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Abstract

A multiset is an extension of a crisp set in which elements are allowed to occur more than
once, enabling the representation of data where frequency or multiplicity is essential. Building
upon this, fuzzy multisets introduce a degree of membership to each element, capturing both
quantity and uncertainty. Further developments have led to the formulation of picture fuzzy
multisets a robust framework that extends picture fuzzy sets. In this paper, we propose some
new operations on picture fuzzy multisets by analyzing existing operations on fuzzy sets, and
fuzzy multisets, extending these foundations using picture fuzzy logic principles to define oper-
ations that maintain the consistency of positive membership, neutral membership, and negative
membership and refusal degrees, establishing a set of axioms and properties (such as commuta-
tivity, and distributivity) that the operations must satisfy, proving theorems that verify these
properties and constructing a detailed numerical example to illustrate and validate the behav-
ior and correctness of the proposed operations. It was shown that the proposed operations
are well-defined, internally consistent, and closed under the structure of PFMs. The example
demonstrates that the operations handle ambiguity, contradiction, and repetition effectively,
making them suitable for applications in multi-criteria decision-making, knowledge represen-
tation, and information systems. The new operations significantly broaden the mathematical
toolkit available for handling picture fuzzy multisets. They lay a foundation for future research
into more complex structures such as picture fuzzy multirelations, aggregation operators, and
soft computing models based on picture fuzzy multisets.

Keywords: Multiset, Fuzzy multiset, Picture fuzzy Set, Fuzzy Set.
MSC2010: 03E72, 08A72.

1 Introduction
Zadeh, 1965 [1] introduced the theory of fuzzy sets as a generalisation of crisp sets. The theory
only takes into consideration membership degree of an element belonging to a particular set. In [2],
an extension of fuzzy set to fuzzy parameterized soft expert set was established with an application
to decision making. In [3], fuzzy set was applied to differential equations to find solution of first
order initial value problems. Atanassov [4], extended the work of Zadeh to the theory of intuition-
istic fuzzy sets which deals with both the membership and non-membership degrees of an element
belonging to a set. In 2013 [5], Cuong and Kreinovich introduced the theory of picture fuzzy sets
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(PFSs) as a generalisation of both fuzzy sets (FSs) and intuitionistic fuzzy sets (IFSs) initiated
in [1] and Atanassov [4], respectively. Basically, picture fuzzy sets based models is appropriate in
situations involving more answers of type: yes, abstain, no, refusal. A good example of such a
situation is voting system in which human voters may decide to: vote for, vote against, abstain
and refusal to vote. Thus, according to Cuong and Kreinovich [5], a given set is represented by
three membership degrees i.e; positive membership degree, neutral membership degree and negative
membership degree.

In 2014, Cuong [6] proposed the distance measure between PFSs. Main fuzzy logic operator on
PFSs were investigated by Cuong and Hai [7]. The classification of representable picture t-norm and
t-conorm operators for PFSs were obtained by Cuong et al [8]. In 2022 [9], Sangodapo studied the
concept of PFSs and obtained some associated properties. The notion of PFSs has been applied by
many researchers such as Dutta [10], applied it to medical diagnosis via distance measure between
picture fuzzy sets. Rozy and Kaur [11] applied it to medical diagnosis via the similarity measure
between picture fuzzy sets. Hasan et al, [12] and [13] applied it in decision making by studying the
composition of picture fuzzy relation over picture fuzzy sets.

Yagar in 1986 [14], put forward the notion of fuzzy multisets (FMs). In 2013, Shinoj and
Sunil [15] initiated intuitionistic fuzzy multiset (IFMSs), defined some operations on IFMSs and
established some of its properties and this was applied in medicine to diagnosis diseases. Due to
the fact that the idea of intuitionistic fuzzy multisets also lacks accuracy in handling imprecision
and uncertainties because of not taking into account neutrality degree, it is important to study the
concept of picture fuzzy multiset as a generalisation of intuitionistic fuzzy multiset.

In [16], Cao et al proposed picture fuzzy multisets (PFMSs) as a generalisation of FM and
IFMS, [14] and [15], respectively and also as an extension of PFSs. Sangodapo [17] and [18]
introduced picture fuzzy multirelations and some properties related to picture fuzzy multirelations
were establshed. In [19], Sangodapo obtained some new algebraic operations and in [20], picture
fuzzy multiset was applied to medical diagnosis.

In this paper, some operations on PFSs have been extended to PFMSs. We have proved some
theorems that verify these properties. It was shown that the proposed operations are well-defined,
internally consistent, and closed under the structure of PFMs. The example demonstrates that
the operations handle ambiguity, contradiction, and repetition effectively, making them suitable for
applications in multi-criteria decision-making, knowledge representation, and information systems.
Furthermore, the concepts of homomorphism and isomorphism theorems in the context of PFMSs
were introduced and studied.

2 Preliminaries
In this section, we recall some basic definitions. Throughout, I denotes the closed interval [0, 1].

Definition 2.1. [1] Given a nonempty set C. A fuzzy set (FS) D of C is written as

D = {⟨σD(r)

r
⟩ | r ∈ C},

with a membership function
σD : C −→ I

where the function σD(r) denotes the degree of membership of r ∈ C.

Definition 2.2. [14] A multiset or bag A drawn from a set X is characterised by a function
CountA such that CountA : X → N defined by CA(x) = n ∈ N where N is the set of non-negative
integers.
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This multiset theory is a generalization of crisp set theory in which elements are allowed to
occur more than once. Unlike in crisp sets, where each element is either present or not (with a
membership value of 0 or 1), multiset theory assigns to each element a multiplicity, indicating the
number of times that element appears in the collection.

Definition 2.3. [14] A fuzzy multiset (FMS) D drawn from C is characterised by a count mem-
bership function cmD such that cmD : C → N , where N is the set of all crisp multisets drawn from
I. Then, for any r ∈ C, the value cmD(r) is a crisp multiset drawn from I. For any r ∈ C, the
membership sequence is defined as the decreasingly ordered sequence of elements in cmD(r). It is
denoted by (σ1

D(r), σ
2
D(r), · · · , σd

D(r)) where σ1
D(r) ≥ σ2

D(r) ≥ · · · ≥ σd
D(r).

Definition 2.4. [5] Given a nonempty set C. A picture fuzzy set (PFS) D of C is written as

D = {⟨σD(r), τD(r), γD(r)

r
⟩ | r ∈ C},

where the functions
σD(r), τD(r), γD(r) : C → [0, 1],

are called the positive, neutral and negative membership degrees of r ∈ C to D, and for all element
r ∈ C,

0 ≤ σD(r) + τD(r) + γD(r) ≤ 1.

For each PFS D of C,
πD(r) = 1− (σD(r) + τD(r) + γD(r))

is the refusal membership degree of r ∈ C.

Definition 2.5. [16] Given a nonempty set C. The picture fuzzy multiset (PFMS) D in C is charac-
terised by three functions namely positive membership count function pmc, neutral membership count
function nemc and negative membership count function nmc such that pmc, nemc, nmc : C → N ,
where N , is refer to collection of crisp multisets taken from I. Thus, every element r ∈ C, pmc is the
crisp multiset from I whose positive membership sequence is defined by (σ1

D(r), σ
2
D(r), · · · , σn

D(r))
such that σ1

D(r) ≥ σ2
D(r) ≥ · · · ≥ σn

D(r), nemc is the crisp multiset from I whose neutral mem-
bership sequence is defined by (τ1D(r), τ

2
D(r), · · · , τnD(r)) and nmc is the crisp multiset from I whose

negative membership sequence is defined by (η1D(r), η
2
D(r), · · · , ηnD(r)), these can be either decreasing

or increasing functions satisfying 0 ≤ σk
D(r) + τkD(r) + ηkD(r) ≤ 1 ∀r ∈ C, k = 1, 2, · · · , n.

Thus, D is represented by

D = {⟨σ
k
D(r), τ

k
D(r), η

k
D(r)

r
⟩ | r ∈ C},

k = 1, 2, · · · , n.

The set of all picture fuzzy multisets over C, is denoted as PFMS(C).

Operations on picture fuzzy multisets
[16]

Let D, E ∈ PFMS(C). That is;

D = {⟨r, σk
D(r), τ

k
D(r), η

k
D(r)⟩ | r ∈ C}

and
E = {⟨r, σk

E(r), τ
k
E (r), η

k
E(r)⟩ | r ∈ C},

where k = 1, 2, · · · , n. Then, the following operations hold:
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• D ⊆ E if and only if, σk
D(r) ≤ σk

E(r), τ
k
D(r) ≤ τkE (r) and ηkD(r) ≥ ηkE(r),

• D = E if and only if D ⊆ E and E ⊆ D,

• D ∪ E = {(r,max(σk
D(r), σk

E(r)),min(τkD(r), τkE (r)),min(ηkD(r), ηkE(r))) | r ∈ C},

• D ∩ E = {(r,min(σk
D(r), σk

E(r)), max(τkD(r), τkE (r)), max(ηkD(r), ηkE(r))) | r ∈ C},

• D = {(r, ηkD(r), τkD(r), σk
D(r)) | r ∈ C},

• D × E = {⟨(r1, r2), σk
D(r1) ∧ σk

E(r2), τkD(r1) ∧ τkE (r2), ηkD(r1) ∨ ηkE(r2)⟩ | r1, r2 ∈ C},

• D ⊕ E = {(r, σk
D(r) + σk

E(r)− σk
D(r)σ

k
E(r), τ

k
D(r)τ

k
E (r), η

k
D(r)η

k
E(r)) | r ∈ C},

• D ⊗ E = {(r, σk
D(r)σ

k
E(r), τ

k
D(r) + τkE (r)− τkD(r)τ

k
E (r), η

k
D(r) + ηkE(r)− ηkD(r)η

k
E(r)) | r ∈ C}.

Algebraic laws in picture fuzzy multisets
[16]

For every D, E ,F ∈ PFMS(C). Then the following algebraic laws hold;

1. Involution:
D = D.

2. Commutative Rule:
(i) D ∩ E = E ∩ D,
(ii) D ∪ E = E ∪ D,
(iii) D × E = E × D.

3. Associative Rule:
(i) D ∩ (E ∩ F) = (D ∩ E) ∩ F ,
(ii) D ∪ (E ∪ F) = (D ∪ E) ∪ F
(iii) (D × E)×F = D × (E × F).

4. Distributive Rule:
(i) D ∩ (E ∪ F) = (D ∩ E) ∪ (D ∩ F),
(ii) D ∪ (E ∩ F) = (D ∪ E) ∩ (D ∪ F),
(iii) D × (E ∪ F) = (D × E) ∪ (D ×F).
(iv) D × (E ∩ F) = (D × E) ∩ (D ×F).

5. Absorption Rule:
(i) D ∩ (D ∪ E) = D,
(ii) D ∪ (D ∩ E) = D.

6. Idempotent Rule:
(i) D ∩D = D,
(ii) D ∪D = D.
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7. De Morgan’s Rule:
(i) D ∩ E = D ∪ E ,
(ii) D ∪ E = D ∩ E .

Definition 2.6. [19] Let D, E ,F ∈ PFMS(C). That is

D = {⟨r, σk
D(r), τ

k
D(r), η

k
D(r)⟩| r ∈ C},

E = {⟨r, σk
E(r), τ

k
E (r), η

k
E(r)⟩| r ∈ C},

and
F = {⟨r, σk

F (r), τ
k
F (r), η

k
F (r)⟩| r ∈ C}

where k = 1, 2, · · · , n.
Then, define addition and multiplication on PFMSs as

D ⊕ E = {(r, σk
D⊕E(r), τ

k
D⊕E(r), η

k
D⊕E(r)) | r ∈ C}

where σk
D⊕E(r) = σk

D(r) + σk
E(r)− σk

D(r)σ
k
E(r),

τkD⊕E(r) = τkD(r)τ
k
E (r) and

ηkD⊕E(r) = ηkD(r)η
k
E(r).

D ⊗ E = {(r, σk
D⊗E(r), τ

k
D⊗E(r), η

k
D⊗E(r)) | r ∈ C}

where σk
D⊗E(r) = σk

D(r)σ
k
E(r),

τkD⊗E(r) = τkD(r) + τkE (r)− τkD(r)τ
k
E (r) and

ηkD⊗E(r) = ηkD(r) + ηkE(r)− ηkD(r)η
k
E(r).

Theorem 2.7. [19] Let D, E ,F be in PFMS(C). Then,

(1) D ⊕ E = E ⊕ D.

(2) D ⊗ E = E ⊗ D.

(3) D ⊕ (E ⊕ F) = (D ⊕ E)⊕F .

(4) D ⊗ (E ⊗ F) = (D ⊗ E)⊗F .

(5) D ⊕ (E ∪ F) = (D ⊕ E) ∪ (D ⊕F).

(6) D ⊕ (E ∩ F) = (D ⊕ E) ∩ (D ⊕F).

(7) D ⊗ (E ∪ F) = (D ⊗ E) ∪ (D ⊗F).

(8) D ⊗ (E ∩ F) = (D ⊗ E) ∩ (D ⊗F).

3 New Operations on Picture Fuzzy Multisets
In this section, we define some new operations on PFMSs, homomorphism and basic isomorphism
theorems on PFMSs. Let D, E ∈ PFMSs(C). That is;

D = {⟨r, σk
D(r), τ

k
D(r), η

k
D(r)⟩ | r ∈ C}

and
E = {⟨r, σk

E(r), τ
k
E (r), η

k
E(r)⟩ | r ∈ C},

where k = 1, 2, · · · , n. Then, the following new operations hold:
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1. D@E = {(r, σk
D@E(r), τ

k
D@E(r), η

k
D@E(r)) | r ∈ C},

where

σk
D@E(r) =

1

2
(σk

D(r)+σk
E(r)), τ

k
D@E(r) =

1

2
(τkD(r)+ τkE (r)) and ηkD@E(r)) =

1

2
(ηkD(r)+ ηkE(r)).

The operation is called Arithmetic Mean.

2. D$E = {(r, σk
D$E(r), τ

k
D$E(r), η

k
D$E(r)) | r ∈ C},

where

σk
D$E(r) =

√
σk
D(r).σ

k
E(r), τkD$E(r) =

√
τkD(r).τ

k
E (r) and ηkD$E(r) =

√
ηkD(r).η

k
E(r).

The operation is called Geometric Mean.

3. D#E = {(r, σk
D#E(r), τ

k
D#E(r), η

k
D#E(r)) | r ∈ C},

where

σk
D#E(r) =

2σk
D(r).σ

k
E(r)

σk
D(r) + σk

E(r)
, τkD#E(r) =

2τkD(r).τ
k
E (r)

τkD(r) + τkE (r)
and ηkD#E(r) =

2ηkD(r).η
k
E(r)

ηkD(r) + ηkE(r)
.

The operation is called Harmonic Mean.

4. D ∗ E = {(r, σk
D∗E(r), τ

k
D∗E(r), η

k
D∗E(r)) | r ∈ C},

where

σk
D∗E(r) =

σk
D(r) + σk

E(r)

2(σk
D(r) + σk

E(r) + 1)
, τkD∗E(r) =

τkD(r) + τkE (r)

2(τkD(r) + τkE (r) + 1)
and ηkD∗E(r) =

ηkD(r) + ηkE(r)

2(ηkD(r) + ηkE(r) + 1)
.

The operation is called Normalised Arithmetic Mean.

Example 3.1. Let X = {a, b},

D = {(a, 0.70, 0.20, 0.10)(b, 0.60, 0.20, 0.20)},

E = {(a, 0.50, 0.30, 0.20)(b, 0.70, 0.20, 0.10)}

and
F = {(a, 0.80, 0.10, 0.10)(b, 0.40, 0.40, 0.20)}.

Then,
D@E = {(a, 0.60, 0.25, 0.15), (b, 0.65, 0.20, 0.15)}

D$E = {(a, 0.59, 0.24, 0.14), (b, 0.648, 0.20, 0.14)}

D#E = {(a, 0.58, 0.24, 0.133), (b, 0.646, 0.20, 0.133)}

D ∗ E = {(a, 0.44, 0.28, 0.15), (b, 0.46, 0.19, 0.15)}

Theorem 3.2. Let D, E and F ∈ PFMSs(C). Then,

A. (a) D@E = E@D (b) D$E = E$D (c) D#E = E#D (d) D ∗ E = E ∗ D

B. (a) D@E = D@E (b) D$E = D$E (c) D#E = D#E (d) D ∗ E = D ∗ E
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Proof. A. (a)

D@E = {(r, σk
D@E(r), τ

k
D@E(r), η

k
D@E(r)) | r ∈ C}

= {(r, σ
k
D(r) + σk

E(r)

2
,
τkD(r) + τkE (r)

2
,
ηkD(r) + ηkE(r)

2
) | r ∈ C}

= {(r, σ
k
E(r) + σk

D(r)

2
,
τkE (r) + τkD(r)

2
,
ηkE(r) + ηkD(r)

2
) | r ∈ C}

= {(r, σk
E@D(r), τ

k
E@D(r), η

k
E@D(r)) | r ∈ C}

= E@D

(b)

D$E = {(r, σk
D$E(r), τ

k
D$E(r), η

k
D$E(r)) | r ∈ C}

= {(r,
√
σk
D(r).σ

k
E(r),

√
τkD(r).τ

k
E (r),

√
ηkD(r).η

k
E(r)) | r ∈ C}

= {(r,
√
σk
E(r).σ

k
D(r),

√
τkE (r).τ

k
D(r),

√
ηkE(r).η

k
D(r)) | r ∈ C}

= {(r, σk
E℘D(r), τ

k
E℘D(r), η

k
E$D(r)) | r ∈ C}

= E$D

(c)

D#E = {(r, σk
D#E(r), τ

k
D#E(r), η

k
D#E(r)) | r ∈ C}

= {(r, 2σk
D(r).σ

k
E(r)

σk
D(r) + σk

E(r)
,
2τkD(r).τ

k
E (r)

τkD(r) + τkE (r)
,
2ηkD(r).η

k
E(r)

ηkD(r) + ηkE(r)
) | r ∈ C}

= {(r, 2σk
E(r).σ

k
D(r)

σk
E(r) + σk

D(r)
,
2τkE (r).τ

k
D(r)

τkE (r) + τkD(r)
,
2ηkE(r).η

k
D(r)

ηkE(r) + ηkD(r)
) | r ∈ C}

= {(r, σk
E#D(r), τ

k
E#D(r), η

k
E#D(r)) | r ∈ C}

= E#D

(d)

D ∗ E = {(r, σk
D∗E(r), τ

k
D∗E(r), η

k
D∗E(r)) | r ∈ C}

= {(r, σk
D(r) + σk

E(r)

2(σk
D(r) + σk

E(r) + 1)
,

τkD(r) + τkE (r)

2(τkD(r) + τkE (r) + 1)
,

ηkD(r) + ηkE(r)

2(ηkD(r) + ηkE(r) + 1)
)}

= {(r, σk
E(r) + σk

D(r)

2(σk
E(r) + σk

D(r) + 1)
,

τkE (r) + τkD(r)

2(τkE (r) + τkD(r) + 1)
,

ηkE(r) + ηkD(r)

2(ηkE(r) + ηkD(r) + 1)
)}

= {(r, σk
E∗D(r), τ

k
E∗D(r), η

k
E∗D(r)) | r ∈ C}

= E ∗ D

B. (a)

D@E = {(r, ηkD@E(r)), τ
k
D@E(r), σ

k
D@E(r) | r ∈ C}

= {(r, η
k
D(r) + ηkE(r)

2
,
τkD(r) + τkE (r)

2
,
σk
D(r) + σk

E(r)

2
) | r ∈ C}

= {(r, σ
k
D(r) + σk

E(r)

2
,
τkD(r) + τkE (r)

2
,
ηkD(r) + ηkE(r)

2
) | r ∈ C}

= {(r, σk
D@E(r), τ

k
D@E(r), η

k
D@E(r)) | r ∈ C}

= D@E
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(b)

D$E = {(r, ηkD$E(r), τ
k
D℘E(r), σ

k
D$E(r)) | r ∈ C}

= {(r,
√
ηkD(r).η

k
E(r),

√
τkD(r).τ

k
E (r),

√
σk
D(r).σ

k
E(r)) | r ∈ C}

= {(r,
√
σk
D(r).σ

k
E(r),

√
τkD(r).τ

k
E (r),

√
ηkD(r).η

k
E(r)) | r ∈ C}

= {(r, σk
D$E(r), τ

k
D$E(r), η

k
D$E(r)) | r ∈ C}

= D$E

(c)

D#E = {(r, ηkD#E(r), τ
k
D♯E(r), σ

k
D#E(r)) | r ∈ C}

= {(r, 2ηkD(r).η
k
E(r)

ηkD(r) + ηkE(r)
,
2τkD(r).τ

k
E (r)

τkD(r) + τkE (r)
,
2σk

D(r).σ
k
E(r)

σk
D(r) + σk

E(r)
) | r ∈ C}

= {(r, 2σk
D(r).σ

k
E(r)

σk
D(r) + σk

E(r)
,
2τkD(r).τ

k
E (r)

τkD(r) + τkE (r)
,
2ηkD(r).η

k
E(r)

ηkD(r) + ηkE(r)
) | r ∈ C}

= {(r, σk
D#E(r), τ

k
D#E(r), η

k
D#E(r)) | r ∈ C}

= D#E

(d)

D ∗ E = {(r, ηkD∗E(r), τ
k
D∗E(r), σ

k
D∗E(r)) | r ∈ C}

= {(r, ηkD(r) + ηkE(r)

2(ηkD(r) + ηkE(r) + 1)
,

τkD(r) + τkE (r)

2(τkD(r) + τkE (r) + 1)
,

σk
D(r) + σk

E(r)

2(σk
D(r) + σk

E(r) + 1)
)}

= {(r, σk
D(r) + σk

E(r)

2(σk
D(r) + σk

E(r) + 1)
,

τkD(r) + τkE (r)

2(τkD(r) + τkE (r) + 1)
,

ηkD + ηkE(r)

2(ηkD(r) + ηkE(r) + 1)
)}

= {(r, σk
D∗E(r), τ

k
D∗E(r), η

k
D∗E(r)) | r ∈ C}

= D ∗ E

Example 3.3. Using Example 3.1,

D@E = {(a, 0.15, 0.25, 0.60)(b, 0.15, 0.20, 0.65)}
= {(a, 0.60, 0.25, 0.15)(b, 0.65, 0.20, 0.15)}
= D@E .

D$E = {(a, 0.14, 0.25, 0.59)(b, 0.14, 0.20, 0.65)}
= {(a, 0.59, 0.25, 0.14)(b, 0.65, 0.20, 0.14)}
= D$E .

D#E = {(a, 0.13, 0.24, 0.58)(b, 0.13, 0.20, 0.65)}
= {(a, 0.58, 0.24, 0.13)(b, 0.65, 0.20, 0.13)}
= D#E .

D ∗ E = {(a, 0.15, 0.28, 0.44)(b, 0.15, 0.19, 0.46)}
= {(a, 0.44, 0.25, 0.15)(b, 0.46, 0.19, 0.15)}
= D ∗ E .
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Next we to show that the operations @, $, # and ∗ are not associative, @ is not distributive over
⊕ and ⊕ is not distributive over $.

Example 3.4. Using D, E and F in Example 3.1,

D@E = {(a, 0.60, 0.25, 0.15), (b, 0.65, 0.20, 0.15)}

so,
(D@E)@F = {(a, 0.70, 0.175, 0.125), (b, 0.525, 0.30, 0.175)}

E@F = {(a, 0.65, 0.20, 0.15)(b, 0.55, 0.30, 0.15)}

so,
D@(E@E) = {(a, 0.6750, 0.20, 0.125), (b, 0.575, 0.25, 0.175)}.

This implies that (D@E)@E ̸= D@(E@E).

D$E = {(a, 0.59, 0.24, 0.14)(b, 0.65, 0.20, 0.14)}

(D$E)$F = {(a, 0.69, 0.15, 0.12), (b, 0.51, 0.28, 0.17)}

E$F = {(a, 0.63, 0.17, 0.14)(b, 0.53, 0.28, 0.14)}

D$(E$F) = {(a, 0.66, 0.18, 0.12), (b, 0.56, 0.24, 0.17)}

Thus, (D$E)$E ̸= D$(E$E).

D#E = {(a, 0.62, 0.15, 0.13)(b, 0.51, 0.27, 0.13)}

(D$E)$F = {(a, 0.67, 0.14, 0.11), (b, 0.50, 0.27, 0.16)}

E$F = {(a, 0.62, 0.15, 0.11)(b, 0.51, 0.27, 0.13)}

D$(E$F) = {(a, 0.66, 0.17, 0.11), (b, 0.55, 0.23, 0.16)}

Thus, (D#E)#E ̸= D#(E#E).

D ∗ E = {(a, 0.28, 0.17, 0.12)(b, 0.28, 0.14, 0.12)}

(D ∗ E) ∗ F = {(a, 0.26, 0.18, 0.12), (b, 0.20, 0.18, 0.12)}

E ∗ F = {(a, 0.28, 0.14, 0.12)(b, 0.26, 0.19, 0.09)}

D ∗ (E ∗ F) = {(a, 0.25, 0.13, 0.09), (b, 0.23, 0.14, 0.12)}

Thus, (D ∗ E) ∗ E ̸= D ∗ (E ∗ E).

Example 3.5. Using D, E and F in Example 3.1,

E ⊕ F = {(a, 0.90, 0.03, 0.02), (b, 0.82, 0.08, 0.02)

D@(E ⊕ F) = {(a, 0.80, 0.115, 0.06), (b, 0.71, 0.14, 0.11)

D@E = {(a, 0.60, 0.25, 0.15), (b, 0.65, 0.20, 0.15)}

D@F = {(a, 0.75, 0.15, 0.10), (b, 0.50, 0.30, 0.20)}

(D@E)⊕ (D@F) = {(a, 0.9, 0.0375, 0.015), (b, 0.825, 0.06, 0.03)}

Hence,
D@(E ⊕ F) ̸= (D@E)⊕ (D@F)
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Example 3.6. Using D, E and F in Example 3.1

E$F = {(a, 0.63, 0.17, 0.14), (b, 0.53, 0.28, 0.14)

D ⊕ (E$F) = {(a, 0.889, 0.034, 0.014), (b, 0.812, 0.056, 0.028)
D ⊕ E = {(a, 0.63, 0.17, 0.14), (b, 0.53, 0.28, 0.14)
D ⊕F = {(a, 0.94, 0.02, 0.01), (b, 0.76, 0.08, 0.04)

(D ⊕ E)$(D ⊕F) = {(a, 0.894, 0.0346, 0.0141), (b, 0.8178, 0.0566, 0.0283).
Hence,

D@(E ⊕ F) ̸= (D@E)⊕ (D@F)

Theorem 3.7. Let D, E and F ∈ PFMSs(C). Then,

(1) D@(E ∪ F) = (D@E) ∪ (D@F), D@(E ∩ F) = (D@E) ∩ (D@F).

(2) D$(E ∪ F) = (D$E) ∪ (D$F), (D$(E ∩ F) = (D$E) ∩ (D#F).

(3) D#(E ∪ F) = (D#E) ∪ (D#F), (D#(E ∩ F) = (D#E) ∩ (D#F).

Proof. (1)

D@(E ∪ F) = D@{(r, (σk
E(r) ∨ σk

F (r)), (τ
k
E (r) ∧ τkF (r)), (η

k
E(r) ∧ ηkF (r))) | r ∈ C}

= {(r, 1
2
(σk

D(r) + (max(σk
E(r), σk

F (r)))),
1

2
(τkD(r) + min(τkE (r), τkF (r))),

1

2
(ηkD(r) + (min(ηkE(r), ηkF (r))))) | r ∈ C}

= {(r, 1
2
(σk

D(r) + σk
E(r)),

1

2
(τkD(r) + τkE (r)),

1

2
(ηkD(r) + ηkE(r)))) | r ∈ C}}

∪ {(r, 1
2
(σk

D(r) + σk
F (r)),

1

2
(τkD(r) + τkF (r)),

1

2
(ηkD(r) + ηkF (r))) | r ∈ C}}

= (D@E) ∪ (D@F).

Similarly, we can prove D@(E ∩ F) = (D@E) ∩ (D@F).

(2)

D$(E ∪ F) = D${(r, (σk
E(r) ∨ σk

F (r)), (τ
k
E (r) ∧ τkF (r)), (η

k
E(r) ∧ ηkF (r))) | r ∈ C}

= {(r, (σk
D(r)(σ

k
E(r) ∨ σk

F (r)))
1
2 , (τkD(τ

k
E (r) ∧ τkF (r)))

1
2 , (ηkD(r)(η

k
E(r) ∧ ηkF (r)))

1
2 ) | r ∈ C}

= {(r, (σk
D(r)σ

k
E(r))

1
2 , (τkD(r)τ

k
E (z), )

1
2 , (ηkD(r)η

k
E(r))

1
2 ) | r ∈ C}

∪ {(r, (σk
D(r)σ

k
F (r))

1
2 , (τkD(r)τ

k
F (r), )

1
2 , (ηkD(r)η

k
F (r))

1
2 ) | r ∈ C}

= (D$E) ∪ (D$F).

Similarly, we can prove D$(E ∩ F) = (D$E) ∩ (D$F).

(3)

D#(E ∪ F) = D#{(r, (σk
E(r) ∨ σk

F (r)), (τ
k
E (r) ∧ τkF (r)), (η

k
E(r) ∧ ηkF (r))) | r ∈ C}

= {(r, 2σk
D(r)(σ

k
E(r) ∨ σk

F (r))

σk
D(r) + (σk

E(r) ∨ σk
F (r))

,
2τkD(r)(τ

k
E (r) ∧ τkF (r))

τkD(r) + (τkE (r) ∧ τkF (r))
,
2ηkD(r)(η

k
E(r) ∧ ηkF (r))

ηkD(r) + (ηkE(r) ∧ ηkF (r))
) | r ∈ C}

= {(r, 2σk
D(r)σ

k
E(r)

σk
D(r) + σk

E(r)
,
2τkD(r)τ

k
E (r)

τkD(r) + τkE (r)
,
2ηkD(r)η

k
E(r)

ηkD(r) + ηkE(r)
) | r ∈ C}

∪ {(r, 2σk
D(r)σ

k
F (r)

σk
D(r) + σk

F (r)
,
2τkD(r)τ

k
F (r)

τkD(r) + τkF (r)
,
2ηkD(r)η

k
F (r)

ηkD(r) + ηkF (r)
) | r ∈ C}

= (D#E) ∪ (D#F).

Similarly, we can prove D#(E ∩ F) = (D#E) ∩ (D#F).
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Theorem 3.8. Let D, E and F ∈ PFMSs(C). Then,
(1) D ⊕ (E@F) = (D ⊕ E)@(D ⊕ E)

(2) D ⊗ (E@F) = (D ⊗ E)@(D ⊗ E)

Proof. (1)

D ⊕ (E@F) = D ⊕ {(r, (1
2
σk
E(r) + σk

F (r)), (
1

2
(τkE (r) + τkF (r))), (

1

2
ηkE(r) + ηkF (r))) | r ∈ C}

= {(r, σk
D(r) +

1

2
(σk

E(r) + σk
F (r))−

1

2
(σk

D(r)(σ
k
E(r) + σk

F (r))),

1

2
τkD(r)(τ

k
E (r) + τkF (r)),

1

2
ηkD(r)(η

k
E(r) + ηkF (r))) | r ∈ C}

= {(r, 1
2
σk
D(r) +

1

2
σk
E(r)−

1

2
σk
D(r)σ

k
E(r),

1

2
τkD(r)τ

k
E (r),

1

2
ηkD(r)η

k
E(r)) | r ∈ C}

@ {(r, 1
2
σk
D(r) +

1

2
σk
F (r)−

1

2
σk
D(r)σ

k
F (r),

1

2
τkD(r)τ

k
F (r),

1

2
ηkD(r)η

k
F (r)) | r ∈ C}

=
1

2
{(r, σk

D(r) + σk
E(r)− σk

D(r)σ
k
E(r), τ

k
D(r)τ

k
E (r), η

k
D(r)η

k
E(r)) | r ∈ C}

@
1

2
{(r, σk

D(r) + σk
F (r)−

1

2
σk
D(r)σ

k
F (r), τ

k
D(r)τ

k
F (r), η

k
D(r)η

k
F (r)) | r ∈ C}

= (D ⊕ E)@(D ⊕F).

(2)

D ⊗ (E@F) = D ⊗ {(r, (1
2
σk
E(r) + σk

F (r)), (
1

2
(τkE (r) + τkF (r))), (

1

2
ηkE(r) + ηkF (r))) | r ∈ C}

= {(r, 1
2
σk
D(r)(σ

k
E(r) + σk

F (r)), τ
k
D(r) +

1

2
(τkE (r) + τkF (r))−

1

2
τkD(r)(τ

k
E (r) + τkF (r)),

ηkD(r) +
1

2
(ηkE(r) + ηkF (r))−

1

2
ηkD(r)(η

k
E(r) + ηkF (r)) | r ∈ C}

= {(r, 1
2
σk
D(r)σ

k
E(r),

1

2
(τkD(r) + τkE (r))−

1

2
(τkD(r)τ

k
E (r)),

1

2
(ηkD(r) + ηkE(r))−

1

2
(ηkD(r)η

k
E(r))) | r ∈ C}

@ {(r, 1
2
σk
D(r)σ

k
F (r),

1

2
(τkD(r) + τkF (r))−

1

2
(τkD(r)τ

k
F (r)),

1

2
(ηkD(r) + ηkF (r))−

1

2
(ηkD(r)η

k
F (r))) | r ∈ C}

=
1

2
{(r, σk

D(r)σ
k
E(r), τ

k
D(r) + τkE (r)− τkD(r)τ

k
E (r), η

k
D(r) + ηkE(r)− ηkD(r)η

k
E(r)) | r ∈ C}

@
1

2
{(r, σk

D(r)σ
k
F (r), τ

k
D(r) + τkF (r)− τkD(r)τ

k
F (r), η

k
D(r) + ηkF (r)− ηkD(r)η

k
F (r)) | r ∈ C}

= (D ⊗ E)@(D ⊗F).

Example 3.9. From Example 3.1,

D@E = {(a, 0.60, 0.25, 0.15)(b, 0.65, 0.20, 0.15)},

D$E = {(a, 0.59, 0.25, 0.14), (b, 0.648, 0.20, 0.14)},
D#E = {(a, 0.58, 0.24, 0.133), (b, 0.646, 0.20, 0.133)}

and
D ∗ E = {(a, 0.44, 0.28, 0.15), (b, 0.46, 0.19, 0.15)}.
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Using the same Example 3.1, we find;

E ∪ F = {(a, 0.80, 0.10, 0.10), (b, 0.70, 0.20, 0.10)}

E ∩ F = {(a, 0.50, 0.30, 0.20)(b, 0.40, 0.40, 0.20)}

D@(E ∪ F) = {(a, 0.75, 0.15, 0.10), (b, 0.65, 0.20, 0.15)}

D@F = {(a, 0.75, 0.15, 0.10), (b, 0.50, 0.30, 0.20)}

Then,
(D@E) ∪ (D@F) = {(a, 0.75, 0.15, 0.10), (b, 0.65, 0.20, 0.15)}

⇒ D@(E ∪ F) = (D@E) ∪ (D@F).

D@(E ∩ F) = {(a, 0.60, 0.25, 0.15), (b, 0.50, 0.30, 0.20)}

(D@E) ∩ (D@F) = {(a, 0.60, 0.25, 0.15), (b, 0.50, 0.30, 0.20)}

⇒ D@(E ∩ F) = (D@E) ∩ (D@F).

D$(E ∪ F) = {(a, 0.75, 0.14, 0.10), (b, 0.65, 0.20, 0.14)}

D$E = {(a, 0.59, 0.25, 0.14), (b, 0.648, 0.20, 0.14)}

D$F = {(a, 0.75, 0.14, 0.10), (b, 0.50, 0.28, 0.20)}

Then,
(D$E) ∪ (D$F) = {(a, 0.75, 0.14, 0.10), (b, 0.65, 0.20, 0.14)}

⇒ D$(E ∪ F) = (D$E) ∪ (D$F).

D$(E ∩ F) = {(a, 0.59, 0.25, 0.14), (b, 0.50, 0.28, 0.2)}

(D$E) ∩ (D$F) = {(a, 0.59, 0.25, 0.14), (b, 0.50, 0.28, 0.2)}

⇒ D$(E ∩ F) = (D$E) ∩ (D$F).

D#(E ∪ F) = {(a, 0.75, 0.13, 0.10), (b, 0.65, 0.20, 0.13)}

D#E = {(a, 0.58, 0.24, 0.13), (b, 0.65, 0.20, 0.13)}

D#F = {(a, 0.75, 0.13, 0.10), (b, 0.48, 0.27, 0.20)}

Then,
(D#E) ∪ (D#F) = {(a, 0.75, 0.13, 0.10), (b, 0.65, 0.20, 0.13)}

⇒ D#(E ∪ F) = (D#E) ∪ (D#F).

D#(E ∩ F) = {(a, 0.58, 0.24, 0.13), (b, 0.48, 0.27, 0.20)}

(D#E) ∩ (D#F) = {(a, 0.58, 0.24, 0.13), (b, 0.48, 0.27, 0.20)}

⇒ D#(E ∩ F) = (D#E) ∩ (D#F).

D@(E ∩ F) = {(a, 0.60, 0.25, 0.15), (b, 0.50, 0.30, 0.20)}

Then,
(D@E) ∩ (D@F) = {(a, 0.60, 0.25, 0.15), (b, 0.50, 0.30, 0.20)}
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⇒ D@(E ∪ F) = (D@E) ∪ (D@F).

E@F = {(a, 0.65, 0.20, 0.15)(b, 0.55, 0.30, 0.15)}

Then,
D ⊕ (E@F) = {(a, 0.895, 0.360, 0.235)(b, 0.820, 0.440, 0.320)}

D ⊕ E = {(a, 0.85, 0.44, 0.28)(b, 0.88, 0.36, 0.28)}

D ⊕ F = {(a, 0.94, 0.28, 0.19)(b, 0.76, 0.52, 0.36)}

Then,
(D ⊕ E)@(D ⊕F) = {(a, 0.895, 0.360, 0.235)(b, 0.820, 0.440, 0.320)}

⇒ D ⊕ (E@F) = (D ⊕ E)@(D ⊕F).

D ⊗ (E@F) = {(a, 0.455, 0.360, 0.235)(b, 0.330, 0.440, 0.320)}

D ⊗ E = {(a, 0.35, 0.44, 0.28)(b, 0.42, 0.36, 0.28)}

D ⊗ F = {(a, 0.56, 0.28, 0.19)(b, 0.24, 0.52, 0.36)}

Then,
(D ⊗ E)@(D ⊗F) = {(a, 0.455, 0.360, 0.235)(b, 0.330, 0.440, 0.320)}

⇒ D ⊗ (E@F) = (D ⊗ E)@(D ⊗F).

Definition 3.10. Let
P = {⟨r, σk

P(r), τ
k
P(r), η

k
P(r)⟩ | r ∈ C}

and
Q = {⟨r, σk

Q(r), τ
k
Q(r), η

k
Q(r)⟩ | r ∈ C},

where k = 1, 2, · · · , n. be PFMSs. Then, a mapping f : P → Q is called a homomorphism under
the operation △ ∈ {@, $,#, ∗}, if f(D△E) = f(D)△f(D), ∀ D, E ∈ P

Remark 3.11. If △ = @, $, #, ∗, then f is a homomorphism under @, $, #, ∗.

Example 3.12. From Example 3.1,

D@E = {(a, 0.60, 0.25, 0.15)(b, 0.65, 0.20, 0.15)},

D$E = {(a, 0.59, 0.25, 0.14), (b, 0.648, 0.20, 0.14)},

D#E = {(a, 0.58, 0.24, 0.133), (b, 0.646, 0.20, 0.133)}

and
D ∗ E = {(a, 0.44, 0.28, 0.15), (b, 0.46, 0.19, 0.15)}.

Define f : P → Q as f(R)(r) = 1
2 (σ

k
R(r), τkR(r), ηkR(r)). Thus,

f(D) = {(a, 0.35, 0.10, 0.05)(b, 0.30, 0.10, 0.10)}

and
f(E) = {(a, 0.25, 0.15, 0.10)(b, 0.35, 0.10, 0.05)}

So,
f(D)@f(E) = {(a, 0.30, 0.125, 0.075)(b, 0.325, 0.10, 0.075)}

and
f(D@E) = {(a, 0.30, 0.125, 0.075)(b, 0.325, 0.10, 0.075)}
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Thus, f(D@E) = f(D)@f(D).

f(D$E) = {(a, 0.295, 0.122, 0.071)(b, 0.324, 0.10, 0.071)}.

f(D)$f(E) = {(a, 0.295, 0.122, 0.071)(b, 0.324, 0.10, 0.071)}.

Thus, f(D$E) = f(D)$f(D).

f(D$E) = {(a, 0.29, 0.12, 0.067)(b, 0.323, 0.10, 0.067)}.

So,
f(D)$f(E) = {(a, 0.295, 0.122, 0.071)(b, 0.324, 0.10, 0.071)}.

Thus, f(D$E) = f(D)$f(D).

f(D ∗ E) = {(a, 0.22, 0.14, 0.075)(b, 0.23, 0.095, 0.075)}.

So,
f(D) ∗ f(E) = {(a, 0.188, 0.10, 0.065)(b, 0.196, 0.083, 0.065)}.

Thus, f(D ∗ E) ̸= f(D) ∗ f(D).
Therefore, f is not a homomorphism under ∗.

Next, we define first, second and third isomorphism theorems.

Definition 3.13. ker(f) = {D, E ∈ P | f(D) = f(E)} and Im(f) = {f(D) | D ∈ P}.

Definition 3.14. Let P and Q be two PFMSs over C1 and C2, respectively equipped with a common
binary operation △ ∈ {@, $,#, ∗} where △ is defined elementwise for picture fuzzy degrees. A
mapping f : (P,△) → (Q,△) is called a PFMS isomorphism (under the operation △) if f is
bijective and f preserve the operation, i.e, f(D△E) = f(D)△f(E), ∀ D, E ∈ P.
If such an isomorphism exists, the PFMS structure (P,△) and (Q,△) are said to be isomorphic,
i.e, (P,△) ∼= (Q,△).

Definition 3.15. If f : D → E is a homomorphism, then first isomorphism states that

D/ker(f) ∼= Im(f).

Definition 3.16. If D, E ⊆ F , then second isomorphism states that

(D + E)/E ∼= D/D ∩ E .

D + E := componentwise maximum for σ, τ and minimum for η.
D ∩ E := componenitewise minimum for σ, τ and maximum for η.

Definition 3.17. If D ⊆ E ⊆ F , then third isomorphism states that

(F/D)/(E/D) ∼= F/E .

Example 3.18. Let
D = {(a, 0.40, 0.10, 0.50)(b, 0.30, 0.10, 0.40)},

E = {(a, 0.50, 0.20, 0.30)(b, 0.40, 0.20, 0.30)}

and
F = {(a, 0.60, 0.30, 0.10)(b, 0.50, 0.30, 0.20)}

Define

f(R)(r) = αR = α(σk
R(r), τkR(r), ηkR(r)), α =

1

2
.
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f(D) = {(a, 0.20, 0.05, 0.25)(b, 0.10, 0.05, 0.20)}, also ker(f) = {f(R) | f(R) = (0, 0, 0)} since ker-
nel scales everything by λ = 0.5, the quotient recovers the image under the same scaling.

D + E = {(a, 0.50, 0.20, 0.30)(b, 0.40, 0.20, 0.30)} = E .

So,
(D + E)/E = E/E = {(a, 0.00, 0.00, 0.00)(b, 0.00, 0.00, 0.00)}

D ∩ E = {(a, 0.40, 0.10, 0.50)(b, 0.30, 0.10, 0.40)} = D.

So,
(D ∩ E)/D = D/D = {(a, 0.00, 0.00, 0.00)(b, 0.00, 0.00, 0.00)}

Define a− b = max(0, a− b), thus, F/D = {(a, 0.20, 0.20, 0.20)(b, 0.20, 0.20, 0.20)}
E/D = {(a, 0.10, 0.10, 0.10)(b, 0.10, 0.10, 0.10)}
Then,

(F/D)/(E/D) = {(a, 0.10, 0.10, 0.10)(b, 0.10, 0.10, 0.10)} = E/D

F/E = {(a, 0.10, 0.10, 0.10)(b, 0.10, 0.10, 0.10)}.

4 Discussion
The results established in this work demonstrate that the operations @, $,#, and ∗ on PFMS satisfy
commutativity and are distributive over union and intersection.

A particularly noteworthy result is that both ⊕ and ⊗ distribute over @. This behavior high-
lights the linear interaction between structural composition and averaging, allowing for consistent
aggregation in layered systems. It also supports modular model design where evaluations or inputs
are aggregated at different stages.

Despite these strengths, Example 3.4, Example 3.5 and Example 3.6 confirmed the failure of
associativity, distributivity for all operations and distributivity of ⊕ and ⊗ over $,# and ∗, respec-
tively. In particular, the operation ∗ also fails to distribute over union and intersection.

Additionally, we have introduced the concept of homomorphism and the basic isomorphism
theorems in the context of PFMS.

5 Conclusion
In this paper, we proposed some new operations @, $, # and ∗ for picture fuzzy multisets (PFMS),
with the aim of enhancing the algebraic structure and applicability of PFMS in complex uncertain
environments. The theoretical results established in this study confirm that the operations @, $, #
and ∗ are commutative and distribute well over key set-theoretic operations. Some theorems based
on the new operations were obtained through several algebraic properties including commutativity,
associativity and distributivity and examples were given to check the validity of the newly proposed
operations. We remarked that;

• The new operations @, $, # and ∗ violate the associativity law, see Example 3.4,

• The new operations @, $, # and ∗ violate the distributivity law over ⊕ and ⊗, see Example
3.5,
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• The operations ⊕ and ⊗ violate distributivity over $, # and ∗ see Example 3.6 and

• The operations @, $, # distributive over ∪ and ∩ and ∗ is not.

Also, some algebraic principles, such as homomorphism and basic isomorphism theorems in the
context of the PFMSs were established.
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