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Abstract

Currency uncertainty, characterized by fluctuations in exchange rates, significantly impacts
the valuation of investments and the timing of investment decisions. This paper develops a real
options framework incorporating a novel currency uncertainty ratio to capture the impact of
exchange rate fluctuations on investment timing. We analyze two cases: (i) project value follow-
ing a geometric Brownian motion (GBM) with a constant investment cost and (ii) both project
value and investment cost evolving as GBMs. Using stochastic control and optimal stopping
theory, we derive closed-form solutions for the investment thresholds and option values. We
further conduct a sensitivity analysis to explore how investment thresholds respond to changes
in currency risk, volatility, and discount rates. Our results suggest that currency uncertainty
significantly influences investment timing, often delaying investment decisions. These find-
ings have important implications for multinational corporations, policymakers, and financial
analysts concerned with investment under foreign exchange risk.

Keywords: Currency Uncertainty, Optimal Investment Timing, Stochastic Models, Real Options.
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1 Introduction
The valuation of real options is a critical aspect of investment decision-making, particularly in
environments characterized by significant uncertainties. Traditional approaches to investment valu-
ation often rely on deterministic models that may inadequately capture real-world market risks and
volatilities. In contrast, real options theory provides a more sophisticated framework that incorpo-
rates managerial flexibility in decision-making under uncertainty, paralleling the decision-making
flexibility seen in financial options ( [1–3]). A key source of uncertainty impacting investment deci-
sions is currency uncertainty, also known as exchange rate risk, which arises from fluctuations in the
exchange rates between two currencies. Such fluctuations can significantly impact the cash flows
and profitability of investments, especially for multinational corporations and investors in foreign
markets ( [4]). Effective management of this risk is crucial for optimizing investment timing and
valuation.

In this context, stochastic models play a crucial role in capturing the dynamic nature of of these
economic variables ( [5], [6] ). These models provide the mathematical foundation for developing
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more robust investment valuation models that can account for the complexities associated with
currency risk.

Optimal investment problems are central in the fields of mathematical finance and economics, fo-
cusing on identifying strategies for optimal investment timing. The literature on optimal investment
problems is extensive, ranging from classical theories of risk-return trade-offs to more sophisticated
models that incorporate complexities such as stochastic volatility, transaction costs, and strategic
factors. Building on foundational works such as those by [7–9], research has increasingly examined
the benefits of delaying investment decisions under uncertainty—a strategy made feasible through
real options theory ( [10–13], and [3]). This approach contrasts with traditional Net Present Value
(NPV) methods, which often disregard the value of waiting in uncertain conditions. McDonald
and Siegel’s model ( [7]) utilizes stochastic processes to describe investment opportunities, sug-
gesting that the optimal timing of an investment is when the marginal benefit of waiting equals
the marginal cost. This foundational idea has inspired numerous studies across diverse domains,
including natural resources, technology, and finance.

Dixit and Pindyck ( [1]) further advanced real options theory by examining how firms can lever-
age the option to delay investments until market conditions become favorable. However, their model
assumes a relatively constant or minimal currency impact, which limits its application in multi-
currency or volatile currency environments. In addressing this gap, subsequent studies have incor-
porated currency fluctuations into investment models to evaluate the impact of foreign exchange
risk on optimal investment timing ( [14–17]). As markets continue to evolve, the methodologies and
models employed to solve optimal investment problems, with ongoing research focus on robustness,
computational efficiency, and the integration of non-traditional factors into investment decisions.
Research on managing currency risk includes studies that examine systematic risks associated with
foreign currency-denominated returns, emphasizing the role of exchange rate fluctuations in com-
plicating international asset evaluations. Another study addresses investment strategies in contexts
where investors are ambiguity-averse and face currency uncertainty, demonstrating the benefits of
robust optimization in such cases ( [18]).

Similarly, recent research provides an overview of real options theory applications in uncertain
international investments, advocating further research on investment decisions under fluctuating
foreign exchange rates ( [17]). Additionally, another study uses a real options model to show that
higher variance and correlation between currency and project value volatility increase option values,
encouraging firms to defer investments.

Studies also explore the effect of uncertainty on real option valuations, showing that increased
uncertainty often leads firms to be more cautious in investment decisions. The empirical and
numerical findings underscore the significance of currency fluctuations in influencing investment
timing and valuation, especially for international projects. Furthermore, some research proposes a
new estimator for quantifying the influence of currency volatility on investment decisions, adding a
tool to the methodological approaches in this field ( [16]).

One of the most critical yet underexplored aspects of investment uncertainty is currency risk,
which arises due to fluctuations in exchange rates affecting firms engaged in international trade,
foreign direct investment, or cross-border mergers and acquisitions. Industries such as energy, where
companies invest in infrastructure projects across multiple currencies, and manufacturing, where
firms rely on imported raw materials, are particularly exposed to exchange rate fluctuations. Despite
the extensive literature on optimal investment timing, relatively few studies explicitly account for
the dynamic interplay between exchange rate uncertainty and investment costs.

This paper addresses this gap by introducing a currency uncertainty ratio, which captures the
impact of currency fluctuations on investment payoffs. We develop a stochastic optimal stopping
model to analyze the timing of investment under two scenarios: (i) fixed investment costs and (ii)
stochastic investment costs evolving with the project value. Our key contribution is the derivation
of optimal investment thresholds and option values under currency uncertainty. We show that
higher currency risk leads to more conservative investment strategies, delaying investment in un-
certain markets. Our findings provide valuable insights for multinational firms, policymakers, and
financial analysts involved in global investment planning.
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This is especially relevant for firms operating in volatile currency markets, where the future value
of cash flows may be highly sensitive to exchange rate changes, affecting profitability and competi-
tiveness.

This paper is organized as follows: Section 2 presents notations and introduces the currency
uncertainty ratio. Section 3 derives the proposed models. Section 4 provides sensitivity analysis,
and Section 5 concludes.

2 Notations and Assumptions
In this section, we introduce the notations and assumptions that will be used throughout the paper,
including the currency uncertainty ratio. These definitions and concepts provide a foundation for
the optimal stopping models formulated in Section 3. We assume a continuous-time setting and a
frictionless market.

Throughout, it is assumed that the stochastic processes are defined on a filtered probability
space (Ω,F , {Ft}t≥0,P), where {Ft} is the filtration satisfying the usual conditions:

a) Completeness: every P-null set in F belongs to F0 and thus to each Ft.

b) Right-continuity : Ft = Ft+ ≡
⋂

s>t Fs ∀t ≥ 0.

Next, we introduce definitions and theorems relevant to optimal stopping problems in a stochas-
tic environment.

Definition 2.1. The process Xt is said to follow a geometric Brownian motion if it satisfies the
stochastic differential equation (SDE):

dXt = µXt dt+ σXt dWt,

where µ is the drift parameter, σ is the volatility parameter, and Wt is a standard Wiener process
under the probability measure P. This process will represent either the project value or the currency
ratio in subsequent sections.

Lemma 2.1 (Ito’s Lemma). Given a twice-differentiable function f(t,Xt) and an SDE dXt =
µ(Xt) dt+ σ(Xt) dWt, Ito’s Lemma states that the differential of f is:

df(t,Xt) =
∂f

∂t
dt+

∂f

∂x
dXt +

1

2

∂2f

∂x2
σ(Xt)

2 dt.

This lemma is essential for deriving the dynamics of functions of stochastic processes within our
model.

Theorem 2.2 (Infinitesimal Generator of a Diffusion Process). The infinitesimal generator L of a
diffusion process Xt governed by the SDE dXt = µ(Xt) dt+ σ(Xt) dWt is defined by:

Lf(x) = µ(x)
df

dx
+

1

2
σ(x)2

d2f

dx2
,

for a sufficiently smooth function f . This operator plays a key role in optimal stopping formulation.

Definition 2.3 (Stopping Time). A non-negative random variable τ : Ω → R+ ∪ {∞} is called a
stopping time if:

{ω : τ(ω) ≤ t} ∈ Ft, ∀ t ≥ 0.

Hitting times are examples of stopping times. The hitting time of level x by the process {Xt}t∈R+
,

defined as
τx := inf{t ≥ 0 : Xt = x},
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is a stopping time. We will often work with first hitting times, defined by

τx := inf{t > 0 : Xt > x},

which gives the first time a process attains a value greater than x.

Definition 2.4 (Optimal Stopping Time). An optimal stopping time τ∗ is the time at which it
is optimal to stop a stochastic process Xt to maximize the expected reward. Mathematically, the
optimal stopping problem is formulated as finding τ∗ that maximizes the value function:

V(x) = sup
τ

E
[
e−rτg(Xτ ) | X0 = x

]
,

where g(Xτ ) is the payoff function, and r is the discount rate.

2.1 General Optimal Stopping Problem Formulation
Optimal stopping problems consist of finding the best possible payoff and the time at which this
payoff can be achieved. The goal is to determine a stopping time τ , defined with respect to {Ft},
that maximizes the expected reward function:

V(x) = sup
τ

E
[
e−rτg(Xτ ) | X0 = x

]
,

where τ is the stopping time that maximizes the expected reward; V(x) represents the value func-
tion, or maximum expected reward, given the initial state X0 = x; g(Xτ ) is the payoff function at
the stopping time τ ; and e−rτ is the discount factor, with r ≥ 0 representing the discount rate.
The value function V(x) satisfies a Hamilton-Jacobi-Bellman (HJB) equation. For a diffusion pro-
cess Xt with infinitesimal generator L, the HJB equation for V(x) is:

LV(x) + rV(x) = 0, x ∈ Continuation Region,

where the continuation region is the set of states where stopping is not optimal. The boundary
conditions are defined on a free boundary, which represents the set of states where it becomes
optimal to stop.

Solving the free-boundary problem involves identifying the stopping region (where stopping is
optimal) and the continuation region (where the process should continue).

Example 2.2. Consider the arbitrage-free price of the perpetual American call option that marches
the optimal stopping problem

V(x) = sup
τ∈T

Ex

(
e−qag (Bτ )

)
(2.1)

where a is a stopping time and B a geometric started from B0 = x solving

dBt = qBtdt+ σBtdWt.

Furthermore, g is the nonnegative continuous reward function (payoff function) defined by g(x) =
(x−K)

+.
To ensure existence of the expectation in (2.1) the following assumption is made:

E
(

sup
t≤τ≤T

|gτ |
)

< ∞ (2.2)

(with gT ≡ 0 when T = ∞).
The optimal stopping time of problem (2.1) can also be represented as the first time of the
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process Bt leaves the continuation set C ( or the first time B enters D the stopping set). The
optimal time to stop is:

τD = inf {t ≥ 0 : Bt ∈ D} = inf {t ≥ 0 : Bt /∈ C} . (2.3)

It follows from the literature (see [19–23]) that the optimal stopping time (whenever it exists)
is given by

τb = inf {t ≥ 0 : Xt ≥ b} (2.4)

where b is the free boundary which is not known. Then V and b satisfy the following boundary
conditions:

ABV = qV x < b (2.5)

V(x) = (x−K)
+

x = b (2.6)
V′(x) = g′(x) x = b (smooth fit) (2.7)

V(x) > (x−K)
+

x < b (2.8)

V(x) = (x−K)
+

x ≥ b, (2.9)

where the infinitesimal operator A of the process Bis given by

AB = qx
∂

∂x
+

σ2

2
x2 ∂2

∂x2
.

Condition (2.5) is called the asset equilibrium condition. (2.6) is the value matching condition. (2.7)
is the smooth pasting condition. (2.8) the continuation region (value function dominates the gain
function) and (2.9) the value matching condition (Instantaneous stopping beyond the boundary).
Here it is assumed that both V and g are continuous and smooth.

2.2 Currency Uncertainty Ratio
Consider a situation where you are receiving future cash flows in your home (domestic) currency
(say Nigerian Naira, NG ) but the value of these cash flows is affected by fluctuations in a foreign
currency (say US dollar, USD). This implies that you are receiving future cash flows in naira, but
the exchange rate between naira and USD affects the value of these cash flows. To account for the
impact of foreign currency fluctuations on your home currency cash flows, we have:

CFhome,t = CFhome,t ×
(
Et0

Et

)
, (2.10)

where: CFhome,t is the future cash flow in naira at time t, Et0 is the initial exchange rate (naira
per USD), and Et is the exchange rate at time t (naira per USD). This expression (2.10) shows that
the value of future cash flows in your home currency depends on both the amount of cash flow in
the foreign currency and the exchange rate at that time.
Example: Suppose initially, (Et0): 500 naira = 1 USD and the future cash flow is (CFhome,t) =
100,000 naira. After a short time interval, currency fluctuation in the market will result to a new
exchange rate of, say, (Et): 1500 naira = 1 USD. With this new exchange rate, the adjusted future
cash flow in naira would be:

CFhome,t = 100, 000×
(

500

1500

)
= 100, 000× 1

3
= 33, 333.33 naira

In this case, the naira has depreciated against the USD from 500 naira per USD to 1500 naira per
USD. As a result, the value of the future cash flows in naira, when adjusted for the exchange rate
change, decreases from 100,000 naira to approximately 33,333.33 naira. This demonstrates how
the depreciation of the home currency (naira) against the foreign currency (USD) reduces the real
value of your future cash flows in your home currency.
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Remark 2.5. Exchange rates represent the value of one currency in terms of another, and they are
always positive numbers. Thus, the ratio Et0

Et
will always be greater than 0 for all t. In consequent

sections, we shall denote Dt =
Et0

Et
.

We shall assume the following specific form for the project value ( [4]):

V = DtCf .

In Section 3, we use this ratio to determine the optimal investment strategy under currency uncer-
tainty.

3 Formulation of Models with Currency Uncertainty
In this section we give a general formulation of the dynamics of the future cash flows (called project
value hereafter) and the investment cost. We shall consider different dynamics with currency
uncertainty.

3.1 Case 1: V with GBM Dynamics and I is consant
We start by considering an investment problem where the project value, V , follows a Geometric
Brownian Motion (GBM) and the investment cost, I is constant.
The model for the project value is given by

dVt = rvVtdt+ σvVtdWv(t), V (0) = v (3.1)

Here we assume that the model is under an appropriate risk neutral measure with rv, a risk neutral
drift, σv is the volatility and Wv(t) is a standard Wiener process (Brownian motion).
The solution to the SDE (3.1), is given by

Vt = v exp

((
rv −

σ2
v

2

)
t+ σvW (t)

)
(3.2)

The payoff, which is also referred to as the performance criterion is given below.

Lemma 3.1. The expected discounted net payoff is given by

P1(V ) = E
[
e−rτG1 (V (τ), I)

]
(3.3)

where

G1 (v) =
vD

r − rv
− I, r − rv > 0 (3.4)

Proof. First we have that E [Vt] = v exp (rvt) and E [e−rtVt] = v under a risk neutral measure.
Thus,

G1(v) = E
[{∫ ∞

0

e−rtDVt+τdt

}
− I

]
. (3.5)

= E
[
e−rτE

(∫ ∞

0

e−rt (DVt+τ |Vτ ) dt

)]
− I

= E
[
e−rτ

∫ ∞

0

e−rtDE (Vt+τ |Vτdt)

]
− I

= E
[
e−rτ DVτ

r − rv

]
− I

=
vD

r − rv
− I

This is done by applying Fubini’s theorem, the tower property of conditional expectation and strong
Markov property.
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The optimal stopping problem is to find the value function, F(V,I) and an optimal stopping
time, τ∗ such that

F1(V ) = sup
τ∈T

Pτ
1 (v) = Pτ∗

1 (v) (3.6)

The infinitesimal generator A1 of V (v) is given by:

A1f(v) = rvvf
′(v) +

1

2
σ2
vv

2f ′′(v)

Given the form of the PDE: rvvf ′(v) + 1
2σ

2v2f ′′(v) = 0, we try a function of the form f(v) = Avk,
for k > 0 and some constant A. We get

A1f(v) = rvAv(kvk−1) +
1

2
σ2
vAv2(k(k − 1)vk−2) (3.7)

= Avk
(
rvk +

1

2
σ2
vk(k − 1)

)
= Avkh(k)

Following [21]), in the continuation region, for ρ > 0,

A1f(v) = ρf(v).

Since, A1f(v) = Avkh(k) = f(v)h(k), then h(k)− ρ = 0 which can be written as

1

2
σ2
vk(k − 1) + rvk − ρ = 0.

The roots are

k1 =
1

2
− rv

σ2
v

+

√(
rv
σ2
v

− 1

2

)2

+
2ρ

σ2
v

> 0 k2 =
1

2
− rv

σ2
v

−

√(
rv
σ2
v

− 1

2

)2

+
2ρ

σ2
v

< 0.

Then since k2 < 0, f(v) = Avk1 .
The following proposition gives an explicit expression for the value of the investment under the
dynamics described with currency uncertainty.

Proposition 3.1. The value of the investment option is given by

F1(v) =


vD

r − rv
− I if v ≥ v∗

Avk1 if v < v∗
(3.8)

where k1 = 1
2 − rv

σ2
v
+

√(
rv
σ2
v
− 1

2

)2

+ 2ρ
σ2
v

is the positive root of the equation h(k) = ρ, and

A =
ϕk
1 ((k − 1))

k−1

Ik−1kk
> 0, (3.9)

v∗ =
Ik

ϕ1(k − 1)
> 0, (3.10)

for ϕ1 = D
r−rv

.
Additionally, the optimal stopping time τ∗ = inf {t ≥ 0 : Vt ≥ v∗}.
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Proof. Applying the following boundary conditions and computing the derivatives we get:

F1(v
∗) =

v∗D

r − rv
− I, F ′

1(v
∗) =

D

r − rv
= ϕ1,

equating with
F1(v

∗) = Av∗k − I, F ′
1(v

∗) = Akv∗k−1,

then simplify and the results follows.

Note that when ϕ1 = 1, the result is the same as that of ( [1]).

3.2 Case 2: V and I with GBM Dynamics
This section presents the formulation and solution of the optimal investment problem where the
investment project value and investment cost evolve stochastically. We derive the value function, re-
duce the problem to one dimension, solve the associated Hamilton-Jacobi-Bellman (HJB) equation,
and propose a closed-form solution for the optimal stopping problem.

The dynamics of the project value, Vt and investment cost, It are modeled as GBMs with no
correlation. We have the risk neutral models as follows:

dVt = rvVtdt+ σvVtdW
v
t

and
dIt = rIItdt+ σIItdW

I
t

where rv, rI , σv, σI , are the drift and volatility terms and Wv(t),WI(t) are independent standard
Brownian motions under the risk-neutral probability measure.

Lemma 3.2. The expected discounted net payoff is given by

P2(V, I) = E
[
e−rτG2 (V (τ), I(τ))

]
(3.11)

where

G2 (v, i) =
vD

r − rv
− i

r − rI
(3.12)

Proof. The proof follows the same idea as the proof of Lemma 3.1 Given the dynamics of Vt and
It, the aim is to maximize the expected discounted value:

J(v0, i0) = E(v0,i0)

[∫ ∞

τ

e−rt (VtD − It) dt

]
,

where D is a currency ratio, and r is the discount rate. Note that

Vt = v0e
µvt+σvW

v
t ⇒ E[vt] = v0e

µvt.

and
It = i0e

µIt+σIB
I
t ⇒ E[It] = i0e

µIt.

Thus, we have

G2 (v, i) = E(v0,i0)

[∫ ∞

τ

e−rt (VtD − It) dt

]
= E

[∫ ∞

τ

e−rtVtDdt

]
+ E

[∫ ∞

τ

e−rtIt dt

]
= Dv0

∫ ∞

τ

e−(r−µv)t dt+ i0

∫ ∞

τ

e−(r−µI)t dt

=
Dv0
r − µv

+
i0

r − µI
(3.13)
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The optimal stopping problem is to find the value function F2(V, I) and an optimal stopping
time τ∗ such that:

F (V, I) = sup
τ∈T

E
[
e−rτG2(Vτ , Iτ )

]
, (3.14)

where the payoff function is:

G2(V, I) =
V D

r − µV
− I

r − µI
.

The Generator A2 for the joint process (Vt, It) is given by:

A2F (V, I) == µV V
∂F

∂V
+ µII

∂F

∂I
+

1

2
σ2
V V

2 ∂
2F

∂V 2
+

1

2
σ2
II

2 ∂
2F

∂I2
.

In the continuation region, the value function F (V, I) satisfies the Hamilton-Jacobi-Bellman
(HJB) equation:

rF (V, I) = A2F (V, I),

which explicitly becomes:

rF (V, I) = µV V
∂F

∂V
+ µII

∂F

∂I
+

1

2
σ2
V V

2 ∂
2F

∂V 2
+

1

2
σ2
II

2 ∂
2F

∂I2
.

To simplify the problem we can write G2(v, i) = i
(

vD
i(r−µV ) −

1
r−µI

)
= i

(
yD

(r−µV ) −
1

r−µI

)
=

ig2(y) and where y = v
i and assume:

F (v, i) = if(y).

Differentiating and substituting into the HJB equation, the problem reduces to:

1

2
σ2
yy

2f ′′(y) + µyyf
′(y)− (r − µI)f(y) = 0, (3.15)

where: σ2
y = σ2

V + σ2
I , µy = µV − µI .

3.2.1 Solution to the HJB Equation

The reduced HJB equation (3.15) in one dimension is a Cauchy-Euler equation. The general solution
in the continuation region is:

f(y) = A1y
β1 +A2y

β2 ,

where β1 > 0 and β2 < 0 are the roots of the characteristic equation and A1, A2 are constants to
be determined from boundary conditions. To ensure economic feasibility, we require A2 = 0, as the
negative root β2 leads to unbounded behavior as y → 0+. So we assume a solution of the form:

f(y) = A1y
β ,

where β is to be determined. The characteristic equation is given by

1

2
σ2
yβ

2 +

(
µy −

1

2
σ2
y

)
β − (r − µI) = 0.

The roots of the equation are:

β =
−
(
µy − 1

2σ
2
y

)
±
√(

µy − 1
2σ

2
y

)2 − 2σ2
y(r − µI)

σ2
y

.

We denote the two roots the positive and negative roots as β1 and β2 respectively.
We now present the main resukt for this section as follows.
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Proposition 3.2. The value function of the investment F (V, I) is given by:

F (V, I) =

{
A1V

β1I1−β1 , if V
I < y∗,

V D
r−µV

− I
r−µI

, if V
I ≥ y∗,

where:

y∗ =
β1

(r − µI)
· (r − µV )

D(β1 − 1)
,

A1 =
1

(r − µI)(β1 − 1)
·
(

D(β1 − 1)

β1(r − µV )

)β1

,

β1 =
−
(
µy − 1

2σ
2
y

)
+
√(

µy − 1
2σ

2
y

)2 − 2σ2
y(r − µI)

σ2
y

,

and:
µy = µV − µI , σ2

y = σ2
V + σ2

I .

The value function F (V, I) provides the optimal investment strategy under currency uncertainty.
The stopping threshold y∗ and the coefficient A1 capture the effects of volatility, drift, and currency
ratio D. This result extend classical optimal stopping models by incorporating stochastic investment
costs and exchange rate dynamics.

Proof. To derive the value function, we start with the reduced HJB equation (3.15) to get the roots
as seen above. Next, in the stopping region (y ≥ y∗), the value function equals the payoff:

F (V, I) =
V D

r − µV
− I

r − µI
.

Thus, to determine A1 and y∗, we use the boundary conditions:
Value Matching at y = y∗

A1(y
∗)β1 =

y∗D

r − µV
− 1

r − µI
.

and Smooth Pasting at y = y∗

β1A1(y
∗)β1−1 =

D

r − µV
.

Solving these equations, we find:

y∗ =
β1

(r − µI)
· (r − µV )

D(β1 − 1)
,

and:

A1 =
1

(r − µI)(β1 − 1)
·
(

D(β1 − 1)

β1(r − µV )

)β1

.

4 Numerical Analysis
In this section, we present a numerical analysis of the optimal stopping problem under currency
uncertainty. For our analysis, we assume a set of parameters for the project value and investment
cost dynamics, as well as the currency uncertainty ratio. For the computation of parameters,
see [22,23]).
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4.1 Case 1
Figure 1 shows the investment opportunity value F1(v) as a function of the project value v for a fixed
currency ratio D = 0.2. F1(v) follows two distinct forms depending on whether v is below or above
the threshold v∗: For v < v∗, the value F1(v) follows a power function AV k1 , indicating that the
investment value is low and the project may not yet be viable. For v ≥ v∗, F1(v) increases linearly,
reflecting a more favorable condition where the project value supports an immediate investment
decision. This figure demonstrates that, for a fixed D, the project must reach a certain value v∗,
critical value, to be considered for investment.

Figure 1: F1(v) vs. v
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Figure 2: The threshold v∗ as a function of volatility σv

Figure 2 shows the threshold v∗, the minimum project value required to trigger investment, as
a function of volatility σv. The threshold v∗ increases as σv rises. This implies that with greater
volatility, the project value must reach a higher level before the investment becomes optimal. This
increase in v∗ reflects greater caution by investors, who may delay investment until the project’s
value justifies the heightened risk due to volatility. The relationship between v∗ and σv is also well-
documented in the real options literature. Higher volatility typically increases the ‘hurdle rate’, or
investment threshold, as investors weigh the benefits of waiting against potential risks ( [7,8]). This
strategic delay is characteristic of investment in volatile environments.
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Figure 3: F1(v) with D = 02, 0.5, 0.8

Figure 4: Effect of D on the threshold v∗

The currency ratio, D, which reflects the influence of foreign exchange fluctuations on the
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value of future cash flows in the domestic currency, which subsequently affects the timing and
viability of investment decisions. Figure 3 shows the F1(v) against v for varying currency ratios
D = 0.2, 0.5, 0.8. Observing the curves: Higher D values lead to higher F1(v) values and a lower
threshold v∗. This implies that when the currency ratio is favorable (strong home currency),
investment is viable at lower project values. Lower D values result in lower F1(v) values and higher
thresholds v∗, reflecting a cautious approach to investment in scenarios where the home currency
is weaker. This figure illustrates how increasing D (indicating a favorable currency environment)
makes the investment opportunity more attractive and reduces the required project value v needed
to trigger investment.

This finding is consistent with the real options literature, which emphasizes that currency
strength can enhance the expected payoff of investments ( [15, 16]). When exchange rates favor
the home currency, investment thresholds can lower, and the value of waiting for investment be-
comes reduced.
In Figure 4, we analyze the relationship between the currency ratio D and the investment threshold
v∗. As D increases, v∗ decreases, meaning the project value threshold for investment is lower when
the home currency is strong. We notice here that a higher currency ratio (stronger home currency)
reduces the required project value for investment, signaling that investments become feasible at
lower project values when exchange rates favor the home currency. Conversely, when D is low
(weaker home currency), v∗ increases, requiring the project value v to be higher before investment
is optimal. This effect illustrates that a favorable currency ratio D encourages earlier investment,
as future cash flows in the home currency hold more value.
This behavior supports the findings in international finance, particularly in studies involving ex-
change rate risk and investment thresholds. When the home currency appreciates, the real value
of expected cash flows in the home currency increases, effectively lowering the project value needed
to justify investment ( [15,17]).

The problem is to determine the point at which it is optimal to invinvest in return for an
asset worth V . Since v evolvestochastically. we will not be able to determine time T as we did
above. Instead. our investment rule will take the form of In this section, we provide some numerical
results and analyze the impact of some financial model parameters on the robust optimal investment
strategies. For convenience, we consider the value of the robust optimal investment strategies at
time t = 0. In general, we can also suppose that t is a positive constant. In this case, we can obtain
the numerical results of the optimal investment strategies by using the same method. The greater
the volatility, the greater the risk of stock price. Hence, the investors will naturally reduce their
investment in domestic stocks when it increases.

4.2 Case 2
The analysis presented here are based on the model where both the project value (V ) and invest-
ment cost (I) follow GBMs. We compare these findings with existing literature and highlight the
differences between this case and the scenario where I is constant (case 1).

Figure 5 shows the behavior of F (V, I) as V varies for fixed I. The value function increases as
V grows within the continuation region, reflecting the increasing project value. The dashed line
represents the threshold y∗I, beyond which it becomes optimal to stop and invest. This result is
consistent with Dixit and Pindyck (1994), where the value function in optimal stopping problems
exhibits monotonicity before the stopping boundary. Figure 6 illustrates the effect of varying D
(currency ratio) on F (V, I). Higher values of D lead to lower value functions, reflecting reduced
currency uncertainty. This is consistent with Grenadier and Malenko (2010), where stable currencies
reduce the strategic value of waiting.

Figure 7 shows that the optimal investment threshold y∗ increases with σV . This result is
consistent with Dixit and Pindyck (1994), which highlights that higher volatility delays optimal
investment decisions due to increased uncertainty.
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Figure 5: Plot of F (V, I) vs V for fixed I in the continuation region. The dashed line indicates the
investment threshold y∗I.

Figure 6: Plot of F (V, I) vs V for different values of D in the continuation region.

Figure 8 demonstrates that y∗ decreases as D increases. This result aligns with Grenadier and
Malenko (2010), where stable exchange rates promote earlier investment.
In case 1, where I is constant, the dynamics are simpler, and the value function F (V, I) depends
solely on the behavior of V . In contrast, in case 2, both V and I follow GBMs, introducing an ad-
ditional layer of uncertainty. The inclusion of I in the stochastic framework increases the flexibility
of investment decisions, as evidenced by the sensitivity of F (V, I) and y∗ to parameters such as D
and σV as shown in Figures 6 and 8. However, this complexity requires more computational effort,
as highlighted in Miao and Wang (2007). Case 2 provides more realistic modeling for investment
problems involving fluctuating costs, consistent with Chen and Wang (2019).
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Figure 7: Plot of y∗ vs σV (volatility of V ).

Figure 8: Plot of y∗ vs D (currency ratio).

When investment cost is constant, investment timing primarily depends on project value fluctu-
ations and currency risk, leading to delayed investment in high volatility environments. When both
project value and investment cost follow a geometric Brownian motion (GBM), the decision-making
process is more complex as both revenue and cost streams are stochastic, increasing uncertainty
and risk exposure. The stochastic cost case shows that investment thresholds are generally higher
than in the constant-cost case, indicating that firms are more cautious before committing resources
in highly volatile environments.

The practical implications in real-world applications is that industries with relatively stable
investment costs (e.g., infrastructure projects, manufacturing plants) are better modeled with the
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constant investment cost framework. Sectors where investment costs fluctuate significantly (e.g., en-
ergy, commodity markets, and construction) align more with the stochastic investment cost model,
since both raw materials and labor costs are volatile over time. Model

One major assumption is the frictionless market, which may not reflect real-world conditions
such as transaction costs, regulatory constraints, and liquidity issues. Our model does not incor-
porate jump processes or regime-switching behavior in currency fluctuations, which are known to
affect investment timing significantly. Future research will extend the model by considering cor-
relation between project value and investment cost, introducing jump processes, and integrating
empirical calibration with historical data to improve applicability.

5 Conclusion
This paper provides an analysis of the optimal investment problem under currency uncertainty by
examining two distinct cases: a model where the project value V evolves as a GBM while the in-
vestment cost I remains constant, and a model where both V and I evolve as GBMs. The two cases
represent scenarios of differing complexity, offering insights into the interplay between investment
value and currency fluctuations. The results underscore the importance of understanding the cur-
rency ratios on investment decisions. Incorporating currency uncertainty into investment models
enhances their applicability in real-world financial settings, especially for multinational corpora-
tions and investors dealing with cross-border projects. Future research could extend this work to
include jumps in project values and costs or explore optimal investment strategies under correlated
stochastic processes for V and I. We acknowledge the model’s assumption of continuous price
movements. Future research will incorporate jump processes and correlated stochastic variables to
enhance realism. Empirical validation and calibration with real-world financial data will also be
considered in subsequent work.
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