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Abstract

In this work, we derived eight-order, implicit block formula using backward differentiation
method with two off-step points for solving stiff ordinary differential equations. We solve some
standard set of stiff initial value problems (IVPs) using the new method. We then compared
the numerical results with the existing methods which have solved the same set of ivps. We
have also verified the consistency, order and stability of the method whereby, method is found
to be A - stable and consistent.

Keywords: Implicit, Block Backward Differentiation, Stability; Off-Steps, Stiff Differential Equa-
tions.
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1 Introduction

In science and engineering, mathematical models are often developed to aid in the understanding of
physical phenomena. These models often result in equations that involve derivatives of an unknown
function of one or more variables. Such equations are called differential equations. Differential
equations arise not only in the physical sciences but also in diverse fields such as economics, medicine,
psychology, operations research, biology, and anthropology. Interestingly, differential equations
arising from the modeling of physical phenomena often do not have analytic solutions. Hence, the
development of numerical methods to obtain approximate solutions becomes necessary. That extent,
several numerical methods, such as the finite difference method, finite element method, and finite
volume method, among others have been developed, depending on the nature and type of differential
equation to be solved. A differential equation in which the unknown function depends on two or
more independent variables is called a partial differential equation, while one in which the unknown
function depends on only one independent variable is called an ordinary differential equation. This
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work focuses on the study of numerical solutions of the latter, specifically addressing numerical
methods for solving Initial Value Problems (IVPs) of Ordinary Differential Equations (ODEs) of
the form

y'(z) = f(z,y), yla)=p, z¢€la,b] (1.1)

Generally, the problems represented by equation (1.1) can be classified into two type; non-stiff
ordinary differential equations and stiff ordinary differential equations. In non-stiff problems, all
components evolve simultaneously and on comparable time-scales. These problems are often effec-
tively solved using explicit methods with appropriate error control. The second type is stiff ordinary
differential equations, presents a greater challenge. The term ’stiffness’ was first introduced by Cur-
tiss and Hirschfelder (1952) [1] in their study of chemical kinetics. Although, various definitions of
stiffness exist in the literature, there is no universally accepted definition. For the purpose of this
study, the following definition of stiffness is adopted. A linear system of the form given in equation
(1.1) is said to be stiff if

1. Re(M) <0, i=1,2,-- ,d.

2. Maxi |Re(X\;)| > Mini |Re()\;)|, where \; are the eigenvalues of A and the ratio S =
maxi |(A;)| is called the stiffness ratio as a measure of stiffness (Lambert, J. D. (1973).

The consideration of stability properties is particularly important when developing methods for
solving stiff ODEs which possess an A-stable. Zakman et.al (2016) [2] proposed an A-stable one-step
block method of order four for solving a stiff ordinary differential equation. The method approx-
imate the solutions of a stiff ordinary differential equation at three points simultaneously using a
constant step size. The method is similar to the convetional one-step method and it is self-starting,
however, its implementation relies on predictor-corrector formulae. In a related development, Rufai
et.al (2016) [3] derived one-sixth hybrid block method for the general solution of first order initial
values problems of ordinary differential equations. The proposed method was derived by using the
approach of collocation and interpolation on Chebyshev polynomials. By approximating the solu-
tion at selected points, a continuous linear multi step method was constructed and subsequently
evaluated at off-grid points to generate hybrid linear multi step methods. Ukpebor and Adoghe
(2019) [4], employed a similar approach to develop the main Continuous Fourth Derivative Method
(CFDM), which was then used to obtain additional methods. These were combined to form a single
block method.

Noor and Ibrahim (2019) [5] developed an A stable Block Method for the solution of Stiff or-
dinary differential equations using 2-point Block Backward Differentiation formula (BBDF'). Their
work resulted into an improved accuracy, compared to conventional methods. Similarly, Bibi
(2020) [6] proposed a sixth-order fully implicit BBDF method in corporating two off-step points for
the integration of ordinary differential equations. The results demonstrated superior performance
when compared with other existing methods in the literature. Ibrahim and Nasarudin (2020) [7]
developed a class of Hybrid Block Backward Differentiation Formula (HBBDF) methods, which pos-
sess A-stability. These methods were constructed by reformulating the BBDF approach for solving
stiff ordinary differential equations. The stability and convergence of the proposed methods were
thoroughly investigated. The analysis showed that the methods are zero-stable and consistent,
and thus, by the Dahlquist Equivalence Theorem, the methods are convergent. Nasarudin et.al
(2020) [8], proposed a sixth-order fully implicit Block Backward Differentiation Formula (BBDF)
incorporating two off-step points for the integration of first-order ordinary differential equations
that exhibit stiffness. The scheme was shown to be convergent through rigorous analysis. In a re-
lated study, Abd Rasid (2021) [9] introduced a novel alternative approach to the implicit diagonal
BBDF for solving linear and nonlinear first-order stiff ordinary differential equations. The solver
was developed by manipulating the number of back ward values in order to achieve a higher order of
accuracy using an interpolation-based procedure. C. Chibuisi et al (2022) [10]implemented second
derivative block backward differentiation formulae methods in solving first order delay differential
equations without the application of interpolation methods in investigating the delay argument.
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The delay argument was evaluated using a suitable idea of sequence which was incorporated in
to some first order delay differential equations before its numerical evaluations. B. I. Akinnukawe
and E. M. Atteh (2024) [11] proposed a novel block method to solve the nonlinear time dependent
Burgers’ equation. The Burgers’ PDE is semi discretized in spatial direction by using the standard
fourth-order compact difference schemes to yield system of nonlinear ordinary differential equations
(ODE) in time.

2 Methodology and Results

2.1 Problem Definition

In this paper, we shall consider the numerical solution of the first order initial value problems (IVPs)
for ordinary differential equations of the form

y'(x) = f(z,y), y(a)=yo, =€ la,b] (2.1)

Equation (2.1) is said to be linear if f(x,y) = A(x)y + ®(x), where A(x) is a constant dxd matrix
and ¢(x) is a d-dimensional vector assumed to be continuously differentiable, and if it satisfies the
Lipschitz condition, guarantees the existence and uniqueness of the solution of equation.

2.2 Methodology

For the derivation of our method, we consider the following block with step size h as shown below:

3h 4h

Y
A

«— 2h

\ 4
A

Vn-2 Vn-1 Yn  Vn+l yn+; Vn+2 yn+5 Yn+3 yn+3 YVn+4
2 2 2

Figure 1: Block method with off-step points of order eight (8).

The step size h of the computed block is 3h with two off-step points, y,, +2 and y,, 43 as shown
in figure 2.5 above. For our 3- point block method, the interval [a,b] is divided into a series of
blocks. For our research, the points y,, — 2, ¥, — 1 and y,, in the previous block are used to compute
the solution of equation (2.1) at x,, + 1,2, + 2 and z,, + 3 simultaneously. For our methodology,
we consider the general k- step linear multistep method (LMM) of the form

k k
D ynrs =Y Bifuss (2.2)
=0 =0

In order to construct the new method, the linear multistep method in (2.2) is extended by using
the off-step points. Therefore, the extension of the linear multistep method which involves f(z,y)
evaluated at an off-step point (Zn4r, Yntr), 0 < 7 < k, and r not in [0, 1,2, ..., k] takes the general
form

k—4 k-1
Zaj Wntj—2 + Zaj+2 Wntj—1/2 = hBifnii (2.3)
5=0 §=0
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Equation (2.3) is expanded to generate the block method. Hence, the approximation at the point
Tn + 1 is given as follows:

Q0 Wn-2 1+ O 1, 1Yn-1 702, WYn 03, WY 170 Wy 8+ Q5,02 + Q6 Wy 5

+ o, Ynis = BBifn s (2'4)

Now, we obtain the first formula for yn+% by substituting ¢ =

[\SI[9N)

in equation (2.4) to get

3 3 3
Qg, zYn-2 T 01, ZYn-1 + Q2, ZYn + A3, ZYns171 ay, 7yn+%+a57 iyn‘/*g

2 2 2 2 2
3 3
+ ag, iyn-k% +Qry, iyn+3 - hﬂ%fn+% (25)

We let ay, 2 = 1 by normalization that is to remove the arbitrariness of coefficients, so we have

Qg, zYn-2 + 01, ZYn-1 + Qg 5

3 3
5 5 Yn + Q35 SYntt + Yni 3 75, SYni2

2 2

3 3
+ag, 3Yn+3 1T GYnts = hBs frys (2.6)

Solving and expanding using the Taylor’s series expansion, we get the following schemes

10584 "~ 77364 " 2852864 1714176 1027971
Ynt1 = Targrsn+6h - 57075 [nt1h 1517725 In+ 1L 137975 Yn+2 T 137975 Unt5

+ 254898 527436 90846

344736 .
27505 Ynt+4 "~ T37075Yn+3 T 37975 Yn+2 - Trivros Un’

1225 32235 517120 7168 64190
Ynt2 = —dostaSn+eh - Gosir fnr2lh - Gesist Yn+ll F 293 Yn+2 - 20257 Yn+5

80425 147980, 10850 6370 .
20257 Yn+4 T+ Gorr1 Yn+3 - TGorrn Yn+l + Gosast Yn-

_ 25 1535 13248 13120 12015
Yn+3 = Teo1/nt+6l - Too1 fnt3h - Sosrm Yn+il = 3609 Yn+d T Gaie Ynts

22275 1755 225 1585 )
+6416 Yn+4 - 561aYn+2 T GaieYn+1 T 35184 Yn”

24 3684 126976 405504 19944
Ynt+a = —7ags fnteh - Fio5 fnyah + 1236675 Yn+ 1 7 262325 Yn+2 " 37475 Ynts

5072 828 104 109 )
37475 Yn+3 1+ 37a75Yn+2 ~ 31479 Yn+1 + Ii2225 Yn!

96705 33075 214515 17086545
Yntg = 503 n+%h + o103 In+6h - T5553 Yntl T “Gazsa Ynts
31454325 721035 141183 82565

45225
—Tas76s Un+4 T T5o102 Yn+3 - 32102 Ynt+2 T Gazsa¥n+l - Taigaas Yn

200 18420 2529280 1116160
Ynts = Figggnr6h + 5ra39 frash - Gag5500 Yn+ll + 572019 Yn+2

16850 6940 3520 1775 238 )
“o7239Yn+4 T gr717Yn43 - To0673Yn+2 © F72019Yn+1 - “gosssr Yn®
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., _ 1063755 L b - 4002075 ¢ 4916835 , ; 881256915 | 529607925
Ynt+1l = 3763757 In+il " - 220880448 Jn+6 3763757 In+2 T 481760896 Yn+5 T 963521792 In+4
21717927 | 5047515 1757525 . 306495 )
240880448 In+3 T 240880448 Yn+2 ~ 181760896 Yn+1 963521792 In-

_ 60, 0 24 13 8 450
Ynt6 =307 M k6T 0131V T o149 Yt o149 Y2 T g7 Ynts T 3 Yt

1080 +20480 . 61440 (2.7)
- Yn+5 Yn+2 Yntir t .
307 6447 7"z 23639 "z
Collecting the coefficients of all ¥, Yn+1, Ynt2, - - - in equation (2.7) and putting them in
matrix form we have

90846 1 —344736 527436 —254898 1714176 —1027971 2852864 Y1
1517725 137975 137975 27595 137975 137975 1517725 n+

—6370 10850 1 —147980 89425 —7168 64190 —517120 Ynio

668481 60771 60771 20257 1293 20257 668481 n+

1585 —225 1755 1 —22275 13120 —12015 13248 Ynts

635184 6416 5614 6416 3609 6416 30877 n+t

—109 104 —828 5072 1 —405504 19944 —126976 ) Ynia

412225 31479 37475 37475 262325 37475 1236675 nt

82565 —45225 141183 —721035 31454325 1 —17086545 214515 ) Yo
1416448 64384 32192 32192 128768 64384 5533 n+3

238 —1775 3520 —6940 16850 —1116160 1 2520280 ()

898887 572019 190673 81717 27239 572019 6292209 Yn+5
—306495 1757525 —5047515 21717927  —529607925 4916835 881256915 1 0 "
063521792 481760806 240880448 240880448 963521792 3763757 481760896 Yoy 1L

10 —24 135 —80 450 —20480 1080 —61440

10131 2149 2149 307 307 6447 307 23639 Yn+6

(2.8)
Also collecting the coefficients of f,,11, fnt2, - . . in equation (2.7) and putting them in matrix
form we have
—77364 10584
137975 0 0 0 0 0 0 0 137975 s
—32235 —1225
0 10611 0 0 0 0 0 0 Tosid Jrs2
—1535 25 )
0 0 o8 0 0 0o 0 0 = frn+s
—3684 —24
0 0 0 s 0 0 0 0 et Jnta
h  (2.9)
—96705 33075
0 0 0 0 503 0 0 0 32192 g
18420 200
0 0 0 0 0 37239 0 0 27239 fnss
1063755  —4002075
0 0 0 0 0 0 0 373757 240830448 foy i
0 0 0 0 0 0 0 0 20 f
307 n+6
To solve our Error Constant we let yn, Yn+1, Ynt2 -, in equation (2.7) to be ap, a1, @z, -,

and fn+l7 fn+27 Y to be 607 61 ) 62a -+ as follows
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r —90846 T r 1 7 r —344736 7
1517725 137975 r 527436
137975
—6370 10850 1
668481 60771 —147980
60771
1585 —225 1755
635184 6416 5614 1
—109 104 —828
412225 31479 37475 5072
Qo, = e , O, = as = 37475
82565 —45225 141183
1416448 64384 32192 —721035
32192
238 —1775 3520
898887 572019 190673 —6940
81717
—306495 1757525 —5047515
963521792 481760896 240880448 21717927
240880448
10 =24 135 L 307
10131 2149 L 2149
r —254898 r 1714176 1
27595 137975 r —1027971 7 M 2852864
137975 1517725
89425 —7168
20257 1293 64190 —517120
20257 668481
—22275 13120
6416 3609 —12015 13248
6416 30877
1 —405504
962325 19944 —126976
37475 1236675
Qg = | 31454325 |» @5, 1 , Qg = a7 = ,
128768 —17086545 214515
64384 5533
16850 —1116160
27239 572019 1 2529280
6292209
21717927 4916835
240880448 3763757 —881256915 1
481760896
450 —20480
307 6447 1080 —61440
L 307 i L 723639
o]
0
0
0
ag = )
0
0
0
1
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77364 - - 0 0
—77364
137975 0 0
0 0
—32235
0 40514 0
—1535 0
0 0 1604 0
0 0 0 —3684 0
7495
Bo = , B1 , B2 = L B3 = , Ba 33075 | »
0 0 0 32192
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
[0 ] 0 ] r10584 T
137975
0 0 1225
40514
0 0 25
1604
0 0 —24
7495
Bs = 0 Be T Br = sa0ms
32192
18420 0
27239 200
27239
0 1063755
3763757 —4002075
240880448
0 0 60
L 307

2.3 Error constants of the method

To get our error of the method in equation (2.6), we define the corresponding linear multistep

method in equation (2.3) with Taylor’s series expansion to get equation (2.10) below.
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Co = zzztlj =0
=0
15 15
=Y (oy)-2) 8=
§=0 j=0
15 (-2 15
J o) .
=) 52y (B)=0
j=0 j=0
6699 0
2207600
15 ( -9 ) 15 ( 8 ) 5635 0
B J ey j5B;) | 5834016
o= T > = ol I (2.10)
_ ! , ! 545
j=0 J=0 1437184
337
6295300 0

This yields the error constant.

6699
2207600

5635
5834016
Cg =
545
1437184

337
6295800

This shows that, the method is of order eight (8) with the error constant as displayed in ¢y = ¢p41 #
0. Hence, its proved that the method is consistent, since the order of the method, p =8 > 1.

2.4 Zero - Stability

For the method to be convergent, it has to be consistent and zero-stable. The stability of the
method is determined by the linear test equation as giving below

y =Xy, (2.11)
where A is a complex constant with Re(\) < 0.

Substituting equation (2.11) into equation (2.7) we have

_ 10584 77364 2852864 _ 1714176 1027971
Ynt1 = 137975h)‘yn+6 137975h/\yn+1 1517725 Yn+1L ~ 137975 In+2 + 137975 Yn+5

254898 527436 344736 90846 . .
+ 97505 Yn+4 - 37975 Yn+3 T T37975Yn+2 T Tairras Ynt
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1225 32235 517120 7168 64190
Ynt2 = ~ 20512 " \nte - 10514 MMunto T Gosdst Ynt+l + 293 Yn+9 - 20257 Yn+5

89425 147980 10850 6370 .
20257 Yn+4 7 Gorrr In+3 T TGorrl Yn+l + Tgesdsl In-

25 1535 13248 13120 12015
Yn+3 = T601"vnt6 - 1604 Munts - SosTT Yn+ - B600 Yn+d T 6a16 Ynts

22275 1755 225 1585 )
+ 6416 Ynt+4 - 5614Yn+2 T GaieYn+1 ~ 635184 Yn’

24 3684 126976 405504 19944,
Ynta = — g5 Ay,i6 - Fa05 PAynta 1236675 Yn+ 1 7 262325 Yn+3 ~ 37475 Yn+5

5072 828 104 109 .
— o Yn+3 T 37arsYnt2 T F1argYn+l T Aiogos  Yn

96705 33075 _ 214515 17086545
Yntg — 503 h)‘yn+g * 32102 h)\yn+6 5533 Yn+il + “6azga Yn+s

31454325 721035 141183 45225 82565 .
~T2s768 Yn+4 T 33102 Yn+3 - 32192 Yn+2 T Gazsa¥nt+l — Taigaas Yn®

200 18420 2529280 1116160
Ynts = 27255\ uns6 T 27339 Mvnts - 6992209 Yn+1t 7+ 72010 Yn+2

16850 6940 3520 1775 238 )
a7230Yn+4 T §i717Yn+3 - ToooraYn+2 T Fra019Yn+l - Tgosssy  Yn

_ 1063755 4002075 4916835 881256915
Yn+1l = 3763757 h)‘yn+% ~ 240880448 h>‘yn+6 3763757 In+2 * 131760896 Yn+5
529607925 21717927 5047515 1757525 306495 .
963521792 In+4 240880448 Yn+3 T 240880448 Yn+2 ~ 481760896 Yn+1 ~ 963521792 In-
60 10 24 135 80 450

+ 721493/71-5-1 - 72149yn+2 + ﬁyn-ﬁ—?) - ﬁynﬂ

n =—h I — )
Ynt6 = 307" Mnt6 T 101317
1080 20480 61440

n o b 2.12
307 Um0 T aar nts T a3g3g Ynt (2.12)

Equation (2.12) can be written in matrix form as follows
Putting H = hA , the stability polynomial R(t,H) associated with our method is determined by

solving the first characteristics polynomial det (At?> -Bt ) = 0.

Therefore, the zero stability is determined by putting H = hA =0

which gives

ti=to =ty =ty =ts5= 0, tg = tr = 1.

Since all the roots lie within ¢ < 1, we conclude that our method is zero stable.

2.5 The A —Stability of the Method

A numerical method is said to be A- stable, if its region of absolute stability contains whole left
plane. Therefore, since the region of absolute stability of our method contains whole left plane, we
conclude that our method is A- stable. Below is the graph.

The stability region of the eight order Block Backward Differentiation formula with two off step

points (BBDFO(8).From the definition of A- stable which says that, A numerical method is said to
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{f + 77364 M} _ 344736 527436 _ 254898 1714178 _ 1027971 2852864 _ 10584
137975 137973 137975 27395 137975 137973 1517725 137975
10850 (Jr'l' 32235 h}l__) _ 14T9E0 #9425 _?lﬁB B4 190 -51?12U 1225
0771 40514 60771 20257 1293 20257 bad4E1 40514
235 1758 (1+E ha) 22275 13120 12015 13248 25
G416 3614 1504 Gtls 3609 GtlE 30877 1604
104 B28 5072 1'___ 3684 h 405504 19544 126976 24 hﬂ_
i ws s T hne W Toan e i e
_ 45225 141183 - T21035 31454325 {j+ 96705 M} _ 17086545 214515 _ 33075
G4384 32192 32192 128768 503 64384 5533 32192
l_ 1775 3520 _ L BN 16850 _ 1116160 _ 18420 ] 2529280 _ 200
572019 19M&73 81717 27239 B72019 27239 B292209% 27239
1757525 5047515 21717927 529607925 4916835 HE1256915 1063755
191760896  Z408B0AAE 240880440 963521792 3763757 | ae17e0sve |1 arearsy A/
_ 2_-‘- E _ E E - 20480 ]:ﬂar.l - .E| ].-l-.‘HJ f_I _ ﬂ M)
2149 21449 307 307 o447 307 23639 307

be A-stable if its region of absolute stability contains whole left plane, we then conclude that the

BBDFO(8) method is A- stable since its region of absolute stability contains whole left plane.
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k=2

0.4

-0.67

-0.8

0.4 0.6 0.8 l.lf) 1.2 1.4 1.6
Re(z)

Figure 2: The Region of absolute stability when k = 2 with two off-step points.

3 Numerical results

Problem 1

Exact solution:

Problem 2:

v =-%. y0)=1, x4
Exact solution:
() = ——
4 1+
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Table 1: Numerical solution for problem 1 (h = 0.1)

z | Exact Solution | Numerical Solution | Error in order 8
1.0 1.0000 1.0000000070975453656 2.20 x 10~ 1T
2.0 1.0000 1.0000000000000000504 1.595 x 10~ 18
3.0 1.0000 1.0000000000000000001 2.070 x 10~
4.0 1.0000 1.0000000000000000001 6.767 x 10734
5.0 1.0000 1.0000000000000000001 4.897 x 10~H
6.0 1.0000 1.0000000000000000001 9.423 x 10~16
7.0 1.0000 1.0000000000000000001 2.07 x 10756
8.0 1.0000 1.0000000000000000001 1.503 x 1073
9.0 1.0000 1.0000000000000000001 2.982 x 10768
10 1.0000 1.0000000000000000001 6.377 x 1077

Table 2: Numerical solution for problem 1 (h = 0.1)
h MAX ERROR in order 8
1073 5.436 x 1071
1074 3.140 x 10712
Table 3: Numerical solution for problem 2 (h = 0.1)

x Exact Solution | Numerical Solution | Error in order 8
0.4 | 0.845154254728519 0.845154576910226 3.222 x 10~7
0.8 | 0.745355992499932 0.745356226209529 2.337 x 1077
1.2 | 0.674199862463243 0.674200035454122 1.730 x 107
1.6 | 0.620173672946042 | 0.6201738085053073 1.356 x 107
2.0 | 0.577350269189625 | 0.5773503787017336 1.095 x 10~7
2.4 | 0.542326144546640 | 0.5423262353134918 9.077 x 1078
2.8 | 0.512989176042578 | 0.51298925288687785 7.684 x 1078
3.2 | 0.487950036474267 | 0.48795010261314547 6.614 x 1078
3.6 | 0.466252404120157 | 0.46625246182259146 5.770 x 1078
4.0 | 0.447213595499958 | 0.44721364642034503 5.092 x 10~8

Table 4: Numerical solution for problem 2

h MAX ERROR in order 8
10—3 1.117 x 10%2
1074 1.119 x 1030

3.1 Discussion

The analysis of the proposed method shows that the method is of order eight (8). On implementing
the method in maple environment, shows that the method is efficient for solving stiff differential
equations. Also the tables of the results for problem 1 and 2 shows that the method is good and
efficient.

3.2 Conclusion

A block backward formula for solving stiff initial value problems has been developed using backward
differentiation method with two off-step points. The numerical solution of our method shows that
the method is fast and efficient for solving stiff initial values problems. The stability analysis has
also proven that the method is consistent and A-stable, hence convergent
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