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Abstract

In this work, we derived eight-order, implicit block formula using backward differentiation
method with two off-step points for solving stiff ordinary differential equations. We solve some
standard set of stiff initial value problems (IVPs) using the new method. We then compared
the numerical results with the existing methods which have solved the same set of ivps. We
have also verified the consistency, order and stability of the method whereby, method is found
to be A - stable and consistent.
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1 Introduction
In science and engineering, mathematical models are often developed to aid in the understanding of
physical phenomena. These models often result in equations that involve derivatives of an unknown
function of one or more variables. Such equations are called differential equations. Differential
equations arise not only in the physical sciences but also in diverse fields such as economics, medicine,
psychology, operations research, biology, and anthropology. Interestingly, differential equations
arising from the modeling of physical phenomena often do not have analytic solutions. Hence, the
development of numerical methods to obtain approximate solutions becomes necessary. That extent,
several numerical methods, such as the finite difference method, finite element method, and finite
volume method, among others have been developed, depending on the nature and type of differential
equation to be solved. A differential equation in which the unknown function depends on two or
more independent variables is called a partial differential equation, while one in which the unknown
function depends on only one independent variable is called an ordinary differential equation. This
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work focuses on the study of numerical solutions of the latter, specifically addressing numerical
methods for solving Initial Value Problems (IVPs) of Ordinary Differential Equations (ODEs) of
the form

y′(x) = f(x, y), y(a) = p, x ∈ [a, b] (1.1)

Generally, the problems represented by equation (1.1) can be classified into two type; non-stiff
ordinary differential equations and stiff ordinary differential equations. In non-stiff problems, all
components evolve simultaneously and on comparable time-scales. These problems are often effec-
tively solved using explicit methods with appropriate error control. The second type is stiff ordinary
differential equations, presents a greater challenge. The term ’stiffness’ was first introduced by Cur-
tiss and Hirschfelder (1952) [1] in their study of chemical kinetics. Although, various definitions of
stiffness exist in the literature, there is no universally accepted definition. For the purpose of this
study, the following definition of stiffness is adopted. A linear system of the form given in equation
(1.1) is said to be stiff if

1. Re(λi) < 0, i = 1, 2, · · · , d.

2. Maxi |Re(λi)| ≫ Mini |Re(λi)|, where λi are the eigenvalues of A and the ratio S =
maxi |(λi)| is called the stiffness ratio as a measure of stiffness (Lambert, J. D. (1973).

The consideration of stability properties is particularly important when developing methods for
solving stiff ODEs which possess an A-stable. Zakman et.al (2016) [2] proposed an A-stable one-step
block method of order four for solving a stiff ordinary differential equation. The method approx-
imate the solutions of a stiff ordinary differential equation at three points simultaneously using a
constant step size. The method is similar to the convetional one-step method and it is self-starting,
however, its implementation relies on predictor-corrector formulae. In a related development, Rufai
et.al (2016) [3] derived one-sixth hybrid block method for the general solution of first order initial
values problems of ordinary differential equations. The proposed method was derived by using the
approach of collocation and interpolation on Chebyshev polynomials. By approximating the solu-
tion at selected points, a continuous linear multi step method was constructed and subsequently
evaluated at off-grid points to generate hybrid linear multi step methods. Ukpebor and Adoghe
(2019) [4], employed a similar approach to develop the main Continuous Fourth Derivative Method
(CFDM), which was then used to obtain additional methods. These were combined to form a single
block method.

Noor and Ibrahim (2019) [5] developed an A stable Block Method for the solution of Stiff or-
dinary differential equations using 2-point Block Backward Differentiation formula (BBDF). Their
work resulted into an improved accuracy, compared to conventional methods. Similarly, Bibi
(2020) [6] proposed a sixth-order fully implicit BBDF method in corporating two off-step points for
the integration of ordinary differential equations. The results demonstrated superior performance
when compared with other existing methods in the literature. Ibrahim and Nasarudin (2020) [7]
developed a class of Hybrid Block Backward Differentiation Formula (HBBDF) methods, which pos-
sess A-stability. These methods were constructed by reformulating the BBDF approach for solving
stiff ordinary differential equations. The stability and convergence of the proposed methods were
thoroughly investigated. The analysis showed that the methods are zero-stable and consistent,
and thus, by the Dahlquist Equivalence Theorem, the methods are convergent. Nasarudin et.al
(2020) [8], proposed a sixth-order fully implicit Block Backward Differentiation Formula (BBDF)
incorporating two off-step points for the integration of first-order ordinary differential equations
that exhibit stiffness. The scheme was shown to be convergent through rigorous analysis. In a re-
lated study, Abd Rasid (2021) [9] introduced a novel alternative approach to the implicit diagonal
BBDF for solving linear and nonlinear first-order stiff ordinary differential equations. The solver
was developed by manipulating the number of back ward values in order to achieve a higher order of
accuracy using an interpolation-based procedure. C. Chibuisi et al (2022) [10]implemented second
derivative block backward differentiation formulae methods in solving first order delay differential
equations without the application of interpolation methods in investigating the delay argument.
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The delay argument was evaluated using a suitable idea of sequence which was incorporated in
to some first order delay differential equations before its numerical evaluations. B. I. Akinnukawe
and E. M. Atteh (2024) [11] proposed a novel block method to solve the nonlinear time dependent
Burgers’ equation. The Burgers’ PDE is semi discretized in spatial direction by using the standard
fourth-order compact difference schemes to yield system of nonlinear ordinary differential equations
(ODE) in time.

2 Methodology and Results

2.1 Problem Definition
In this paper, we shall consider the numerical solution of the first order initial value problems (IVPs)
for ordinary differential equations of the form

y′(x) = f(x, y), y(a) = y0, x ∈ [a, b] (2.1)

Equation (2.1) is said to be linear if f(x, y) = A(x)y +Φ(x), where A(x) is a constant dxd matrix
and ϕ(x) is a d-dimensional vector assumed to be continuously differentiable, and if it satisfies the
Lipschitz condition, guarantees the existence and uniqueness of the solution of equation.

2.2 Methodology
For the derivation of our method, we consider the following block with step size h as shown below:

Figure 1: Block method with off-step points of order eight (8).

The step size h of the computed block is 3h with two off-step points, yn+ 2
3

and yn+ 5
2

as shown
in figure 2.5 above. For our 3- point block method, the interval [a, b] is divided into a series of
blocks. For our research, the points yn−2, yn−1 and yn in the previous block are used to compute
the solution of equation (2.1) at xn + 1, xn + 2 and xn + 3 simultaneously. For our methodology,
we consider the general k- step linear multistep method (LMM) of the form

k∑
j=0

αjyn+j = h

k∑
j=0

βjfn+j (2.2)

In order to construct the new method, the linear multistep method in (2.2) is extended by using
the off-step points. Therefore, the extension of the linear multistep method which involves f(x, y)
evaluated at an off-step point (xn+r, yn+r), 0 < r < k, and r not in [0, 1, 2, ..., k] takes the general
form

k−4∑
j=0

αj iyn+j−2 +

k−1∑
j=0

αj+2 iyn+j−1/2 = hβifn+i (2.3)
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Equation (2.3) is expanded to generate the block method. Hence, the approximation at the point
xn + 1 is given as follows:

α0,iyn-2+α1,iyn-1+α2,iyn+α3,iyn+1+α4,iyn+ 3
2
+ α5,iyn+2 + α6,iyn+ 5

2

+ α7,iyn+3 = hβifn+i (2.4)

Now, we obtain the first formula for yn+
3
2 by substituting i = 3

2 in equation (2.4) to get

α0,
3

2
yn-2 + α1,

3

2
yn-1 + α2,

3

2
yn + α3,

3

2
yn+1+ α4,

3

2
yn+ 3

2
+α5,

3

2
yn+2

+ α6,
3

2
yn+ 5

2
+α7,

3

2
yn+3 = hβ 3

2
fn+ 3

2
. (2.5)

We let α4, 3
2 = 1 by normalization that is to remove the arbitrariness of coefficients, so we have

α0,
3

2
yn-2 + α1,

3

2
yn-1 + α2,

3

2
yn + α3,

3

2
yn+1 + yn+ 3

2
+α5,

3

2
yn+2

+α6,
3

2
yn+ 5

2
+α7,

3

2
yn+3 = hβ 3

2
fn+ 3

2
(2.6)

Solving and expanding using the Taylor’s series expansion, we get the following schemes
yn+1 = 10584

137975fn+6h - 77364
137975fn+1h - 2852864

1517725yn+ 11
2

- 1714176
137975 yn+ 9

2
+ 1027971

137975 yn+5

. + 254898
27595 yn+4 - 527436

137975yn+3 + 344736
137975yn+2 - 90846

1517725yn:

yn+2 = − 1225
40514fn+6h - 32235

40514 fn+2h + 517120
668481 yn+ 11

2
+ 7168

1293 yn+ 9
2

- 64190
20257yn+5

. − 89425
20257 yn+4 + 147980

60771 yn+3 - 10850
60771 yn+1 +

6370
668481 yn:

yn+3 = 25
1604fn+6h - 1535

1604 fn+3h - 13248
30877 yn+ 11

2
- 13120

3609 yn+ 9
2

+ 12015
6416 yn+5

. + 22275
6416 yn+4 - 1755

5614yn+2 + 225
6416yn+1 – 1585

635184 yn:

yn+4 = − 24
7495fn+6h - 3684

7495 fn+4h + 126976
1236675yn+ 11

2
+ 405504

262325yn+ 9
2

- 19944
37475yn+5

. − 5072
37475yn+3 + 828

37475yn+2 - 104
31479yn+1 + 109

412225 yn:

yn+ 9
2

= − 96705
503 fn+ 9

2
h + 33075

32192 fn+6h - 214515
5533 yn+ 11

2
+ 17086545

64384 yn+5

. − 31454325
128768 yn+4 + 721035

32192 yn+3 - 141183
32192 yn+2 + 45225

64384yn+1 - 82565
1416448 yn:

yn+5 = 200
27239fn+6h + 18420

27239 fn+5h - 2529280
6292209 yn+ 11

2
+ 1116160

572019 yn+ 9
2

. − 16850
27239yn+4 + 6940

81717yn+3 - 3520
190673yn+2 + 1775

572019yn+1 - 238
898887 yn:
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yn+ 11
2

= 1063755
3763757 fn+ 11

2
h - 4002075

240880448fn+6h - 4916835
3763757 yn+ 9

2
+ 881256915

481760896yn+5 + 529607925
963521792 yn+4

. − 21717927
240880448yn+3 + 5047515

240880448yn+2 - 1757525
481760896yn+1 - 306495

963521792 yn:

yn+6=
60

307
hfn+6-

10

10131
yn+

24

2149
yn+1-

135

2149
yn+2+

80

307
yn+3 −

450

307
yn+4

-
1080

307
yn+5+

20480

6447
yn+ 9

2
+

61440

23639
yn+ 11

2
: (2.7)

Collecting the coefficients of all yn, yn+1, yn+2, . . . in equation (2.7) and putting them in
matrix form we have



90846
1517725 1 −344736

137975
527436
137975

−254898
27595

1714176
137975

−1027971
137975

2852864
1517725 0

−6370
668481

10850
60771 1 −147980

60771
89425
20257

−7168
1293

64190
20257

−517120
668481 0

1585
635184

−225
6416

1755
5614 1 −22275

6416
13120
3609

−12015
6416

13248
30877 0

−109
412225

104
31479

−828
37475

5072
37475 1 −405504

262325
19944
37475

−126976
1236675 0

82565
1416448

−45225
64384

141183
32192

−721035
32192

31454325
128768 1 −17086545

64384
214515
5533 0

238
898887

−1775
572019

3520
190673

−6940
81717

16850
27239

−1116160
572019 1 2529280

6292209 0

−306495
963521792

1757525
481760896

−5047515
240880448

21717927
240880448

−529607925
963521792

4916835
3763757

881256915
481760896 1 0

10
10131

−24
2149

135
2149

−80
307

450
307

−20480
6447

1080
307

−61440
23639 1





yn+1

yn+2

yn+3

yn+4

yn+ 9
2

yn+5

yn+ 11
2

yn+6


(2.8)

Also collecting the coefficients of fn+1, fn+2, . . . in equation (2.7) and putting them in matrix
form we have



−77364
137975 0 0 0 0 0 0 0 10584

137975

0 −32235
40514 0 0 0 0 0 0 −1225

40514

0 0 −1535
1604 0 0 0 0 0 25

1604

0 0 0 −3684
7495 0 0 0 0 −24

7495

0 0 0 0 −96705
503 0 0 0 33075

32192

0 0 0 0 0 18420
27239 0 0 200

27239

0 0 0 0 0 0 0 1063755
3763757

−4002075
240880448

0 0 0 0 0 0 0 0 60
307





fn+1

fn+2

fn+3

fn+4

fn+ 9
2

fn+5

fn+ 11
2

fn+6



h (2.9)

To solve our Error Constant we let yn, yn+1, yn+2 · · ·, in equation (2.7) to be α0, α1, α2, · · ·,
and fn+1, fn+2, · · ·, to be β0, β1 , β2, · · · as follows
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α0, =



−90846
1517725

−6370
668481

1585
635184

−109
412225

82565
1416448

238
898887

−306495
963521792

10
10131



, α1, =



1

10850
60771

−225
6416

104
31479

−45225
64384

−1775
572019

1757525
481760896

−24
2149



, α2, =



−344736
137975

1

1755
5614

−828
37475

141183
32192

3520
190673

−5047515
240880448

135
2149



, α3 =



527436
137975

−147980
60771

1

5072
37475

−721035
32192

−6940
81717

21717927
240880448−80

307



,

α4, =



−254898
27595

89425
20257

−22275
6416

1

31454325
128768

16850
27239

21717927
240880448

450
307



, α5, =



1714176
137975

−7168
1293

13120
3609

−405504
262325

1

−1116160
572019

4916835
3763757

−20480
6447



, α6 =



−1027971
137975

64190
20257

−12015
6416

19944
37475

−17086545
64384

1

−881256915
481760896

1080
307



, α7 =



2852864
1517725

−517120
668481

13248
30877

−126976
1236675

214515
5533

2529280
6292209

1

−61440
23639



,

α8 =



0

0

0

0

0

0

0

1



,
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β0 =



−77364
137975

0

0

0

0

0

0

0



, β1 =



0

−32235
40514

0

0

0

0

0

0



, β2 =



0

0

−1535
1604

0

0

0

0

0



, β3 =



0

0

0

−3684
7495

0

0
0

0



, β4 =



0

0

0

0

33075
32192

0

0

0



,

β5 =



0

0

0

0

0

18420
27239

0

0



, β6 =



0

0

0

0

0

0

1063755
3763757

0



, β7 =



10584
137975

−1225
40514

25
1604

−24
7495

33075
32192

200
27239

−4002075
240880448

60
307



.

2.3 Error constants of the method
To get our error of the method in equation (2.6), we define the corresponding linear multistep
method in equation (2.3) with Taylor’s series expansion to get equation (2.10) below.
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c0 =

15∑
j=0

αj = 0

c1 =

15∑
j=0

(jαj)− 2

15∑
j=0

βj = 0

c2 =

15∑
j=0

(j
2
αj)

2!
− 2

15∑
j=0

j(βj) = 0

.

.

.

c9 =

15∑
j=0

(j
9
αj)

9!
− 2

15∑
j=0

(j8βj)

8!
=



6699
2207600

5635
5834016

545
1437184

337
6295800


̸=



0

0

0

0


(2.10)

This yields the error constant.

c9 =



6699
2207600

5635
5834016

545
1437184

337
6295800


.

This shows that, the method is of order eight (8) with the error constant as displayed in c9 = cp+1 ̸=
0. Hence, its proved that the method is consistent, since the order of the method, p = 8 ≥ 1.

2.4 Zero - Stability
For the method to be convergent, it has to be consistent and zero-stable. The stability of the
method is determined by the linear test equation as giving below

y
′
= λy, (2.11)

where λ is a complex constant with Re(λ) < 0.
Substituting equation (2.11) into equation (2.7) we have

yn+1 = 10584
137975hλyn+6 - 77364

137975hλyn+1-
2852864
1517725yn+ 11

2
- 1714176

137975 yn+ 9
2

+ 1027971
137975 yn+5

. + 254898
27595 yn+4 - 527436

137975yn+3 + 344736
137975yn+2 - 90846

1517725yn:
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yn+2 = − 1225
40514hλyn+6 - 32235

40514 hλyn+2 + 517120
668481 yn+ 11

2
+ 7168

1293 yn+ 9
2

- 64190
20257yn+5

. − 89425
20257 yn+4 + 147980

60771 yn+3 - 10850
60771 yn+1 +

6370
668481 yn:

yn+3 = 25
1604hλyn+6 - 1535

1604 hλyn+3 - 13248
30877 yn+ 11

2
- 13120

3609 yn+ 9
2

+ 12015
6416 yn+5

. + 22275
6416 yn+4 - 1755

5614yn+2 + 225
6416yn+1 – 1585

635184 yn:

yn+4 = − 24
7495hλyn+6 - 3684

7495 hλyn+4 + 126976
1236675yn+ 11

2
+ 405504

262325yn+ 9
2

- 19944
37475yn+5

. − 5072
37475yn+3 + 828

37475yn+2 - 104
31479yn+1 + 109

412225 yn:

yn+ 9
2

= − 96705
503 hλyn+ 9

2
+ 33075

32192 hλyn+6 - 214515
5533 yn+ 11

2
+ 17086545

64384 yn+5

. − 31454325
128768 yn+4 + 721035

32192 yn+3 - 141183
32192 yn+2 + 45225

64384yn+1 − 82565
1416448 yn:

yn+5 = 200
27239hλyn+6 + 18420

27239 hλyn+5 - 2529280
6292209 yn+ 11

2
+ 1116160

572019 yn+ 9
2

. − 16850
27239yn+4 + 6940

81717yn+3 - 3520
190673yn+2 + 1775

572019yn+1 - 238
898887 yn:

yn+ 11
2

= 1063755
3763757 hλyn+ 11

2
- 4002075

240880448hλyn+6 - 4916835
3763757 yn+ 9

2
+ 881256915

481760896yn+5

. + 529607925
963521792 yn+4 − 21717927

240880448yn+3 + 5047515
240880448yn+2 - 1757525

481760896yn+1 - 306495
963521792 yn:

yn+6 =
60

307
hλyn+6 −

10

10131
yn +

24

2149
yn+1 −

135

2149
yn+2 +

80

307
yn+3 − 450

307
yn+4

− 1080

307
yn+5 +

20480

6447
yn+ 9

2
+

61440

23639
yn+ 11

2
: (2.12)

Equation (2.12) can be written in matrix form as follows
Putting H = hλ , the stability polynomial R(t,H) associated with our method is determined by

solving the first characteristics polynomial det (At2 -Bt ) = 0.
Therefore, the zero stability is determined by putting H = hλ = 0
which gives
t1= t2 =t3 =t4 =t5= 0, t6 = t7 = 1.
Since all the roots lie within t ≤ 1, we conclude that our method is zero stable.

2.5 The A –Stability of the Method
A numerical method is said to be A- stable, if its region of absolute stability contains whole left
plane. Therefore, since the region of absolute stability of our method contains whole left plane, we
conclude that our method is A- stable. Below is the graph.

The stability region of the eight order Block Backward Differentiation formula with two off step
points (BBDFO(8).From the definition of A- stable which says that, A numerical method is said to
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be A-stable if its region of absolute stability contains whole left plane, we then conclude that the
BBDFO(8) method is A- stable since its region of absolute stability contains whole left plane.
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Figure 2: The Region of absolute stability when k = 2 with two off-step points.

3 Numerical results

Problem 1

y′ = −1000(y − 1), y(0) = 2, x ∈ [0, 10].

Exact solution:
y(x) = e−1000 + 1.

Problem 2:

y′ = −y3

2
, y(0) = 1, x ∈ [0, 4].

Exact solution:
y(x) =

1√
1 + x

.
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Table 1: Numerical solution for problem 1 (h = 0.1)
x Exact Solution Numerical Solution Error in order 8

1.0 1.0000 1.0000000070975453656 2.20× 10−11

2.0 1.0000 1.0000000000000000504 1.595× 10−18

3.0 1.0000 1.0000000000000000001 2.070× 10−23

4.0 1.0000 1.0000000000000000001 6.767× 10−34

5.0 1.0000 1.0000000000000000001 4.897× 10−41

6.0 1.0000 1.0000000000000000001 9.423× 10−46

7.0 1.0000 1.0000000000000000001 2.07× 10−56

8.0 1.0000 1.0000000000000000001 1.503× 10−63

9.0 1.0000 1.0000000000000000001 2.982× 10−68

10 1.0000 1.0000000000000000001 6.377× 10−79

Table 2: Numerical solution for problem 1 (h = 0.1)
h MAX ERROR in order 8

10−3 5.436× 10−4

1 0−4 3.140× 10−12

Table 3: Numerical solution for problem 2 (h = 0.1)
x Exact Solution Numerical Solution Error in order 8

0.4 0.845154254728519 0.845154576910226 3.222× 10−7

0.8 0.745355992499932 0.745356226209529 2.337× 10−7

1.2 0.674199862463243 0.674200035454122 1.730× 10−7

1.6 0.620173672946042 0.6201738085053073 1.356× 10−7

2.0 0.577350269189625 0.5773503787017336 1.095× 10−7

2.4 0.542326144546640 0.5423262353134918 9.077× 10−8

2.8 0.512989176042578 0.51298925288687785 7.684× 10−8

3.2 0.487950036474267 0.48795010261314547 6.614× 10−8

3.6 0.466252404120157 0.46625246182259146 5.770× 10−8

4.0 0.447213595499958 0.44721364642034503 5.092× 10−8

Table 4: Numerical solution for problem 2
h MAX ERROR in order 8

10−3 1.117× 1022

1 0−4 1.119× 10−30

3.1 Discussion
The analysis of the proposed method shows that the method is of order eight (8). On implementing
the method in maple environment, shows that the method is efficient for solving stiff differential
equations. Also the tables of the results for problem 1 and 2 shows that the method is good and
efficient.

3.2 Conclusion
A block backward formula for solving stiff initial value problems has been developed using backward
differentiation method with two off-step points. The numerical solution of our method shows that
the method is fast and efficient for solving stiff initial values problems. The stability analysis has
also proven that the method is consistent and A-stable, hence convergent
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