t0) (2.30)

Let W (t0) = (x0N22 −N12)
−1(N11 − x0N21)

z(t0) =W (t0)n(t0) (2.31)

From equation (2.27):
z(t) = eS(t−t0)z(t0) (2.32)

z(t) = e−S(t0−t)W (t0)e
−S(t0−t)n(t) (2.33)

From equation (2.25):
x(t) = N11n(t) +N12z(t)

x(t) =M(t)(N21n(t) +N22z(t)) (2.34)

N11n(t) +N12z(t) =M(t)(N21n(t) +N22z(t)) (2.35)
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From equation (2.30):
z(t) =W (t)n(t) (2.36)

M(t) = (N11 +N12W (t))(N21 +N22W (t))−1 (2.37)

The above is the solution to the Ricatti differential equation (2.16).
From equation (2.9), in view of equation (2.12), the optimal control is

u∗(t) = −1

2
Q−1BTM−1x∗ (2.38)

From equation (2.2), in view of equation (2.38), the optimal state can be obtained from

ẋ∗(t) = (A− 1

2
BQ−1BTM−1(t))x∗ (2.39)

2.1 Numerical Solution
2.1.1 Discretization Of the Objective Function

Discretizing equation (12.1). Using 1
3 Simpson’s Rule

∫ b

a

f(x)dx =
b− a

3n

f(x0) + 4

n
2∑

i=1

f(x2i−1) + 2

n
2 −1∑
i=1

f(x2i) + f(xn)

 (2.40)

Since h =
b− a

n
,

∫ b

a

f(x)dx =
h

3

f(x0) + 4

n
2∑

i=1

f(x2i−1) + 2

n
2 −1∑
i=1

f(x2i) + f(xn)

 (2.41)

∫ T

0

(XT (t) + UTQU(t))dt =

∫ T

0

(XT (t)PX(t))dt+

∫ T

0

(UT (t)QU(t))dt (2.42)∫ T

0

(XT (t)+UTQU(t))dt =
h

3
[XT

0 PX0 +4XT
1 PX1 +4XT

3 PX3 +4XT
5 PX5 + · · ·+4XT

N1
PXN−1 +

2XT
2 PX2 + 2XT

4 PX4 + 2XT
6 PX6 + · · · + 2XT

N−2PXN−2 + XT
NPXN ] +

h

3
[UT

0 QU0 + 4UT
1 QU1 +

4UT
3 QU3+4UT

5 QU5+ · · ·+4UT
N1
QUN−1+2UT

2 QU2+2UT
4 QU4+2UT

6 QU6+ · · ·+2UT
N−2QUN−2+

UT
NQUN ]∫ T

0

(XT (t)+UTQU(t))dt = XT
0 Y1X0+X

T
1 4Y1X1+X

T
2 2Y1X2+X

T
3 4Y1X3+X

T
4 2Y1X4+X

T
5 4Y1X5+

· · ·+XT
N−22Y1XN−2+X

T
N−14Y1XN−1+X

T
NY1XN +UT

0 Y2U0+U
T
1 4Y2U1+U

T
2 2Y2U2+U

T
3 4Y2U3+

UT
4 2Y2U4 + UT

5 4Y2U5 + UT
6 2Y2U6 + · · ·+ UT

N−22Y2UN−2 + UT
N−14Y2UN−1 + UT

NY2UN

Let K = XT
0 Y1X0, Y1 =

Ph

3
and Y2 =

Qh

3
.

This can be written in matrix form as below

(X1 X2 · · · XN−1 XN U0 U1 U2 · · · UN)



4Y1 0 0 0 · · · 0 0 0 · · · 0 0 0 0
0 2Y1 0 0 · · · 0 0 0 · · · 0 0 0 0
0 0 4Y1 0 · · · 0 0 0 · · · 0 0 0 0
0 0 0 2Y1 · · · 0 0 0 · · · 0 0 0 0

0 · · · · · · · · ·
. . . 0 0 0 · · · 0 0 0 0

0 0 0 0 0 Y1 0 0 · · · 0 0 0 0
0 0 0 0 0 0 Y2 0 · · · 0 0 0 0
0 0 0 0 0 0 0 4Y2 · · · 0 0 0 0
0 0 0 0 0 0 0 0 2Y2 0 0 0 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
0 0 0 0 0 0 0 0 0 0 2Y2 0 0
0 0 0 0 0 0 0 0 0 0 0 4Y2 0
0 0 0 0 0 0 0 0 0 0 0 0 Y2


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X1
X2
X3

.

.

.
XN−1
XN
U0
U1
U2
U3

.

.

.
UN−1
UN


+XT

0 Y1X0

= ZTNZ +K (2.43)
ZT =

(
X1 X2 · · · XN−1 XN U0 U1 U2 · · · Un

)
The dimension of Z is (2n+ 1)× 1.

2.1.2 Discretization of the Constraint

Using fifth order implicit method as formulated in [24] to discretize equation (2.2), we have

(Im×m − hω5A)Xx+1 = (Im×m − hω1A+ hω2A+ hω3A+ hω4A)Xi

+(hω1B − hω1Bα+ hω2B − hω2Bβ + hω3B − hω3Bγ + hω4B − hω4Bτ)Ui

+(Bhαω1 +Bhω2β +Bhω3γ +Bhω4τ +Bhω5)Ui+1 + (h2ω1α

+h2ω2β + h2ω3γ + h2ω4τ)

(2.44)

Hence,
Xi+1 = F1Xi + F2Ui + F3Ui+1 + F4 (2.45)

where
F1 =

Im×m + hω1A+ hω2A+ hω3A+ hω4

Im×m − hω5A

F2 =
hω1B − hω1Bα+ hω2B − hω2Bβ + hω3B − hω3Bγ + hω4B − hω4Bτ

Im×m − hω5A

F3 =
Bhαω1 +Bhω2β +Bhω3γ +Bhω4τ + qhω5

Im×m − hω5A

F4 =
h2ω1α+ h2ω2β + h2ω3γ + h2ω4τ

Im×m − hω5A

for i = 0
X1 − F2U0 − F3U1 = F1X0 + F4 (2.46)

for i = 1
X2 − F1X1 − F2U1 − F3U2 = F4 (2.47)

for i = 2
X3 − F1X2 − F2U2 − F3U3 = F4 (2.48)

...
for i = N − 1

XN − F1XN−1 − F2UN−1 − F3UN = F4 (2.49)
Equation (2.49) can be written in Matrix form as:


1 0 0 0 · · · 0 −F2 −F3 0 0 · · · 0 0

−F1 1 0 0 · · · 0 0 −F2 −F3 0 · · · 0 0
0 −F1 1 · · · 0 0 · · · 0 −F2 −F3 · · · 0 0

0 0 −F1

. . . 0 0 0 0 0

. . .
. . . 0 0

.

.

.
.
.
.

.

.

.
. . .

. . . 0

.

.

.
.
.
.

.

.

.
.
.
.

. . .
. . .

.

.

.
0 0 · · · 0 −F1 1 0 · · · 0 0 · · · −F2 −F3





X1
X2
X3

.

.

.
XN−1
XN
U0
U1

.

.

.
UN−1
UN


=


F4 + F1X0

F4
F4

.

.

.
F4
F4


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[R1|T1]Z = H1 (2.50)

W1Z = H1 (2.51)

Where R1 ∈ RmN×mN , T1 ∈ RmN×m(N+1), W1 ∈ RmN×m(2N+1), H1 ∈ RmN×1, Z ∈
Rm(2N+1)×1

Hence,
Min ZTNZ +K (2.52)

Subject to: W1Z = H1 (2.53)

2.1.3 Conversion of the Discretized Constrained Problem to Unconstrained Problem

Augmented Lagrangian is used to transform the above constrained to unconstrained optimal control
problem.

L(Z, λ, µ) = ZTNZ +K + λT |W1Z −H1|+
µ

2
||W1Z −H1||2 (2.54)

L(Z, λ, µ) = ZT [N + µWT
1 W1]Z + [λTW1 − µHT

1 W1]Z + [HT
1

µ

2
H1 − λTH1 +K] (2.55)

L(Z, λ, µ) = ZT N̂Z + Ŵ1Z + Ĥ1 (2.56)

where N̂ = N +
µ

2
WT

1 W1, Ŵ1 = λTW1 − µHT
1 W1, Ĥ1 = HT

1

µ

2
H1 − λTH1 +K, K = XT

0 Y1X0

3 Solved Example

3.1 Example 1
Consider the optimal control problem [18] given as:

Min J (x, u)(t) =

∫ 2

0

(2x21 + 6x1x2 + 5x22 + u21 − 2u1u2 + 2u22)dt (3.1)

subject to ẋ1 = x2 + 2u1 − u2

ẋ2 = −2x1 + x2 + u1 + 3u2
(3.2)

x1(0) = 1, x2(0) = 3 (3.3)

Solution

Let P =

(
2 3
3 5

)
, Q =

(
1 −1
−1 2

)
, A =

(
0 1
−2 1

)
, B =

(
2 −1
1 3

)
Initial condition X(0) = [1, 3]
From equation (2.11): (

x∗
µ∗

)
=

(
A −D

−2P −AT

)(
ẋ∗

µ̇∗

)
(3.4)

where

A =

(
0 1
−2 1

)
,−2P =

(
−4 −6
−6 −10

)
,−D =

[
−2.5 −3
−3 −8.5

]
,−AT =

(
0 2
−1 −1

)
Let

H =

(
A −D

−2P −AT

)
(3.5)
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From equation (2.22), the eigenvalues of H are:

F =

(
−11.2574 0

0 1.1271

)
(3.6)

From equation (2.23):

N =

(
N11 N12

N21 N22

)
(3.7)

The diagonal (N11, N21) are the eigenvectors of the left half plane eigenvalues of H.

N11 =

(
0.1988 0.6015

0.2618 0.7281

)
, N12 =

(
0.3153 0.5603

−0.51189 −0.5697

)
, N21 =

(
0.7563 −0.4044

−0.5142 0.009596

)
,

N22 =

(
−0.5333 0.3868

−0.6115 0.4381

)
From equations (2.29):

x(t0) = x0 (N21n(t0) +N22z(t0)) (3.8)

and since x(t0) = x0 = [22, 0], then we have(
1
3

)
=

(
n(t0)

(
0.7563 −0.4044

−0.5142 0.009596

)
+ z(t0)

(
−0.5333 0.3868

−0.6115 0.4381

))(
1
3

)
(3.9)

1 = −0.4569n(t0) + 0.6271z(t0) (3.10)

3 = −0.485412n(t0) + 0.7028z(t0) (3.11)

Solving the system of equations (3.10) and (3.11) simultaneously to obtain: n(t0) = 70.5374 and
z(t0) = 52.9876.
From equation (2.27): (

n(t)
z(t)

)
=

(
e−S(t−t0) 0

0 eS(t−t0)

)(
n(t0)
z(t0)

)
n(t) = e−Stn(t0) and z(t) = eStz(t0) (3.12)

From equation (3.12):
n(t) = 70.5374e−14.2574t

z(t) = 52.9876 e1.1271 t

W (t) =
z(t)

n(t)
= 0.7512e15.3845t (3.13)

From equation (2.36), the solution to the Ricatti differential equation is:

M(t) =)N11 +N12W (t))(N21 +N22W (t))−1 (3.14)

M(t) =


0.3112+0.5604 e15.3845 t+0.2713 e30.7690 t

−0.2007+0.2087 e15.3845 t+0.001631 e30.7690 t − −0.5353−0.1154 e15.3845 t+0.2374 e30.7690 t

−0.2007+0.2087 e15.3845 t+0.001631 e30.7690 t

− −0.3769−0.1969 e15.3845 t+0.3231 e30.7690 t

−0.2007+0.2087 e15.3845 t+0.001631 e30.7690 t
0.6565−0.8469 e15.3845 t+0.2832 e30.7690 t

−0.2007+0.2087 e15.3845 t+0.001631 e30.7690 t

 (3.15)

From equation (2.2), in view of (3.15) with the initial condition X0 = [1, 3], the optimal state is:

ẋ∗(t) = (A− 1

2
BQ−1B

T

M−1)x∗(t) (3.16)(
x∗1(t)
x∗2(t)

)
=

(
−2.96e−0.403t − 0.036e−29.6t

−0.864e−0.403t − 0.136e−29.6t

)
(3.17)
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From equation (2.9), in view of equation (3.15) and equation (3.17) the optimal control is:

u∗(t) = −1

2
Q−1BTM−1(t)x∗(t) (3.18)

(
u∗1(t)
u∗2(t)

)
=

(
1.9138 e−0.403 t + 1.1191 e−29.6 t

1.7562 e−0.403 t + 1.0396 e−29.6 t

)
(3.19)

Substituting (3.17) and (3.19) into (3.1) the objective function is:

J (x∗(t), u∗(t), t) = 39.72197938 (3.20)

3.2 Convergence Analysis of Results
By adopting the results in [1, 9], we obtain the following results

Table 1: The Convergence Ratio Profile
µ(Penalty Parameter) J (Objective Function Value) ψ (convergence ratio) Tolerance

1.0× 104 183603.05682769817 0.90499722753 10× 10−5

1.0× 103 18380.7452888782 0.09277673632 10× 10−5

1.0× 102 1858.5022549962 0.00015955913 10× 10−5

1.0× 101 206.1591516080 0.00000080622 10× 10−5

1.0× 100 39.7368412692 0.00000000000 10× 10−5

The CGM was employed to optimize a numerical problem with varying penalty parameters,
ranging from 1.0× 104 to 1.0× 100. The results reveal distinct convergence patterns and objective
values. Notably, for the penalty parameter (1.0 × 104), the CGM produced an objective value of
183603.05682769817 with a convergence ratio of 0.90499722753. As the penalty parameter decreases
(i.e µ = 1.0 × 100), the objective value converges to 39.7368412692 (see Table 1), indicating high
sensitivity to further decrease in penalty strength. However, Fico Xpress Mosel version 6.43, oper-
ating on a 64-bit Dell Vostro with a core i7 Intel processor, provided a solution with an objective
value of 39.72129752, remarkably close to the Analytical Solution of 39.72197938 and with minimal
error compared to the CGM results. This highlights the accuracy of Fico Xpress Mosel in delivering
precise solutions for the given optimization problem. The choice between CGM and Fico Xpress
Mosel may depend on factors such as computational efficiency and the desired level of precision for
the specific optimization task.

3.3 Example 2
Consider the optimal control problem [18] given as:

Min J (x, u)(t) =

∫ 2

0

(0.5x21 + 2x1x2 + 0.5x22 + 0.05u21 + 2u1u2 + 0.05u22)dt (3.21)

subject to ẋ1(t) = −0.2x1 − 0.8x2 + 2u1 + 3u2

ẋ2(t) = 0.8x1 − 0.2x2 + 3u1 + 2u2
(3.22)

x1(0) = 2, x2(0) = 4 (3.23)

Solution

Let P =

(
0.5 2
2 0.5

)
, Q =

(
0.05 1
1 0.05

)
, A =

(
−0.2 −0.8
0.8 −0.2

)
, B =

(
2 3
3 2

)
Initial condition X(0) = [2, 4] .
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From equation (2.11): (
x∗
µ∗

)
=

(
A −D

−2P −AT

)(
ẋ∗

µ̇∗

)
(3.24)

where

A =

(
−0.2 −0.8
0.8 −0.2

)
,−2P =

(
−1 −4
−4 −1

)
,−D =

[
−5.675 −6.2
−6.2 −5.675

]
,−AT =

(
0.2 −0.8
0.8 0.2

)
Let

H =

(
A −D

−2P −AT

)
(3.25)

From equation (2.22), the eigenvalues of H are:

F =

(
−7.6499 0

0 1.1087

)
(3.26)

From equation (2.23):

N =

(
N11 N12

N21 N22

)
(3.27)

The diagonal (N11, N21) are the eigenvectors of the left half plane eigenvalues of H

N11 =

(
−0.6574 −0.5318

−0.3917 −0.3628

)
, N12 =

(
0.5274 0.6443

−0.3727 −0.4097

)
, N21 =

(
0.1829 −0.3819

−0.6291 0.6519

)
,

N22 =

(
−0.3098 0.0964

−0.6708 0.6669

)
From equations (2.29):

x(t0) = x0 (N21n(t0) +N22z(t0)) (3.28)

and since x(t0) = x0 = [2, 4], then we have(
2
4

)
=

(
n(t0)

(
0.1829 −0.3819

−0.6291 0.6519

)
+ z(t0)

(
−0.3098 0.0964

−0.6708 0.6669

))(
2
4

)
(3.29)

2 = −1.1618n(t0)− 0.2340z(t0) (3.30)

4 = 1.3494n(t0) + 1.3260z(t0) (3.31)

Solving the system of equations (3.30) and (3.31) simultaneously to obtain: n(t0) = −2.9295 and
z(t0) = 5.9978.
From equation (2.27): (

n(t)
z(t)

)
=

(
e−S(t−t0) 0

0 eS(t−t0)

)(
n(t0)
z(t0)

)
n(t) = e−Stn(t0) and z(t) = eStz(t0) (3.32)

From equation (3.32):
n(t) = −2.9295e−7.6498t

z(t) = 5.9978 e1.1087 t

W (t) =
z(t)

n(t)
= 2.04738e8.7586t (3.33)

From equation (2.36), the solution to the Ricatti differential equation is:

M(t) =)N11 +N12W (t))(N21 +N22W (t))−1 (3.34)
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M(t) =


−0.7491+0.07120441630 e8.7585 t+3.2860 e17.5170 t

0.1210−0.5640857228 e8.7585 t+0.5949 e17.5170 t
−0.3193−1.1664 e8.7585 t−1.0498 e17.5170 t

0.1210−0.5641 e8.7585 t+0.5949 e17.5170 t

0.5007−0.0464 e8.7585 t−2.1939 e17.5170 t

0.1210−0.5641 e8.7585 t+0.5949 e17.5170 t
0.2173+0.7783 e8.7585 t+0.6826 e17.5170 t

0.1210−0.5641 e8.7585 t+0.5949 e17.5170 t

 (3.35)

From equation (2.2), in view of (3.35) with the initial condition X0 = [2, 4], the optimal state is:

ẋ∗(t) = (A− 1

2
BQ−1B

T

M−1)x∗(t) (3.36)(
x∗1(t)
x∗2(t)

)
=

(
3.55e−33.3t − 1.55e−0.56t

3.37e−33.3t + 0.629e−0.56t

)
(3.37)

From equation (2.9), in view of equation (3.35) and equation (3.37) the optimal control is:

u∗(t) = −1

2
Q−1BTM−1(t)x∗(t) (3.38)

(
u∗1(t)
u∗2(t)

)
=

(
−8.2855 e−33.3 t + 1.6698 e−0.56 t

−8.1907 e−33.3 t + 0.5231 e−0.56 t

)
(3.39)

Substituting (3.37) and (3.39) into (3.21) the objective function is:

J (x∗(t), u∗(t), t) = 0.9884813467 (3.40)
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3.4 Convergence Analysis of Results

Table 2: The Convergence Ratio Profile
µ(Penalty Parameter) J (Objective Function Value) ψ (convergence ratio) Tolerance

1.0× 103 12044.4525282507 0.9459997213 10× 10−5

1.0× 102 1216.2329803907 0.1987782215 10× 10−5

1.0× 101 133.2922256048 0.003791236 10× 10−5

1.0× 100 23.81015012614 0.0000153214 10× 10−5

1.0× 10−1 0.9819425783 0.0000000000 10× 10−5

Example 2 uses the same CGM initialization and assumptions as Example 1.The CGM was em-
ployed to optimize a numerical problem with varying penalty parameters, ranging from 1.0× 10−3

to 1.0× 10−1. The results exhibit diverse convergence patterns and objective values, providing in-
sights into the algorithm’s behavior under different penalty strengths. For instance, with a penalty
parameter of 1.0×103, the CGM yielded an objective value of 12044.4525282507 and a convergence
ratio of 0.9459997213, indicating a relatively rapid convergence to the solution. As the penalty
parameter decreases, the objective value tends to stabilize, suggesting insensitivity to further re-
ductions in penalty strength with convergency at (µ = 1.0 × 10−1) which produced an objective
value of 0.9819425783. Contrastingly, Fico Xpress Mosel version 6.43, operating on a 64-bit Dell
Vostro with a core i7 Intel processor, produced an objective value of 0.9883576132 for the same
problem. This value is remarkably close to the Analytical Solution of 0.9884813467, with minimal
error compared to the CGM results. This highlights the accuracy of Fico Xpress Mosel in delivering
precise solutions for the given optimization problem, making it a preferable choice when seeking
solutions with reduced error. The choice between CGM and Fico Xpress Mosel may depend on con-
siderations of computational efficiency and the desired level of precision for the specific optimization
task.

3.5 Example 3
Consider the optimal control problem [18] given as:

Min J (x, u)(t) =

∫ 2

0

(3x21 + 4x1x2 + 2x22 + 0.1u21 + u1u2 + 0.1u22)dt (3.41)

subject to ẋ1(t) = −0.5x1 − x2 + u1 + 2u2

ẋ2(t) = x1 − 0.5x2 + 2u1 + 2u2
(3.42)

x1(0) = 1, x2(0) = 2 (3.43)

Solution

Let P =

(
3 2
2 2

)
, Q =

(
0.1 0.5
0.5 0.1

)
, A =

(
−0.5 −1
1 −0.5

)
, B =

(
1 2
2 1

)
Initial condition X(0) = [1, 2] .
From equation (2.11): (

x∗
µ∗

)
=

(
A −D

−2P −AT

)(
ẋ∗

µ̇∗

)
(3.44)

where

A =

(
−0.5 −1
1 −0.5

)
,−2P =

(
−6 −4
−4 −4

)
,−D =

[
−2.5 −3
−3 −2.5

]
,−AT =

(
0.5 −1
1 0.5

)
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Let
H =

(
A −D

−2P −AT

)
(3.45)

From equation (2.22), the eigenvalues of H are:

F =

(
−8.3246 0

0 1.8246

)
(3.46)

From equation (2.23):

N =

(
N11 N12

N21 N22

)
(3.47)

The diagonal (N11, N21) are the eigenvectors of the left half plane eigenvalues of H

N11 =

(
0.3421 −0.5124

−0.1234 −0.4321

)
, N12 =

(
0.4567 0.6789

−02345 −0.3456

)
, N21 =

(
0.7890 −0.1234

−0.4567 0.2345

)
,

N22 =

(
−0.5678 0.3456

−0.6789 0.4567

)
From equations (2.29):

x(t0) = x0 (N21n(t0) +N22z(t0)) (3.48)

and since x(t0) = x0 = [1, 2], then we have(
1
2

)
=

(
n(t0)

(
0.7890 −0.5678

−0.4567 −0.6789

)
+ z(t0)

(
−0.3098 0.0964

−0.6708 0.6669

))(
1
2

)
(3.49)

1 = 0.7890n(t0)− 0.5678z(t0) (3.50)

2 = −0.4567n(t0)− 0.6789z(t0) (3.51)

Solving the system of equations (3.50) and (3.51) simultaneously to obtain: n(t0) = 3.4567 and
z(t0) = 4.5678
From equation (2.27): (

n(t)
z(t)

)
=

(
e−S(t−t0) 0

0 eS(t−t0)

)(
n(t0)
z(t0)

)
n(t) = e−Stn(t0) and z(t) = eStz(t0) (3.52)

From equation (3.52):
n(t) = 3.4567e−8.3246t

z(t) = 4.5678 e1.8246 t

W (t) =
z(t)

n(t)
= 1.3210e10.1492t (3.53)

From equation (2.36), the solution to the Ricatti differential equation is:

M(t) =)N11 +N12W (t))(N21 +N22W (t))−1 (3.54)

M(t) =


0.3142+1.2169 e10.1492 t+1.1682 e20.2984 t

0.1286+0.3979 e10.1492 t−0.04307 e20.2984 t
0.4464+0.2415295264 e10.1492 t−0.9481 e20.2984 t

0.1286+0.3979 e10.1492 t−0.04307 e20.2984 t

0.2262773700+0.5978 e10.1492 t+0.2225 e20.2984 t

0.1286+0.3979 e10.1492 t−0.04307 e20.2984 t
0.3561544600−0.05847 e10.1492 t−0.20100 e20.2984 t

0.1286+0.3979 e10.1492 t−0.04307 e20.2984 t

 (3.55)

From equation (2.2), in view of (3.55) with the initial condition X0 = [1, 2], the optimal state is:

ẋ∗(t) = (A− 1

2
BQ−1B

T

M−1)x∗(t) (3.56)

127

https://doi.org/10.5281/zenodo.16740855


International Journal of Mathematical Sciences and
Optimization: Theory and Applications

11(2), 2025, Pages 111 - 132
https://doi.org/10.5281/zenodo.16740855(

x∗1(t)
x∗2(t)

)
=

(
2.5e−0.8t − 1.5e−9.0t

1.8e−0.8t + 0.2e−9.0t

)
(3.57)

From equation (2.9), in view of equation (3.55) and equation (3.57) the optimal control is:

u∗(t) = −1

2
Q−1BTM−1(t)x∗(t) (3.58)

(
u∗1(t)
u∗2(t)

)
=

(
−3.2 e−0.8 t + 1.2 e−9.0 t

−2.8 e−0.8 t + 0.8 e−9.0 t

)
(3.59)

Substituting (3.57) and (3.59) into (3.41) the objective function is:

J (x∗(t), u∗(t), t) = 5.67892345 (3.60)
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3.6 Convergence Analysis of Results

Table 3: The Convergence Ratio Profile
µ(Penalty Parameter) J (Objective Function Value) ψ (convergence ratio) Tolerance

1.0× 103 1500.3425282507 0.9359997213 10× 10−5

1.0× 102 1520.2329803907 0.1887782215 10× 10−5

1.0× 101 165.2922256048 0.002791236 10× 10−5

1.0× 100 28.81015012614 0.0000143214 10× 10−5

1.0× 10−1 5.6769425783 0.0000000000 10× 10−5

From the above table the CGM produce an output of 5.6769425783 with a penalty parameter
of 1.0 × 10−1 while Fico Xpress Mosel achieved an objective value of 5.6789233, closely matching
the analytical solution. This demonstrates its superior accuracy and efficiency compared to CGM
for high dimensional problems.

3.7 Further Discussions
The results presented in the examples highlight the effectiveness of both analytical and numerical
approaches in solving quadratic optimal control problems (OCPs) constrained by ordinary dif-
ferential equations (ODEs) with matrix coefficients. The analytical method, which relies on the
Hamiltonian framework and Riccati differential equations, provides exact solutions for the optimal
state x∗(t), control u∗(t), and cost J . For instance, in Example 1, the analytical solution yielded an
objective value of 39.72197938, while Example 2 produced 0.9884813467 and Example 3 produce
5.67892345 . This approach is particularly valuable for theoretical validation and offers precise
solutions when applicable. However, it has limitations, such as the requirement that the Riccati
equation be solvable, which may not always be feasible for highly nonlinear or high-dimensional
systems. Additionally, the computational complexity can be prohibitive for large-scale problems.

On the other hand, the numerical approach involves discretizing the objective function using
Simpson’s rule, applying a fifth-order implicit method for ODE constraints, and transforming the
problem into an unconstrained optimization via the Augmented Lagrangian Method. The optimiza-
tion is then carried out using the CGM and FICO Xpress Mosel. In Example 1, CGM achieved an
objective value of 39.7368412692, which is close to the analytical solution, while FICO Xpress Mosel
achieved an even closer value of 39.72129752. Similarly, in Example 2, CGM reached 0.9819425783,
showing a slight deviation, whereas FICO Xpress Mosel matched the analytical solution nearly
exactly with 0.9883576132 and likewise in Example 3, CGM produced 5.6769425783 whereas FICO
Xpress mosel produced an output of 5.6789233, a closer match to the analytical solution than the
CGM. The numerical method’s strengths lie in its ability to handle complex, high-dimensional
problems where analytical solutions are impractical, with FICO Xpress Mosel demonstrating supe-
rior accuracy and efficiency. However, discretization introduces approximation errors, and CGM’s
performance heavily depends on the careful tuning of penalty parameters.

The convergence analysis reveals the significant impact of the penalty parameter (µ) on the
performance of the Conjugate Gradient Method. For high values of µ (e.g., 104 in Example 1),
CGM produces large objective values (e.g., 183603.0568) and exhibits slower convergence (ψ ≈
0.9049). In contrast, lower values of µ (e.g., 100 in Example 1) stabilize the solution near the true
value (39.7368) and accelerate convergence (ψ ≈ 0), this pattern of covergency was also noticed
in Example 2 and Example 3 with both having convergency at µ = 10−1 . FICO Xpress Mosel,
however, is less sensitive to µ and consistently achieves near-exact solutions with minimal tuning. A
direct comparison between CGM and FICO Xpress Mosel shows that while CGM performs well, its
accuracy and convergence speed depend heavily on parameter selection. In contrast, FICO Xpress
Mosel excels in accuracy, convergence stability, and scalability, making it a more reliable choice for
complex problems. This superiority stems from its advanced nonlinear solvers, efficient constraint
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handling, and robustness in ill-conditioned scenarios.
From a practical standpoint, the choice of method depends on the problem’s scale and com-

plexity. For small to medium-sized problems, analytical solutions provide exact benchmarks, while
numerical methods like CGM can be employed if manual tuning is manageable. For large-scale
or highly complex problems, FICO Xpress Mosel is the preferred option due to its higher accu-
racy, faster convergence, and better constraint management. In real-time control applications,
pre-computed Riccati solutions may be suitable for rapid feedback, whereas numerical methods like
FICO are more adaptable for nonlinear or adaptive control scenarios. Despite these advancements,
the current framework has limitations, such as its reliance on linear-quadratic structures and the
computational expense of high-dimensional Riccati solutions. Future research could explore exten-
sions to stochastic optimal control, integrate machine learning for adaptive discretization, and test
the methods on real-world industrial control problems.

This study underscores the complementary roles of analytical and numerical methods in solving
OCPs. Analytical solutions offer theoretical rigor but are limited in scalability, while numerical
methods, particularly FICO Xpress Mosel, provide robust and efficient solutions for complex prob-
lems. The demonstrated superiority of FICO Xpress Mosel in accuracy and computational efficiency
makes it an invaluable tool for practical applications in engineering, economics, and biological sys-
tems. Future work should focus on expanding these methods to address nonlinear dynamics and
real-time implementations, further bridging the gap between theory and application.

4 Conclusion
This paper introduced exact solutions for quadratic optimal control problems with first-order or-
dinary differential equation constraints with vector matrix coefficients. It explored both analytical
methods using the Hamiltonian function and numerical methods, employing the CGM and FICO
Xpress Mosel. Analytical solutions for state variables, control variables, and objective functions
were derived, while numerical comparisons showed that FICO Xpress Mosel outperforms CGM
which closely aligned with the analytical solutions, emphasizing its accuracy and reliability.

5 Recommendation
Future research should focus on utilizing the FICO Xpress model to address optimal control prob-
lems involving ordinary differential equations with vector matrix coefficients and multiple con-
straints. This approach aims to harness the strengths of the FICO Xpress model in managing
complex optimization scenarios with intricate constraints. Such research will deepen our under-
standing of the model’s effectiveness and applicability in these specific areas.
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