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Abstract

Homeostasis is the body’s mechanism for maintaining internal stability amidst external changes,
particularly within the cardiovascular and respiratory systems. This study applied optimal con-
trol problem strategies to sustain homeostasis by regulating key physiological parameters such
as blood pressure, oxygen, and carbon dioxide levels. A stability analysis was conducted on a
mathematical model of the human cardiovascular-respiratory system using a GUI in MATLAB
App Designer to test this homeostasis. The findings demonstrated that the model’s variables
consistently averaged within normal physiological ranges, affirming the successful maintenance
of homeostasis. The GUI provided intuitive and interactive graphical outputs, effectively distin-
guishing between healthy and unhealthy individuals. Stable outputs were observed in healthy
subjects, while instability was evident in unhealthy subjects, underscoring the system’s sen-
sitivity to pathological conditions. The user-friendly interface efficiently managed input data
and delivered precise health status indicators. The model reliably simulated the impact of
various disease parameters, with variables remaining within normal ranges in healthy scenarios
and deviating in the presence of disease, thereby highlighting its potential as a valuable tool
for clinical and research applications.

Keywords: Cardiovascular and Respirator System, Graphical User Interface, Homeostasis, Math-
ematical Model, MATLAB, Optimal Control Problem, Stability Analysis.
MSC2010: 92C30, 34A34, 65L05.

1 Introduction
A significant contemporary challenge is the rise in non-communicable chronic illnesses. It is crucial
to implement measures to mitigate contributing factors to these diseases and improve overall pop-
ulation well-being. Such ailments predominantly affect the respiratory and cardiovascular systems.
Homeostasis is maintained through various physiological mechanisms, including feedback systems
that detect deviations and initiate corrective responses [1]. In the context of cardiovascular and
respiratory systems, homeostasis refers to the body’s ability to maintain stable internal conditions,
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such as blood pressure and oxygen levels, despite external changes [2]. Maintaining stability in
these systems is essential for homeostasis, as it involves regulating physiological parameters like
blood pressure, oxygen, and carbon dioxide levels to ensure proper bodily function and balance [3].

The graphical user interface (GUI) offers a user-friendly experience but presents challenges in
design complexity. While it provides an intuitive user experience, advanced skills are required for
effective design implementation. MATLAB, a widely-used software, excels at solving numerical
problems but has limited resources for developing GUIs, which are advantageous for various appli-
cations [4]. GUIs offer an interactive and accessible approach to handling complex mathematical
models and data, and are frequently employed in mathematical modeling and scientific applica-
tions [5]. GUI-based applications facilitate collaboration among researchers by offering a common
platform where multiple users can work on and share mathematical models and their results [6].
Modern GUIs incorporate advanced features like drag-and-drop functionality, real-time feedback,
and customizable interfaces, enhancing usability and productivity [7]. Additionally, GUIs support
accessibility tools, such as screen readers and magnifiers, ensuring inclusivity for users with disabil-
ities. As technology advances, GUIs continue to play a crucial role in human-computer interaction,
with ongoing developments in virtual and augmented reality promising even more immersive and in-
teractive experiences [8]. GUIs remain essential in bridging the gap between humans and machines,
making complex systems more accessible and efficient. For instance, a standalone MATLAB appli-
cation called CVSim has been utilized for teaching and research on cardiovascular and respiratory
diseases [9]. MATLAB is used to analyze cardio-respiratory variability by processing physiological
signals such as heart and respiratory rates [10].

Mathematical modeling of the cardiovascular-respiratory system is a complex process that cap-
tures the intricate interactions between the heart, blood vessels, and lungs [11]. These models
integrate principles from fluid dynamics to describe blood flow, pressure-volume relationships to
understand the mechanical properties of the heart and vessels, and gas exchange processes to ac-
count for the transfer of oxygen and carbon dioxide between the lungs and bloodstream. By doing so,
they provide a detailed and dynamic representation of the cardiovascular and respiratory systems,
allowing for the prediction of responses under different scenarios and aiding in the development of
treatments and interventions [12]. A comprehensive model for the cardiovascular and respiratory
system can be found in [13].

The design and implementation of GUIs for mathematical models, especially those concerning
the cardiovascular-respiratory system, have garnered significant attention in recent research. For
instance, [14] focused on creating a comprehensive GUI framework for simulating cardiorespiratory
interactions in health and disease. These studies highlight the importance of GUIs in advancing the
accessibility, usability, and applicability of mathematical models in understanding and managing
cardiovascular-respiratory health.

In literature, MATLAB has been used independently for cardiovascular respiratory disease re-
search, [16], [17], [18]. Additionally, a designed GUI in MATLAB have been employed as research
tools in this field. Despite extensive study of the mathematical models of the cardiovascular-
respiratory system, obtaining accurate information remains a significant challenge. The gap that
must be tackled is the integration of MATLAB GUI used to test homeostasis, this facilitates real-
time adjustments and stability analyses of the mathematical model, enabling researchers to effec-
tively monitor and understand dynamic physiological responses and maintain system balance.

The goal of this paper is to study stability analysis of a mathematical model of a human
cardiovascular-respiratory system to test homeostasis Using a graphical user interface (GUI) within
MATLAB’s App Designer to interact with a developed mathematical model of the cardiovascular
and respiratory system [19].

In this paper, first, we focus on essential tools and theoretical frameworks for constructing
a GUI using the mathematical model of the cardiovascular-respiratory system developed in [19],
starting with an overview of MATLAB’s functionalities. Secondly, the study of stability in non-
linear cardiovascular-respiratory system models begins with linearization, which simplifies analysis
by approximating nonlinear systems near equilibrium points with linear systems. Finally, we for-
mulate optimal control strategies based on this mathematical model to regulate the cardiovascular-
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respiratory system and maintain homeostasis.
This paper is structured as follow: section one focus on the introduction, section two comprises

model presentation and stability analysis of mathematical model, section three focus formulation
of optimal control for testing homeostasis of CRS (cardiovascular-respiratory system), section four
deals with GUI design in MATLAB using mathematical model and present the results, section five
focus discussion, and Conclusion of the study are finally drawn in section six.

2 Methods

2.1 Data
The data are utilized in the GUI input to determine the GUI output and estimate model param-
eters. These secondary data pertain to the cardiovascular respiratory system and were collected
in [14], within the Rwandan context. They were employed to evaluate the Interface of the Cardio-
vascular Respiratory System Mathematical Model (ICRSMM), specifically through numerical tests
for both normal and abnormal patients. Typically, numerical tests for abnormal subjects reveal
elevated values in the cardiovascular-respiratory system. These results are influenced by the ini-
tial measurements provided by the user and entered into GUI, which are essential for calculating
the parameters of the cardiovascular-respiratory system using a mathematical model governed by
ordinary differential equations.

To validate the GUI’s performance, we simulated physiological responses using a global math-
ematical model of the cardiovascular-respiratory system, originally developed by Timischl in [13].
The model was implemented in MATLAB and solved using its built-in ODE solver for both healthy
and abnormal profiles. The simulated results served as benchmarks to assess the accuracy, consis-
tency, and reliability of the GUI outputs. Finally, all results from the GUI were cross-verified with
Timischl’s model outputs to ensure alignment with established computational standards.

2.2 Mathematical model
Here, we present a nonlinear dynamic model that investigates the interaction between the respira-
tory and cardiovascular systems. With an emphasis on how well it applies to human physiology,
this model has been carefully developed in [19].

The proposed model consists of four compartments of the cardiovascular-respiratory system
(Pressures of systemic arterial (Pas), systemic venous (Pvs), oxygen-related area within arteries
(Pao2), and carbon dioxide-related area within arteries (Paco2)) and two tissue compartments (ve-
nous concentrations of carbon dioxide (Cvco2) and oxygen (Cvo2)). The heart and lungs maintain
the body’s oxygen and carbon dioxide levels, with exchange occurring in the lungs’ alveoli and be-
tween systemic arteries and veins. The model includes parameters such as heart rate and alveolar
ventilation, which regulate the interaction between the heart and lungs, crucial for coordinating
cardiac and pulmonary processes.

Systemic arterial blood pressure (Pas) and systemic venous blood pressure (Pvs) are defined as
follows: {

Pas = Pdias +
1
3 (Psys − Pdias),

Pvs = Pas − FsRs,

these definitions are derived from [22], where Psys and Pdias represent systolic and diastolic arterial
pressures, respectively. Fs represents the blood circulation entering the tissue segment, while Rs

symbolizes the resistance encountered in the systemic circuit. The value Fs(t) is given by

Fs(t) =
Pas(t)− Pvs(t)

Rs
. (2.1)

This system of cardiovascular-respiratory is interconnected with the other organs and tissues
of the human body. The diagram that shows the developed mathematical model is shown in the
figure 1,
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Figure 1: Diagram of mathematical model

By considering the interactions of hemodynamic measurements depicted in Figure 1, the model
equations transform as stated below,

dPas(t)

dt
= −γasPas + Pvs(t)f1(V̇A),

dPvs(t)

dt
= −γvsPvs + Pα

as(t),

dPao2(t)

dt
= −γo2Pao2 + Paco2(t)f2(H),

dPaco2(t)

dt
= −γco2Paco2 + P β

ao2(t),

VTo2

dCvo2(t)

dt
= −MRo2(t) + Fs(t)(Cao2(t)− Cvo2(t)),

VTco2

dCvco2(t)

dt
= MRco2(t) + Fs(t)(Caco2(t)− Cvco2(t)),

(2.2)

the values of the constants γas, γvs, γo2 , γco2 , α and β must be determined for the equations (2.2).
It is also necessary to understand the logistic functions (2.3). The terms VTO2

and VTCO2
in equation

(2.2) of the model stand for the tissues’ efficient volume for storing oxygen and carbon dioxide,
respectively, and f1(H), f2(V̇A) are represents a recognizable logistic function in the structure of
the form 

f1(V̇A) =
g1f1(0)

f1(0) + (g1 − f1(0))e−x1V̇A

,

f2(H) =
g2f2(0)

f2(0) + (g2 − f2(0))e−x2H
,

(2.3)

where x1 and x2 refer to the of largest growth rates of alveolar ventilation and heart rate, while g1
and g2 indicate the carrying capacity of alveolar ventilation and heart rate respectively. The initial
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values of f1(V̇A) and f2(H) at the start of the process are represented by the constants f1(0) and
f2(0) [19].

The values MRO2
(t) and MRCO2

(t) represent the rates of metabolic oxygen consumption and
metabolic carbon dioxide production, respectively, during periods of physical activity. Unfortu-
nately, we can suggest that the rate of oxygen consumption in metabolism, denoted as MRO2(t),
increases in an exponential manner from the unchanging starting point MRr

O2
to a fresh consistent

level known as MRe
O2

[13], the equation showing the relation is

MRO2
(t) = MRr

O2
+

(
MRe

O2
−MRr

O2

) (
1− e

−t
Ta

)
, (2.4)

where MRr
O2

represents the rate of oxygen consumed by metabolic during periods of rest (inactiv-
ity) and MRe

O2
represents the oxygen consumption rate for metabolism during exercises (physical

activity). The exponential function’s time constant “Ta ”can be selected as per recommendation [13],
said Ta = 0.5 and it’s configured in a way that, after every 4Ta minutes, the immediate oxygen
supply reaches 98% of the overall oxygen requirement.

The rise in metabolic speed corresponds directly to the amount of workload undertaken. Just
like the approach employed by [23], we make use of the correlation between these factors. The use
of correlation between those factors is formulated as follows

MRe
O2

= MRr
O2

+ ρW, (2.5)

the parameter ρ indicates the physical state of the individual during in the exercise and W is
workload. Moreover, the carbon dioxide generation rate, denoted as MRCO2(t), is consistently
linked to the oxygen utilization MRO2

(t) at each moment is given by

MRCO2
(t) = RQMRO2

(t), (2.6)

where RQ represents the unchanging respiratory quotient [13]. furthermore, there exists a connec-
tion between the arterial gas concentrations and their corresponding partial pressures as described
by the dissociation laws {

Cao2(t) = K1

(
1−Ke−K2Pao2

(t)
)2

,

Caco2(t) = Kco2Paco2(t) + kco2 ,
(2.7)

the above equation are derived in [13]. The formulae used for calculating alveolar ventilation is

V̇A = f(V T − V D), (2.8)

in simpler terms, “V T ”stands for the denotes tidal volume, “V D”is is physiologic dead space, and
“f ”indicates how many breaths are taken in a minute. In numerical simulations, both f and V D
are treated as constants. Respiratory physiology provides a means to determine tidal volume from
the vital capacity (V C) determined in [13]

V C = V T + IRV + ERV, (2.9)
where IRV represents the inspiratory reserve volume, and ERV stands for expiratory reserve
volume. These specific parameters have been sourced from existing literature. Now, we will provide
the formula for estimating vital capacity, taking into account the influence of gender, height, and
age on this physiological measure. The formulas to estimate vital capacity are [24]

V Cmale = (27.63− 0.0112a)h, (2.10)

V Cfemale = (21.78− 0.0101a)h, (2.11)
where a is age in years, and h is height in cm. Table 1 shows the value parameters from the
literature in [13], and the Table 2 indicate the values of IRV and ERV as found in reference [19]
respectively,

The carrying capacity for the logistic function is determined based on the maximum of two factors:
alveolar ventilation (V̇A) and heart rate (H). Let’s denote these factors as g1 and g2 respectively. In [19]
g1 = 11 and g2 = 115 are considered as the carrying capacities for the logistic function, as defined in system
(2.3).
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Parameter Value Unit Parameter Value Value
VTo2 6 liter VTco2 15 liter
ρ -0.002 - RQ 0.88 -

MRr
o2 0.350 literSTPD/Min W 75 watt

Rs 14.8 mmHg.min/liter Q = Fs 6.35 liter/Min
f 15 BPM VD 0.15 liter
K1 0.2 - K2 0.046 -
Kco2 0.0065 - kco2 0.244 -

Table 1: Parameters from literature

Parameter Male Female
IRV 3000 2100
ERV 1100 800

Table 2: The values of IRV and ERV

2.3 Model stability analysis
Let us setX = [Pas, Pvs, Pao2 , Paco2 , Cvo2 , Cvco2 ]

T as vector state with their corresponding equilibrium state
Xe = [P e

as, P
e
vs, P

e
ao2 , P

e
aco2 , C

e
vo2 , C

e
vco2 ]

T , and consider V̇ e
A and He equilibrium values of alveolar ventilation

and heart rate respectively. To determine the equilibrium state of a mathematical model, we need to solve
the following system 

−γasP e
as + P e

vsf1e = 0,

−γvsP e
vs + (P e

as)
α = 0,

−γo2P e
ao2 + P e

aco2f2e = 0,

−γco2P e
aco2 + (P e

ao2)
β = 0,

−MRo2 +
Pe
as−Pe

vs
Rs

(Ce
ao2 − Ce

vo2) = 0,

MRco2 +
Pe
as−Pe

vs
Rs

(Ce
aco2 − Ce

vco2) = 0.

(2.12)

Thus, after solving equation (2.12), the equilibrium point Xe of the model equation (2.2) is defined by:

P e
as = (γvsγas)

1
α−1 (f1e)

1
1−α ,

P e
vs = (γvs(γas)

α)
1

α−1 (f1e)
α

1−α ,

P e
ao2 = (γaco2γao2)

1
β−1 (f2e)

1
1−β ,

P e
aco2 =

(
γaco2(γao2)

β
) 1

β−1 (f2e)
β

1−β ,

Ce
vo2 = Cao2 − RsMRo2 (γvsγas)

1
1−α (f1e)

α
α−1

(f1e−(γas)α−1)
,

Ce
vco2 = Caco2 +

RsMRco2
(γvsγas)

1
1−α (f1e)

α
α−1

(f1e−(γas)α−1)
.

(2.13)

Let us compute the Jacobian matrix. By settingG(X) = [G1(X), G2(X), G3(X), G4(X), G5(X), G6(X)]T ,
the model system (2.2 ) becomes

dX

dt
= G(X), (2.14)

where 

G1(X) = −γasPas + Pvs(t)f1(V̇A),

G2(X) = −γvsPvs + Pα
as(t),

G3(X) = −γo2Pao2 + Paco2(t)f2(H),

G4(X) = −γco2Paco2 + P β
ao2(t),

G5(X) =
−MRo2 (t)

VTo2
+ Pas(t)−Pvs(t)

RsVTo2
(Cao2(t)− Cvo2(t)),

G6(X) =
MRco2 (t)

VTco2
+ Pas(t)−Pvs(t)

RsVTco2
(Caco2(t)− Cvco2(t)).

(2.15)
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Linearize the model system (2.2) around the equilibrium point, by taking

Cao2 − Ce
vo2

RsVTo2

= p,

P e
as − P e

vs

RsVTo2

= y,

Caco2 − Ce
vco2

RsVTco2

= z,

P e
as − P e

vs

RsVTco2

= n,

Jacobian matrix J(Xe) is written as follows

J(Xe) =


−γas f1e 0 0 0 0

α(P e
as)

α−1 −γvs 0 0 0 0
0 0 −γo2 f2e 0 0
0 0 β(P e

ao2)
β−1 −γco2 0 0

p −p 0 0 −y 0
z −z 0 0 0 −n

 .

Hence, the characteristic polynomial p(λ) is essential because it allows us to determine the eigenvalues
of a Jacobian matrix. It is given by: p(λ) = det(J(Xe)− Iλ), that is

p(λ) =(n+ λ)(y + λ)
(
(γas + λ)(γvs + λ)− α(P e

as)
α−1f1e

)(
(γo2 + λ)(γco2 + λ)− β(P e

ao2)
β−1f2e

)
.

Then eigenvalues becomes

λ1 = −n,
λ2 = −y,

λ3 =
−(γas+γvs)+

√
γ2
as+γ2

vs−2γasγvs+4α(Pe
as)

α−1f1e
2

,

λ4 =
−(γas+γvs)−

√
γ2
as+γ2

vs−2γasγvs+4α(Pe
as)

α−1f1e
2

,

λ5 =
−(γo2

+γco2
)+

√
γ2
o2

+γ2
co2

−2γo2
γco2

+4β(Pe
ao2

)β−1f2e

2
,

λ6 =
−(γo2

+γco2
)−

√
γ2
o2

+γ2
co2

−2γo2
γco2

+4β(Pe
ao2

)β−1f2e

2
.

(2.16)

Theorem 2.1. If all eigenvalues are negative, the system is stable, conversely, if any eigenvalue is a
positive, the system is unstable. This is proved in [20]

The equilibrium point is is asymptotically stable when all eignenvalues are strictly negative, this con-

dition is obeyed when P e
vs < P e

as, P e
as <

(γvsγas)
1

α−1 (f1(V̇A))
1

1−α

α
1

α−1
, and P e

ao2 <
(γaco2γao2)

1
β−1 (f2(H))

1
1−β

β
1

β−1
.

Otherwise it is unstable.
It can be readily shown that the function G is differentiable with respect to X. As a result, it is locally

Lipschitz continuous in the variable X. Moreover, by applying the Cauchy–Lipschitz theorem [21], we arrive
at the following result.

Theorem 2.2. Given the initial condition X0 =
(
P 0
as, P

0
vs, P

0
aO2

, P 0
aCO2

, C0
vO2

, C0
vCO2

)T
, there exists a time

t1 ≥ 0 such that a unique maximal solution X : [0, t1] → R6 of class C1 exists for equation (2.2), satisfying
the initial condition X(0) = X0.

The model presented here yields a maximal solution, which is not necessarily global. One particularly
interesting aspect is that, in non-pathological cases, the system naturally progresses toward a stable state
through an autoregulatory mechanism, here initial of the model are data measured from patient in [14].

3 Formulation of optimal control for testing homeostasis of
CRS

If X = (Pas, Pvs, PaO2 , PaCO2 , CvO2 , CvCO2)
T is a state vector, then the homeostasis state is reachable

due to controls of cardiovascular-respiratory system that is heart rate H and alveolar ventilation V̇A. Let us
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consider that the parameters H and V̇A reach their equilibrium values respectively He and V̇ e
A, the optimal

control problem can be formulated from [15], as follows.
Find H∗, V̇ ∗

A solution of

min
H,V̇A

J(H, V̇A) =
∫ Tmax

0

[
a1(Pas(t)− P e

as)
2 + a2(Pvs(t)− P e

vs)
2

+b1 (H(t)−He)2 + b2
(
V̇A(t)− V̇ e

A

)2]
dt

(3.1)

subject to equation (2.2).
The positive scalar coefficients a1, a2, b1 and b2 determine how much weight is attached to each cost

component term in the integrand whereas Tmax denotes the maximum time that the control can be done.
To find the discrete form of the mathematical model (2.2), we take a linear B-splines basis functions

BN =
{
ψN

j , j = 1, ..., N
}
, (3.2)

on uniform grid

ΩN =

{
tk =

kTmax

N
, k = 0, ..., N

}
(3.3)

satisfying the following property
ψN

i (tk) = δik,

where δik is Kronecker symbol. Let also introduce a vector space WN whose the basis is BN . It verifies
two following properties

• dimWN = N,

• WN ⊂WN+1.

Taking W = C0(0, T ) and interpolation operator

ΠN : W −→ WN

ϕ 7−→ ΠNϕ, (3.4)

satisfying
ΠNϕ(tk) = ϕ(tk), k = 1, · · · , N. (3.5)

Then we have ∥∥∥ΠNϕ− ϕ
∥∥∥
E

−→
N→∞

0 ∀ϕ ∈W, (3.6)∣∣∣∣∣∣∣∣∣ΠN
∣∣∣∣∣∣∣∣∣ = sup

ϕ̸=0
ϕ∈W

∥∥ΠNϕ
∥∥
W

∥ϕ∥W
= 1. (3.7)

Now, let us set

fN
1 = ΠNf1 =

N∑
k=0

fk
1 ψ

N
k and fN

2 = ΠNf2 =

N∑
k=0

fk
2 ψ

N
k ,

where
fk
1 = f1(V̇A(tk)), fk

2 = f2(H(tk)).

Hence, the system (2.2) can be approached by the following problem.
Find (xN , yN , vN ) ∈ (WN )3 solution of the system

dPN
as(t)

dt
= −γasPN

as(t) + PN
vs(t)f

N
1 ,

dPN
vs(t)

dt
= −γvsPN

vs(t) + (Pα
as(t))

N ,

dPN
aO2

(t)

dt
= −γO2P

N
aO2

(t) + PN
aCO2

(t)fN
2 ,

dPN
aCO2

(t)

dt
= −γCO2P

N
aCO2

(t) +
(
P β
aO2

(t)
)N

,

VTO2

dCN
vO2

(t)

dt
= −MRO2(t) +

PN
as(t)− PN

vs(t)

Rs

(
CN

aO2
(t)− CN

vO2
(t)
)
,

VTCO2

dCN
vCO2

(t)

dt
=MRCO2(t) +

PN
as(t)− PN

vs(t)

Rs

(
CN

aCO2
(t)− CN

vCO2
(t)
)

(3.8)
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with
PN
as(0) = PN,0

as , PN
vs(0) = PN,0

vs , PN
aO2

(0) = PN,0
aO2

, (3.9)

PN
aCO2

(0) = PN,0
aCO2

, CN
vO2

(0) = CN,0
vO2

, CN
vCO2

(0) = CN,0
vCO2

, (3.10)

such that ∣∣∣P 0
as − PN,0

as

∣∣∣ −→
N→∞

0,
∣∣∣P 0

vs − PN,0
vs

∣∣∣ −→
N→∞

0, (3.11)∣∣∣P 0
aO2

− PN,0
aO2

∣∣∣ −→
N→∞

0,
∣∣∣P 0

aCO2
− PN,0

aCO2

∣∣∣ −→
N→∞

0, (3.12)∣∣∣C0
vO2

− CN,0
vO2

∣∣∣ −→
N→∞

0 −→
N→∞

0,
∣∣∣C0

vCO2
− CN,0

vCO2

∣∣∣ −→
N→∞

0. (3.13)

We have the following result with the proof provided in [25].

Proposition 3.1. The solution sequence of the system (3.8) converges uniformly toward the solution of
the system (2.2) on the interval [0, Tmax], Tmax > 0 .

To approximate the optimal problem (3.1)-(2.2), let us set x = (Pas, Pvs)
T the state vector, x0 =

(P 0
as, P

0
vs)

T the initial state vector, xe = (P e
as, P

e
vs)

T the wanted equilibrium state vector, λ = (H, V̇A)
T

the control vector and λe = (He, V̇ e
A)

T the equilibrium control vector; xi, x0i , xei , λi and λe
i denote the ith

components ith of the vector x, x0, xe, λ and λe.
Therefore, the problem (3.1)-(2.2) can take the following compact form

min
λ∈Q

JN (λ) =

∫ Tmax

0

(
2∑

i=1

ai(x
N
i (t)− xei )

2 +

2∑
j=1

bj(λj − λe
j)

2

)
dt (3.14)

where xN = (xN1 , x
N
2 )T is the approximated solution of (Pas, Pvs)

T obtained from (3.8).
We must determine λM = (λM

1 , λ
M
2 ) ∈ QM an approximate solution of (3.14) in QM = (WM )2. Note

that we can write

λM
j =

M∑
k=0

λM
j,kψk(t), j = 1, 2.

Therefore, we can approximate the cost function (3.14) as follows

min
λ∈Q

JN (λ) =

M∑
k=1

(
2∑

i=1

ai(x
N
i (tk)− xei )

2 +

2∑
j=1

bj(λ
M
j,k − λe

j)
2

)
∆t, (3.15)

where ∆t =
Tmax

N
. The convergence of the discreet objective function (3.15) toward the continous objective

function given by the problem (3.14) has been proven in [25]. Finally, the optimal control problem (3.1)-
(2.2) is a minimisation problem with constraint. The discreet formulation of such problem can be written
as follows.

Find λ∗,M ∈ R(M+1) × R(M+1) solution of

min
λM∈R(M+1)×R(M+1)

JN (λM ) ≈ ∆t

(
(Y TAY ) +

(
λM
)T

BλM

)
, (3.16)

subject to (3.8) where

A =
(
a1 0
0 a2

)
, B =

(
b1 0
0 b2

)
.

subject to (3.8), where λM is a matrix (M + 1) × 2 such that the components λM
j,k are those function λN

j

in BN and Y is the matrix such that the (i, k)th component is (xNi (tk) − xei ) with where xN = (xN1 , x
N
2 )T

is the solution of (3.1)-(2.2) associated to λ = λN .
The equilibrium value of alveolar ventilation is determined by the vital capacity provided by equations

(2.10) and (2.11). For males aged a = 50 years and height h = 170 cm, equation (2.10) yields

V Cmale = (27.63− 0.0112× 50)× 170 = 4601.9ml. (3.17)

Using equations (2.9) and (3.17), and the values from Table 2, the tidal volume for males is

V Tmale = V Cmale − (IRVmale + ERVmale) = 501.9ml. (3.18)

57

 https://doi.org/10.5281/zenodo.17584815


International Journal of Mathematical Sciences and
Optimization: Theory and Applications

11(3), 2025, Pages 49 - 67
https://doi.org/10.5281/zenodo.17584815

Thus, according to equations (2.8) and (3.18), and the values in Table 1, the equilibrium value of alveolar
ventilation for males is

V̇ e
Amale = f(V T − V D) = 15(0.5019− 0.15) liters/min = 5.3 liters/min. (3.19)

Similarly, for females with a = 45 years and h = 165 cm, equation (2.11) yields

V Cfemale = (21.78− 0.101× 45)× 165 = 3518.7ml. (3.20)

Using equations (2.9) and (3.20), and the reference to Table 2, the tidal volume for females is

V Tfemale = V Cfemale − (IRVfemale + ERVfemale) = 618.7ml. (3.21)

Thus, according to equations (2.8) and (3.21), and the values in Table 1, the equilibrium value of alveolar
ventilation for females is

V̇ e
Afemale = f(V T − V D) = 15(0.6187− 0.15) liters/min = 7.0 liters/min. (3.22)

In a healthy state, an individual’s heart rate typically stabilizes within the normal range. According
to Ho (2014), a normal adult heart rate generally falls between 60 to 100 beats per minute [26]. For our
considerations, we assume He

female = 100 beats/min and He
male = 85 beats/min.

The model parameters are computed by fitting the mathematical model to simulation results obtained
from Timischl’s model. The MATLAB’s built-in function fmincon is very important and is used to minimize
cost function subject to a given constraint [27]. Now it can be used to solve (3.16) subject discretized
equation (3.8). The parameters are then detailed in Table 3.

Parameter male female Parameter male female
α 0.0632 0.0831 γas 0.4217 0.4342
β 0.4301 0.4601 γvs 0.2903 0.2873
γo2 27.9872 30.5214 x1 1.0007 1.2147
x2 0.1081 0.2018 γco2 0.2845 0.2825

Table 3: Estimated parameters

Using the estimated values in The table 3 and system (2.13) we have the following equilibrium values
for each model variables in the Table 4.

Variable Female Male Variable Female Male
P e
as 118.6242 115.5674 P e

aco2 28.4217 25.9273
P e
vs 4.6824 4.6508 Ce

vo2 0.1644 0.1602
P e
ao2 108.9002 105.3088 Ce

vco2 0.4973 0.4912

Table 4: Equilibrium values

4 Implementation of the designed Matlab GUI
The implementation of the designed Matlab GUI was accomplished using the App Designer tool. This
powerful feature in Matlab allows for the creation of professional apps with user-friendly interfaces. By
leveraging the App Designer, we were able to incorporate interactive elements, streamline user inputs, and
enhance overall functionality. The resulting GUI provides an efficient and intuitive platform for users to
interact with the underlying mathematical model and simulations.

We are going to present the Matlab GUI design of the developed model, detailing the interface’s layout
and functionality. This GUI facilitates user interaction and enhances the overall usability of the model.

4.1 Matlab GUI design of the developed model
To design this GUI using developed mathematical model of cardiovascular-respiratory system. A GUI
(Graphical User Interface) created in MATLAB App Designer is an interface generated through the App
Designer tool, enabling developers to create interactive and user-friendly applications. The GUI has been
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created in MATLAB App Designer using the developed mathematical model of the human body. It is taken
into account when we regard the following parameters as input in the GUI. These input parameters include
age (a), height (h), heart rate (H), systolic arterial pressure (Psys), diastolic arterial pressure (Pdias), arterial
oxygen pressure (PaO2), arterial carbon dioxide pressure (PaCO2), venous oxygen concentration (CvO2), and
venous carbon dioxide concentration (CvCO2).

The design typically includes elements or components, each assigned to correspond to specific variables
or functions within the MATLAB code. To run the GUI and obtain outputs, one typically initiates the
MATLAB script containing the GUI code, which generates the interface. Users then interact with the GUI
by adjusting inputting values, or clicking buttons as designed, which triggers the underlying functions and
updates the displayed outputs or plots accordingly. Running the GUI code thus activates the following GUI
defined in figure 2, allowing users to manipulate parameters and visualize results within the interface.

Figure 2: Designed GUI

Once this GUI is displayed, interact with the provided input fields or buttons as specified. Input required
data or parameters into the designated areas or select the desired options within the GUI interface. After
providing the necessary inputs, select the desired option from the Dropdown component, and trigger the
processing or calculation by clicking the designated female or male button. This function processes the
selected input and generates the output or result associated with that particular choice. The GUI will then
execute the underlying code, perform the specified operations, and display the outputs within the GUI
interface itself. Review these output areas to observe the results generated by the executed code through
the GUI interaction.

We delves into the practical steps involved in bringing the designed graphical user interface (GUI) to
life. It outlines the implementation process, detailing the tools, technologies, and methodologies employed
to transform the conceptual design into a functional and user-friendly interface.

4.2 Implementation of the designed GUI
In this paper, we require the outcomes of a global mathematical model of the cardiovascular respiratory
system developed in [13]. Upon solving Timischl’s mathematical model using a built-in MATLAB ODE
solver both healthy and unhealthy condition, the results are presented in a custom-designed GUI output to
assess the fidelity of the GUI. After computing all model parameters we use the data collected in [14] for
testing the behaviors of our GUI and we have chosen female button because the data refer to female.
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In situations where the input corresponds to the healthy subject, as shown in Figure 2, the resulting
output are depicted in Figures 3, 4, and 5.

0.5

0.5

Figure 3: Output trends of systemic arterial pressure (a) and systemic venous pressure (b) using
input of healthy subject in designed GUI solid line compared to one from the computation of
Timischl’s model (dashed green line)and equilibrium value (dashed red line)
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0.5

0.5

Figure 4: Output trends of arterial oxygen partial pressure (a) and arterial carbon dioxide partial
pressure (b) using input of healthy subject in designed GUI solid line compared to one from the
computation of Timischl’s model (dashed line) and equilibrium value (dashed red line)

0.5

0.5

Figure 5: Output trends of concentration of oxygen in venous (a) and concentration of carbon
dioxide in venous (b) using the input of healthy subject in designed GUI solid line compared to one
from the computation of Timischl’s model (dashed line) and equilibrium value (dashed red line)

61

 https://doi.org/10.5281/zenodo.17584815


International Journal of Mathematical Sciences and
Optimization: Theory and Applications

11(3), 2025, Pages 49 - 67
https://doi.org/10.5281/zenodo.17584815

Now, our attention shifts to the homeostasis of the model variables. In this context, we examine the
model solutions depicted in Figures 3, 4, and 5. Homeostasis is confirmed through the calculation of the
mean +for each model variable. The mean values of the model variables are determined using the following
relationship

x̄ =

∑n
i=0 xi

n+ 1
, (4.1)

where xi = x(ti) and i = 0, 1, 2, . . . , n, with n total of the taken sub intervals, the mean are presented in
the table 5.

Variable Values Variable Values
Pas 112.1152 Paco2 29.5662
Pvs 5.5862 Cvo2 0.1482
Pao2 102.3900 Cvo2 0.4902

Table 5: Mean of each variable from the model

The calculation of the mean values of the model variables, as depicted in Table 5, is substantiated
by comparing them to the respective reference values of healthy subjects outlined in Table 6, collected
in [28], [29], [30]. The graphical user interface (GUI) inputs from healthy subjects are used to create visual

Variable Minimum Maximum Variable Minimum Maximum
Pas 100 120 Paco2 35 45
Pvs 5 8 Cvo2 0.140 0.155
Pao2 75 105 Cvco2 0.50 0.75

Table 6: Normal range of each physiological parameter

representations for evaluating the stability of the cardiovascular and respiratory systems. These graphics
aid in studying the body’s regulatory mechanisms and help understand the complex balance within these
systems. By leveraging GUI technology, researchers gain insights into the dynamic interactions governing
cardiovascular and respiratory homeostasis. This visual approach improves our ability to assess and com-
prehend physiological processes, emphasizing the significance of graphical representation in advancing our
understanding of health-related mechanisms.
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In the case where the input, as shown in Figure 2, pertains to an unhealthy subject, it yields the
corresponding outputs depicted in Figures 6, 7, and 8.

0.5

0.5

Figure 6: Output trends of systemic arterial pressure (a) and systemic venous pressure (b) using
the input of abnormal subject in designed GUI solid line compared to one from the computation of
Timischl’s model (dashed line) and equilibrium value (dashed red line)
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0.5

0.5

Figure 7: Output trends of arterial oxygen partial pressure (a) and arterial carbon dioxide partial
pressure (b) using an input of abnormal subject in designed GUI solid line compared to one from
the computation of Timischl’s model (dashed line) and equilibrium value (dashed red line)

0.5

0.5

Figure 8: Output trends of concentration of oxygen in venous (a) and concentration of carbon
dioxide in venous (b) using an input of abnormal subject in designed GUI solid line compared to
one from the computation of Timischl’s model (dashed line) and equilibrium value (dashed red line)

The Graphical User Interface (GUI) output exceeds predefined references without control measures.
This highlights the need for effective controls to maintain output within acceptable bounds. Failure risks
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deviations from standards and undesirable outcomes. It’s crucial to address and rectify any GUI output
surpassing specified references to mitigate risks and uphold quality standards.

5 Discussion
The paper examines homeostasis in the context of cardiovascular and respiratory systems, emphasizing
its crucial role in maintaining physiological equilibrium. Table 5 demonstrates that homeostasis is well-
regulated, with cardiovascular and respiratory parameters consistently within normal ranges, reflecting
efficient physiological function and stability despite potential fluctuations. This balance ensures optimal
oxygen delivery, carbon dioxide removal, and overall circulatory efficiency, underscoring the importance
of homeostasis for health. Figures 3, 4, and 5 show that the system’s behavior approaches equilibrium
over time, indicating effective control and stability, essential for maintaining cardiovascular and respiratory
health. Conversely, Figures 6, 7, and 8 reveal instability and deviations from equilibrium in unhealthy
conditions, suggesting potential dysregulation and the need for timely interventions. These deviations
highlight the need for monitoring and intervention to address health issues. Additionally, a comparative
analysis of the graphical user interface (GUI) with Timischl’s model shows that the GUI accurately reflects
the system’s behavior, with close alignment between the outputs of the mathematical model and real-world
observations. This validation confirms that the GUI effectively handles both healthy and unhealthy data,
demonstrating its reliability in representing physiological states and maintaining health.

6 Conclusion
This study delved into the stability analysis of a mathematical model of the cardiovascular-respiratory
system, employing a graphical user interface (GUI) to evaluate homeostasis in healthy individuals. The
model’s optimal control leveraged bodily stability to uphold homeostasis, ensuring efficient regulation of
physiological functions and adaptability to internal and external changes. By integrating stability and
homeostasis mechanisms within the model’s control framework, it facilitated a robust response to physio-
logical challenges, promoting overall health. The obtained results align with empirical data by showing that
the GUI’s outputs accurately reflect both healthy and unhealthy states as evidenced by the close correlation
between the GUI’s mathematical model and Timischl’s real-world model. This concordance underscores
the GUI’s reliability in simulating physiological conditions, demonstrating that the system’s behavior under
various conditions matches observed data. Investigation of equilibrium points within the model revealed
stability in healthy conditions and instability in unhealthy ones. The GUI’s ability to display accurate
representations of equilibrium in healthy states and deviations in unhealthy states makes it a valuable tool
for monitoring cardiovascular and respiratory health. By visually representing these conditions, the GUI
aids in diagnosing and managing health issues, making it a practical asset for both clinical and research
applications. However, the GUI’s limitation lies in its dependence on machine-specific software, requir-
ing integration into MATLAB’s web design for broader accessibility, which demands specialized expertise.
Nevertheless, the study underscores the GUI’s efficacy in assessing diseases affecting cardiovascular and
respiratory systems, highlighting its potential as a valuable tool in medical research and diagnosis.
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