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Abstract

Motivated by the recent COVID-19 outbreak, we develop a time delay infectious disease
model that incorporates vaccination and screening of clinically infected patients and calibrate
it using Chinese data to understand the quantitative implications of vaccine hesitancy and
delay in the screening of clinically infected patients. Vaccine hesitancy refers to the denial or
delay in acceptance of vaccines despite their availability. Understanding the implications of
vaccine hesitancy is therefore essential for designing public health interventions. Analysis of
the model revealed that whenever R0 ≤ 1, there exists a globally asymptotically disease-free
equilibrium. However, whenever R0 > 1, there exists a unique endemic equilibrium which is
globally asymptotically stable. In addition, results also show that vaccine hesitancy and delay
in hospitalizing clinically infected patients have a stronger impact on the deaths toll and new
infections generated [1,2]. Vaccine hesitancy and delayed screening of clinically infected patients
lead to harmonic oscillations in deaths and new cases, which, however, die out over time. Our
findings underscore the importance of including vaccine hesitancy and delay in hospitalizing
clinically infected patients in the design of control strategies for infectious diseases.
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1 Introduction
Since the introduction of various COVID-19 vaccines, a significant portion of the global population
has expressed reluctance to receive vaccinations, a phenomenon known as vaccine hesitancy [1,3,4].
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The World Health Organization (WHO) defines vaccine hesitancy as the delay in acceptance or
outright refusal of vaccines, even when vaccination services are available [5]. This hesitancy can
undermine the overall efficacy of vaccination efforts [6, 7]. Empirical studies indicate that average
acceptance rates for COVID-19 vaccines remain relatively low worldwide, with a global pooled ac-
ceptance rate of 60.23% [5, 8]. While a 2023 survey showed an increase in acceptance across 23
countries, hesitancy increased in others [5]. Regions such as the Middle East, Russia, Africa, and
several European countries report particularly low acceptance rates [5, 9]. For instance, a study
conducted in France in October 2020 found that 46% of French citizens were hesitant about vacci-
nation. Other studies reveal significant hesitancy rates: 36% in Spain and the USA, 35% in Italy,
32% in South Africa, and 31% in Japan and Germany [5]. Several factors contribute to this hes-
itancy, including a lack of information regarding side effects especially long-term effects concerns
about the vaccine development timeline, cultural and religious beliefs, political influences, and the
spread of misinformation and conspiracy theories [4, 7]. Misinformation, disinformation, and the
"infodemic" have significantly contributed to vaccine hesitancy and lower rates [7]. A 2025 study
identified demographic, psychological, and behavioral factors as drivers of increased hesitancy for
booster doses [7]. Factors such as structural and socioeconomic inequalities, lack of effective public
health messaging, and unethical research also play a role [4]. Given these substantial rates of hes-
itancy and refusal regarding COVID-19 vaccinations, it is essential to quantify the public health
implications of vaccine hesitancy on the dynamics of COVID-19 transmission. Delays in screen-
ing clinically infected individuals with COVID-19 also pose significant risks to public health by
facilitating virus transmission, worsening individual health outcomes, straining healthcare systems,
complicating public health responses, and causing psychosocial distress [10,11]. Delayed diagnoses
can lead to more severe cases, increased hospitalizations, and higher mortality rates [10, 12]. The
potential for increased transmission due to delayed screening necessitates stricter control measures
and broader testing to mitigate further spread [11]. Moreover, delayed screening can exacerbate
existing health disparities, disproportionately affecting vulnerable populations [13, 14]. Although
vaccination and screening of infectious individuals remain important disease control strategies, their
implementation is not instantaneous. Delays in vaccination may occur due to the unavailability of
vaccines or refusal of individuals to accept available vaccines, while delays in screening of infectious
individuals may occur due to limited medical resources such as the unavailability of diagnostic
testing kits [1, 2]. However, from a public-health perspective, delays in vaccination and screening
of clinically infected individuals are major sources of morbidity and mortality [2]. Therefore, un-
derstanding the quantitative public health impact of vaccine hesitancy and the delays in screening
clinically infected patients is important for designing public health interventions [11,13,14]. In this
context, this work aims to quantitatively assess the influence of vaccine hesitancy and delays in the
screening of clinically infected patients on the evolution of an infectious disease through a mathe-
matical model. In epidemiology, mathematical models have proven to be powerful tools capable of
generating a deeper understanding of the mechanisms underlying the disease spread process, as well
as to support decision makers in planning and implementing control measures [15, 16]. Motivated
by the recent COVID-19 outbreak, our dynamical model will be based on the epidemiology of this
disease. In particular, the recent COVID-19 outbreak was marked by significant vaccine hesitancy
and delays in screening of infectious individuals [17, 18]. During the spread of COVID-19, various
mathematical models were developed to understand, explain, assess the impact of control strategies,
and predict disease evolution (see, for example [19–22]). The studies in [19–22]) and those cited
therein produced useful results. For instance, Lu et al. [19] employed a system of delay differen-
tial equations (DDEs) to evaluate how recovery delays in infectious individuals affect transmission
dynamics. They found that small changes in the time delay factor lead to large changes in disease
dynamics, while a large delay factor leads to oscillatory disease dynamics.
Similarly, Albani et al. [20] utilized COVID-19 data from Chicago and New York City to develop
a mathematical model assessing the impact of vaccination delays on COCVID-19 dynamics. Their
analysis indicated that the earlier a vaccination campaign begins, the greater its potential impact
in reducing COVID-19 cases and deaths. This underscores the importance of timely vaccination
efforts in controlling outbreaks. Furthermore, Yang [21] assessed the implications of hierarchical
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quarantine with delay, providing valuable insights into how delayed interventions can affect the
overall effectiveness of quarantine measures. The study revealed that delaying the detection and
quarantine of infectious individuals may lead to disease outbreaks. Together, these studies illustrate
the significant influence of timing in both recovery and intervention strategies on the trajectory of
COVID-19, emphasizing the need for prompt action to mitigate its impact. Despite these efforts,
however, prior studied do not address the combined effects of vaccine hesitancy and delaying the
screening of clinically infected patients on the evolution of an infectious disease remain poorly un-
derstood. Motivation for our study on modelling of COVID-19 stems from the pressing issues of
post-pandemic vaccine fatigue and delays in variant screening. Understanding the public health
impact of vaccine hesitancy and delays in screening of infectious individuals is essential for poli-
cymakers to decide how and when to deploy control measures [11, 13, 14]. To that end, this study
aims to fill this gap by developing and analyzing a new mathematical model for COVID-19 governed
by delay differential equations (DDEs). Models based on DDEs can capture the effects of vaccine
hesitancy and delays in the screening of clinically infected patients. Thus, the proposed model has
two-timed delay factors, namely τ1 and τ2 accounts for the time taken by susceptible unvaccinated
individuals to decide on vaccination after receiving information (vaccine hesitancy) and the time
gap between when an infection begin and when a patient is diagnosed or screen (delays in screen-
ing of clinically infected patients), respectively [23]. In addition, we also assume that vaccinated
individuals have a reduced risk of contracting the disease compared to unvaccinated.

This paper is outlined as follows. In Section 2, we introduce the methods and analytical findings
of the study. We compute the reproduction number and investigate the stability of the model’s
steady states. Simulation results validating the model and analyzing threshold accuracy are pre-
sented in Section 3. The paper concludes with a brief summary of the findings.

2 Methods and analytical Results

2.1 Mathematical model
To understand the implications of vaccine hesitancy and delay of screening infectious individuals
on the transmission and control of COVID-19, we propose a population-based mathematical model
that subdivides the total human population at time t into compartments of: susceptible high-risk
(unvaccinated) individuals SH(t), susceptible low-risk (vaccinated) individuals SL(t). The high-risk
susceptible individuals are those that are unvaccinated human with underlying medical conditions
demonstrated to have a high risk of death due to COVID-19 [24], as well as the elderly [25], the low-
risk susceptible population includes those that are not in SH(t). Exposed/latent individuals E(t),
symptomatic infectious individuals, Is(t), asymptomatic infectious individuals Ia(t), hospitalized
patients Q(t), recovered individuals R(t) and Deceased D(t). The dynamics of these compartments
are summarized by the following system of equations:

S′
H(t) = Λ− λ(t)SH(t)− (µ+ σ)SH(t), (2.1)
S′
L(t) = σe−µτ1SH(t− τ1)− (1− ϕ)λ(t)SL(t)− µSL(t), (2.2)
E′(t) = λ(t)(SH(t) + (1− ϕ)SL(t))− (µ+ α)E(t), (2.3)
I ′s(t) = pαE(t)− (µ+ r1 + γ1 + d1)Is(t), (2.4)
I ′a(t) = (1− p)αE(t)− (µ+ r2 + γ2)Ia(t), (2.5)
Q′(t) = γ1e

−(µ+d1)τ2Is(t− τ2) + γ2e
−µτ2Ia(t− τ2)− (µ+ d2 + δ)Q(t), (2.6)

R′(t) = r1Is(t) + r2Ia(t) + δQ(t)− µR(t), (2.7)
D′(t) = d1Is(t) + d2Q(t), (2.8)

where all parameters are positive constants and defined as follows: Λ is the recruitment rate; β
is the disease transmission rate; ψ (0 ≤ ψ < 1) accounts for the reduction of infectivity of the
asymptomatic infectious patients relative to other infectious individuals. Similarly, ρ (0 ≤ ρ < 1)
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models the reduction of infectivity of quarantined individuals relative to other infectious individu-
als. µ is the natural mortality rate, σ is the vaccination rate, the term σe−µτ1SH(t− τ1) represents
the individuals surviving in the vaccinated class (low risk) (see for example [26]), τ1 accounts for
the time taken by susceptible unvaccinated individuals to accept the vaccine despite its availability
(vaccine hesitancy), τ2 refer to the time gap between when an infection begin and when a patient
is diagnosed or screen (delay in screening), 1/α is the incubation period, p (0 < p < 1) denotes
a fraction of infected individuals who develop clinical signs of the disease, ϕ (0 ≤ ϕ < 1) repre-
sents vaccine efficacy, r1 and r2 model the recovery of non-hospitalized symptomatic infectious and
asymptomatic infectious individuals, respectively, γ1 and γ2 account for the detection and hospi-
talization of symptomatic infectious and asymptomatic infectious individuals, respectively, d1 and
d2 denotes disease-related deaths of symptomatic infectious patients and quarantined individuals,
respectively, hospitalized patients recover after 1/δ days. The model flow diagram is depicted in
Fig. (1).
Additional biological and epidemiological assumptions that govern the model (2.1)-(2.8) are:

(i) All new recruits are assumed to be susceptible high risk and unvaccinated and recruited at the
rate Λ. Thus consider the following force of infection λ(t) = β(Is(t)+(1−ψ)Ia(t)+(1−σ)Q(t)),
where β is the infection rate and (1 − ψ) accounts for the reduction of infectivity of the
asymptomatic infectious patients relative to other infectious individuals. Similarly, (1 − ρ)
models the reduction of infectivity of quarantined individuals relative to other infectious
individuals.

(ii) Susceptible high risk and susceptible low risk are assumed to acquire infection following ef-
fective contact with symptomatic infectious individuals, Is(t), asymptomatic infectious indi-
viduals Ia(t), and hospitalized patients Q(t),

(iii) Upon being infected with COVID-19, individuals enter the exposed state.

(iv) We assume that death only comes from symptomatic infectious and quarantined, not from
asymptomatic.

Figure 1: Model flow chat illustrating the dynamics of COVID-19

For biological relevance, the initial conditions for system (2.1)-(2.8), take the form (2.9):

SH(θ) = φ1(θ), SL(θ) = φ2(θ), E(θ) = φ3(θ), Is(θ) = φ4(θ),
Ia(θ) = φ5(θ), Q(θ) = φ6(θ), R(θ) = φ7(θ), D(θ) = φ8(θ), θ ∈ [−τ, 0], τ > 0, (2.9)
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where τ = max{τ1, τ2} and (φ1(θ), φ2(θ), φ3(θ), φ4(θ), φ5(θ), φ6(θ), φ7(θ), φ8(θ)) ∈ C([−τ, 0],R8
+)

is the Banach space of continuous functions mapping the interval [−τ, 0] into R8
+, and R8+ = {(x1,

x2, ..., x8) : xi ≥ 0, i = 1, ..., 8}. It follows, from the fundamental theory of functional differential
equations [27], that system (2.1)-(2.8) has a unique solution (SH(t), SL(t), E(t), Is(t), Ia(t), Q(t),
R(t), D(t)) that satisfies the initial conditions (2.9). One can easily verify that all the solutions of
model (2.1)-(2.8) with the initial conditions (2.9) are defined on [0,∞) and they are always positive
for all t ≥ 0 and are bounded and lie in the region Ω which is a positively invariant set with respect
to system (2.1)-(2.8), where the feasible region Ω is given by Ω = {(SH ≥ 0, SL ≥ 0, E ≥ 0, Is ≥
0, Ia ≥ 0, Q ≥ 0, R ≥ 0, D ≥ 0) : SH + SL + E + Is + Ia +Q+R+D ≤ Λ/µ}.

2.2 The reproduction number
In epidemiological models, the strength of the disease to invade the population is measured by
the reproduction number. It is commonly defined as the expected number of secondary infections
generated by a single infectious individual during their entire infectious period in a population of
wholly susceptible individuals. Through direct calculations, one can observe that system (2.1)-
(2.8) has a disease-free equilibrium (DFE) given E0 : (S0

H , S
0
L, 0, 0, 0, 0), where S0

H = Λ
(µ+σ) , and

S0
L = Λσe−µτ1

µ(µ+σ) . Following the next-generation matrix method [28], we define the nonnegative matrix
F that represents the generation of new infection terms and the matrix V which accounts for the
remaining transfer terms, evaluated at DFE, respectively as follows (2.10):

F =


0 β(S0

H + (1− ϕ)S0
L) β(1− ψ)(S0

H + (1− ϕ)S0
L) β(1− ρ)(S0

H + (1− ϕ)S0
L)

0 0 0 0
0 0 0 0
0 0 0 0

 ,

V =


µ+ α 0 0 0
−pα µ+ r1 + γ1 + d1 0 0

−(1− p)α 0 µ+ r2 + γ2 0
0 −γ1e−(µ+d1)τ2 −γ2e−µτ2 µ+ d2 + δ

 . (2.10)

From (2.10), it follows that the spectral radius of system (2.1)-(2.8) is (2.11):

R0 =
βpα

(µ+ α)(µ+ r1 + γ1 + d1)

(
Λ

(µ+ σ)
+ (1− ϕ)

Λσe−µτ1

µ(µ+ σ)

)

+
β(1− p)(1− ψ)α

(µ+ α)(µ+ r2 + γ2)

(
Λ

(µ+ σ)
+ (1− ϕ)

Λσe−µτ1

µ(µ+ σ)

)

+
βα(1− ρ)

(µ+ α)(µ+ d2 + δ)

(
pγ1e

−(µ+d1)τ2

µ+ r1 + γ1 + d1
+

(1− p)γ2e
−µτ2

µ+ r2 + γ2

)

×

(
Λ

(µ+ σ)
+ (1− ϕ)

Λσe−µτ1

µ(µ+ σ)

)
= R0s +R0a +R0q. (2.11)

The quantities, R0s, R0s and R0q represents the expected number of secondary infections generated
by symptomatic, asymptomatic and hospitalized infectious patients during their entire infectious
period in a population of vaccinated and unvaccinated susceptible individuals. In Eq. (2.11) Λ

(µ+σ)+

(1 − ϕ)Λσe
−µτ1

µ(µ+σ) represents the population susceptible individuals (vaccinated and unvaccinated)
who can contract the disease after effective contact with infectious individuals, α

µ+α is probability
of latently infected individuals to survive this state and become infectious. A proportion p of
the exposed individuals who survive this state will become symptomatic infectious patients for an
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average duration of 1
µ+r1+γ1+d1

and the remainder, (1 − p) will become asymptomatic infectious
patients for an average duration of 1

µ+r2+γ2
. Symptomatic and asymptomatic infectious patients are

detected at rates γ1 and γ2, respectively, and their survival rate in this state is given by e−(µ+d1)τ2

and e−µτ2 . In addition, detected and hospitalized patients will be infectious for an average period
of 1

µ+d2+δ
.

2.3 Stability of model steady states
In this section, we study the stability of the model’s steady states. We will investigate the global
stability of the DFE and the endemic equilibrium. Since equations (2.7) and (2.8) do not contribute
to the generation of new infections, it suffices to neglect these equations when investigating the
stability of the model’s steady states. We commence by claiming the following results.

Theorem 2.1. For any τ1 ≥ 0, τ2 ≥ 0, the DFE of system (2.1)-(2.8) is globally asymptotically
stable if R0 < 1.

Proof. Let us consider a Lyapunov functional (2.12):

W0(t) =

[
SH − S0

H − S0
H ln

(
SH

S0
H

)]
+

[
SL − S0

L − S0
L ln

(
SL

S0
L

)]

+a1E(t) + a2Is(t) + a3Ia(t) + a4Q(t) + σ

(
1− S0

L

SL

)∫ t
t−τ1 SH(θ)dθ

+γ1e
−(µ+d1)τ2

∫ t
t−τ2 Is(θ)dθ + γ2e

−µτ2
∫ t
t−τ2 Ia(θ)dθ,

(2.12)

where:

a1 = βpα
m1m2

+ β(1−p)(1−ψ)α
m1m3

+ β(1−ρ)pαγ1e−(µ+d1)τ2

m1m2m4
+ β(1−ρ)(1−p)αγ2e−µτ2

m1m3m4
,

a2 = β
m2

+ β(1−ρ)γ1e−(µ+d1)τ2

m2m4
, a3 = β(1−ψ)

m3
+ β(1−ρ)γ2e−µτ2

m3m4
, a4 = β(1−ρ)

m4
,

}
(2.13)

with:
m1 = (µ+ α), m2 = (µ+ r1 + γ1 + d1),
m3 = (µ+ r2 + γ2), m4 = (µ+ d2 + δ).

}
(2.14)

Taking the derivative of W0(t) along the solutions system (2.1)-(2.8) and making some algebraic
simplification one gets:

W ′
0(t) ≤ Λ

(
2− SH(t)

S0
H

− S0
H

SH(t)

)
+ σS0

H

(
3− S0

H

SH(t) −
SH(t)S0

L

S0
HSL(t)

− SL(t)
S0
L

)
+β(R0 − 1)(Is(t) + (1− ψ)Ia(t) + (1− ρ)Q(t)).

(2.15)

If R0 ≤ 1, then W ′
0(t) ≤ 0, since 2− SH

S0
H
− S0

H

SH
≤ 0, and 3− S0

H

SH
− SHS

0
L

S0
HSL

− SL

S0
L
≤ 0. Let M be the largest

invariant set in Ω, we can observe that W ′
0(t) = 0 if either R0 = 1 or S0

H = SH , and S0
L = SL.

Therefore, by the Lyapunov-LaSalle invariance principle [29], the DFE is globally asymptotically
stable whenever R0 ≤ 1. This completes the proof.

We now proceed to establish the existence of the endemic equilibrium. We claim the following
results.

Theorem 2.2. If R0 > 1, then system (2.1)-(2.8) admits a unique endemic equilibrium point.

Proof. Let us denote any non-trivial equilibrium of system (2.1)-(2.8) by E∗ = (S∗
H , S

∗
L, E

∗, I∗s , I
∗
a , Q

∗),
where:

S∗
H =

Λ

(µ+ σ +m0E∗)
, S∗

L =
σe−µτ1Λ

(µ+ (1− ϕ)m0E∗)(µ+ σ +m0E∗)
,
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I∗s =
pαE∗

m2
, I∗a =

(1− p)αE∗

m3
, Q∗ =

(
pαγ1e

−(µ+d1)τ2

m2m4
+

(1− p)αγ2e
−µτ2

m3m4

)
E∗,

with:

m0 = β

[
pα

m2
+

(1− p)(1− ψ)α

m3
+ (1− ρ)

(
pαγ1e

−(µ+d1)τ2

m2m4
+

(1− p)αγ2e
−µτ2

m3m4

)]
. (2.16)

From equation (2.3) we have

E =
m0

m1
g(E)E, (2.17)

where g(E) = SH(E) + (1 − ϕ)SL(E). From equation (2.17) with E ̸= 0, it follows that for an
endemic equilibrium to exist we must have:

g(E) =
m1

m0
. (2.18)

Clearly, g(E) is differentiable for all E > 0. Differentiating g(E) leads to:

g′(E) =
∂g

∂SH

∂SH
∂E

+
∂g

∂SL

∂SL
∂E

= − Λm0

(µ+ σ +m0E)2
− σe−µτ1Λm0

(µ+ (1− ϕ)m0E)(µ+ σ +m0E)2

− σe−µτ1(1− ϕ)Λm0

(µ+ σ +m0E)(µ+ (1− ϕ)m0E)2
.

= − Λm0

(µ+ σ +m0E)2

(
1 +

σe−µτ1

(µ+ (1− ϕ)m0E)
+
σe−µτ1(1− ϕ)(µ+ σ +m0E)

(µ+ (1− ϕ)m0E)2

)
.(2.19)

From equation (2.19) with E ≥ 0, it implies that g(E) is a decreasing curve on [0,∞) since g′(E) < 0.
To determine if the function g(E) intersects the constant function on the right-hand side of equation
(2.18), we must investigate g(0). Since g(0) = SH(0) + (1− ϕ)SL(0) =

Λ
(µ+σ) + (1− ϕ)Λσe

−µτ1

µ(µ+σ) , one
can express R0 as follows R0 = m0

m1
g(0). Thus, whenever R0 > 1, then g(E) > m1

m0
, and there is

a unique endemic equilibrium E = E∗ > 0. However, if R0 ≤ 1, then g(E) ≤ m1

m0
and there is no

endemic equilibrium.

Next, we investigate the global stability of the endemic equilibrium E∗. We claim the following
results.

Theorem 2.3. If R0 > 1, the unique endemic equilibrium of system (2.1)-(2.8) is globally asymp-
totically stable.

Proof. Let us consider the following Lyapunov functional (2.20):

W1(t) = b1

{
SH − S∗

H − S∗
H ln

(
SH

S∗
H

)}
+ b2

{
SL − S∗

L − S∗
L ln

(
SL

S∗
L

)}

+b3

{
E − E∗ − E∗ ln

(
E
E∗

)}
+ b4

{
Is − I∗s − I∗s ln

(
Is
I∗s

)}

+b5

{
Ia − I∗a − I∗a ln

(
Ia
I∗a

)}
+ b6

{
Q−Q∗ −Q∗ ln

(
Q
Q∗

)}

+b2σ

(
1− S∗

L

SL

)∫ t
t−τ1 SH(θ)dθ + b6γ1e

−(µ+d1)τ2
∫ t
t−τ2

(
1− Q∗

Q

)
Is(θ)dθ

+b6γ2e
−µτ2

(
1− Q∗

Q

)∫ t
t−τ2 Ia(θ)dθ,

(2.20)
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with

b1 = b2 = b3 = 1,

b4 =
β(1− ψ)I∗a(S

∗
H + (1− ϕ)S∗

L)

(1− p)αE∗ +
β(1− ψ)(1− ρ)γ2e

−µτ2I∗aQ
∗

(1− p)αE∗

(
S∗
H + (1− ϕ)S∗

L

γ1e−(µ+d1)I∗s + γ2e−µτ2I∗a

)
,

b5 =
βI∗s (S

∗
H + (1− ϕ)S∗

L)

pαE∗ +
β(1− ρ)γ1e

−(µ+d1)τ2I∗sQ
∗

pαE∗

(
S∗
H + (1− ϕ)S∗

L

γ1e−(µ+d1)τ2I∗s + γ2e−µτ2I∗a

)
,

b6 =
β(1− ρ)Q∗(S∗

H + (1− ϕ)S∗
L)

γ1e−(µ+d1)τ2I∗s + γ2e−µτ2I∗a
. (2.21)

After some algebraic manipulations, one gets (2.22):

W ′
1(t) = (µ+ σ)S∗

H

(
2− x1 −

1

x1

)
+ µS∗

L

(
3− x1

x2
− 1

x1
− x2

)

+β(1− ψ)I∗aS
∗
H

(
3− 1

x1
− x3
x4

− x4
x3
x1

)
+ βI∗sS

∗
H

(
3− 1

x1
− x3
x5

− x5
x3
x1

)

+
β(1− ψ)(1− ρ)γ2I

∗
aQ

∗S∗
H

γ1e−(µ+d1)τ2I∗s + γ2e−µτ2I∗a

(
4− 1

x1
− x3
x4

− x4
x6

− x6
x3
x1

)

+β(1− ψ)(1− ϕ)I∗aS
∗
L

(
4− 1

x1
− x1
x2

− x3
x4

− x4
x3
x2

)

+β(1− ϕ)I∗sS
∗
L

(
4− 1

x1
− x1
x2

− x3
x5

− x5
x3
x2

)

+
β(1− ρ)γ1e

−(µ+d1)I∗sQ
∗S∗

H

γ1e−(µ+d1)τ2I∗s + γ2e−µτ2I∗a

(
4− 1

x1
− x3
x5

− x5
x6

− x6
x3
x1

)

+
β(1− ψ)(1− ρ)(1− ϕ)γ2e

−µτ2I∗aQ
∗S∗

L

γ1e−(µ+d1)τ2I∗s + γ2e−µτ2I∗a

(
5− 1

x1
− x1
x2

− x3
x4

− x4
x6

− x6
x3
x2

)

+
β(1− ρ)(1− ϕ)γ1e

−(µ+d1)τ2I∗sQ
∗S∗

L

γ1e−(µ+d1)τ2I∗s + γ2e−µτ2I∗a

(
5− 1

x1
− x1
x2

− x3
x5

− x5
x6

− x6
x3
x2

)
, (2.22)

where x1 = SH

S∗
H
, x2 = SL

S∗
L
, x3 = E

E∗ , x4 = Is
I∗a
, x5 = Ia

I∗a
, and x6 = Q

Q∗ . It follows that if xi = 1,
(for i = 1, 2, 3, 4, 5), that is., SH = S∗

H , SL = S∗
L, E = E∗, Is = I∗s , Ia = I∗a and Q = Q∗ we

have W ′
1(t) = 0. Furthermore, since the arithmetic mean is greater or equal to the geometric mean,

that is; x1 + 1
x1

≥ 2
√
x1 · 1

x1
, it implies W ′

1(t) ≤ 0. Using the LaSalle’s invariance principle [29],
we conclude that the endemic equilibrium point E∗ of system (2.1)-(2.8) is globally asymptotically
stable if R0 > 1. This completes the proof.

2.4 Model Parameterization
To numerically simulate system (2.1)-(2.8) we will calibrate the model using parameter values in
literature (see Table 1) and validate it with observed COVID-19 cases for Wuhan, China presented
in [30]. On fitting the model with data, we made use of the least squares curve fit routine (lsqcurvefit)
in MATLAB with optimization to estimate our unknown parameters. We let the cumulative new
infections predicted by our model, C(t) to be solutions (2.24) of the equation:

C ′(t) = γ1e
−(µ+d1)τ2Is(t− τ2) + γ2e

−µτ2Ia(t− τ2). (2.23)
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Thus, the estimation of confirmed cumulative cases for COVID-19 over a defined time frame tk−1 ≤
t ≤ tk (where tk−1 and tk represents the beginning and end of the time interval, respectively) from
the model output requires to compute: ∫ tk

tk−1

C(t)dt. (2.24)

During the fitting process we set initial population levels to: SH(0) = 4000, SL(0) = 0, E(0) = 20,
Is(0) = 20, Ia(0) = 10, Q(0) = 6, R(0) = 0. Simulation results of the model fitting are depicted
in Fig. 2. Results show that the model predictions are close to the observed values, particularly
during the first 36 days and on the last 4 days, the model slightly underestimated the observed
cases.

Table 1: Parameters and values

Symbol Description Value Units Source
Λ Per capita human recruitment rate Day −1 20 [32]
d1, d2 Disease induced deaths rate Day −1 0.005 [33]
µ Natural deaths rate Day −1 5× 10−6 [33]
β Disease transmission rate Day −1 5.4× 10−6 Fitting
α−1 Incubation period Day 2(2− 14) [32]
ϕ Vaccine efficacy Dimensionless 0.5 (0-1) [32]
σ Rate of vaccination Day −1 0.03 [32]
p Proportion of exposed individuals who develop

clinical signs of the disease Dimensionless 0.75 [31]
γ1 Rate of hospitalization of clinical patients Day−1 0.94 1001[32]
γ2 Rate of hospitalization of asymptomatic patients Day−1 0.94 1001[32]
r1 Recover rate of symptomatic infectious individuals Day−1 0.015 1001[32]
r2 Recover rate of asymptomatic infectious individuals Day−1 0.004 1001[32]
δ Recover rate of hospitalized humans Day−1 0.5 1001[32]
ψ Reduction of infectivity asymptomatic individuals Dimensionless 0.6[0, 1) Fitting
ρ Reduction of infectivity hospitalized patients Dimensionless 0.9[0, 1) Fitting
τ1 Time taken by susceptible individuals

to take a vaccine Days 30[0, 300) Fitting
τ2 Time taken to detected and hospitalize

an infectious individual Days 5[0, 10) Fitting

2.5 Sensitivity analysis of the reproduction number
The reproduction number is a crucial threshold quantity in modelling infectious diseases. It il-
lustrates the strength of the disease to persist or die out. Therefore, it is essential to investigate
the relationship between the reproduction number and model parameters that define it. Various
approaches can be utilized; however, the partial rank correlation coefficient (PRCC) is one of the
techniques that has been widely used by several researchers. Comprehensive information on PRCC
can be found in [34]. In a nutshell, a PRCC allows one to investigate the correlation between the re-
production number and the model parameters while all parameters are varied simultaneously across
their defined range of possible values. The PRCC output for R0 of system (2.1)-(2.8) is depicted
in Fig. 3. From the PRCC output (Fig. 3) one can observe that R0 is strongly sensitive to vaccine
efficacy (ϕ), disease transmission rate (β) and recruitment rate (Λ). Thus, use of vaccines with
high efficacy significantly reduces disease transmission potential. In addition, we can observe that
an increase in disease transmission rate will significantly increase R0. Thus, other disease control
measures such as social distancing and use of face masks that have proved to be capable of reducing
transmission could be essential to mitigate the spread of the disease.
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Figure 2: Simulation results showing the model estimates versus the observed cases.
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Figure 3: Sensitivity analysis of R0 with respect to model parameters

2.6 Dynamical behavior of model solutions over time
In this section, we numerically investigated the stability of system (2.1)-(2.8). We simulated system
(2.1)-(2.8) for R0 < 1 and R0 > 1, and the results are illustrated in Fig. 4, 5 and 6, respectively.
Simulation results in Fig. 4 show that whenever R0 < 1, model solutions converge to the origin.
This implies that whenever R0 < 1 the disease dies out. These results concur with analytical
results summarized by Theorem 2.2. However, in Fig. 5 and 6 one can observe that when R0 > 1,
model solutions commence with periodic oscillation which will eventually die out with time leading
convergence of solutions to a unique endemic equilibrium point. Since all the model solutions for
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the infected compartments stabilize above the origin it implies that whenever R0 > 1, the disease
persists. This outcome agrees with findings summarized by Theorem 2.3.
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Figure 4: Solutions of (2.1)-(2.8) for infected compartments with R0 < 1. We set τ1 = 10 days and
τ2 = 5 days.

2.7 Effects of vaccine hesitancy on disease dynamics
To quantitatively and qualitatively examine the influence of vaccine hesitancy on the evolution of
the disease, we fixed τ2 simulated system (2.1)-(2.8) with different values of τ1. The output is shown
in Fig. 7 and 8). Simulation results in both scenarios (Fig. 7 and 8) show that vaccine hesitancy
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Figure 5: Solutions of (2.1)-(2.8) for infected compartments with R0 > 1. We set τ1 = 10 days and
τ2 = 5 days.

influences the evolution of the disease. We can observe that vaccine hesitancy leads to oscillating
model solutions. The oscillations represent disease waves. The oscillations are more pronounced for
0 ≤ t ≤ 1000, thereafter they fade away, leading the solutions to converge at the unique endemic
equilibrium point. We can also observe that as τ1 increases, the time required for the infections to
reach the peak increases.
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Figure 6: Solutions of (2.1)-(2.8) for infected compartments with R0 > 1. We set τ1 = 10 days and
τ2 = 5 days.
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Figure 7: Effects of varying vaccine hesitancy on disease dynamics.

2.8 Public health implications of delays in screening of infectious indi-
viduals

We numerically characterized the effects of delaying screening of clinically infected individuals by
simulating system (2.1)-(2.8) at different values of τ2 while τ1 is fixed (see Fig. 9). Simulation
results suggest that delays in screening clinical patient results in periodic oscillations as observed
with vaccine hesitancy. However, oscillations associated with τ2 do not have a large amplitude
compared to those associated with τ1. Furthermore, increasing τ2 does not remarkably increase the
time taken by the disease to reach its peak as compared to when τ1 is increased. Based on these
outcomes, we propose that vaccine hesitancy has a stronger public health impact compared to the
screening of clinically infected individuals.
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Figure 8: Effects of varying vaccine hesitancy on disease dynamics.

2.9 Implications of vaccine hesitancy and delays in screening clinically
infected individuals

We investigated the influence of both vaccine hesitancy and delays in screening clinically infected
individuals through simulating (2.1)-(2.8) at different values of τ1 and τ2. The output is in Fig. 10.
As one can observe, the results concur with earlier findings that delays in accepting vaccination and
screening of clinically infected individuals lead to periodic oscillations, which will eventually fade
over time. This shows that vaccine hesitancy and screening of clinically infected individuals have a
strong influence on the evolution of the disease and have the potential to result in outbreaks.
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Figure 9: Effects of delayed screening of infectious individuals on disease dynamics.

3 Conclusion and Recommendations
In this paper, we have developed a mathematical model of COVID-19 that integrates critical factors
such as vaccine hesitancy and delays in screening infectious individuals. Our analysis revealed two
steady states: a disease-free equilibrium and an endemic equilibrium, both of which exhibit global
stability depending on the reproductive number. Through extensive numerical experiments, we
established that vaccine hesitancy leads to periodic oscillations in disease dynamics, with a notable
increase in the time to peak infection as vaccine acceptance delays extend. Conversely, while
delays in screening also affect the disease trajectory, they do not significantly alter the timing of
peak infection. A key insight from our findings is the pronounced impact of vaccine hesitancy
on public health compared to delays in screening. The amplitude of oscillations associated with
vaccine hesitancy suggests that addressing this issue could be more critical in managing the spread
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Figure 10: Combined effects of vaccine hesitancy and delayed screening of infectious individuals on
disease dynamics.

of infectious diseases. This highlights the need for targeted interventions that focus on improving
vaccine acceptance, as it may play a more pivotal role in controlling outbreaks than previously
recognized.

To address these challenges, we recommend several strategic actions. First, enhancing public
awareness campaigns is essential. Developing and implementing robust public health initiatives
aimed at reducing vaccine hesitancy will be vital. These campaigns should leverage social media,
community outreach, and trusted local figures to convey accurate information about vaccine safety
and efficacy. Furthermore, it is crucial to monitor and address miscommunication effectively. Es-
tablishing monitoring systems to identify and counter misinformation related to vaccines, especially
during health crises, can mitigate the impact of false narratives. Collaborating with media outlets
to promote factual reporting will be instrumental in this effort. In addition, while our findings
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suggest that screening delays may not significantly affect peak infection timing, it remains essential
to integrate screening protocols. Timely identification and isolation of infectious individuals are
crucial. Health authorities should ensure that screening processes are efficient and accessible to
minimize transmission risks. Looking forward, further research should investigate additional socio-
economic and psychological factors influencing vaccine hesitancy. Understanding the role of media
narratives and community trust can inform more effective strategies for public health interventions,
enhancing our ability to combat misinformation and improve vaccine uptake. Lastly, policy implica-
tions should be prioritized. Policymakers must allocate funding for initiatives that increase vaccine
uptake and improve screening processes. By adopting this dual approach, we can enhance overall
public health outcomes during infectious disease outbreaks and foster more resilient communities.
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