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Abstract

Trade credit is widely used in modern business transactions as it provides alternative to
price reduction, encourage retailer’s demand and minimizes holding cost. In this study, an
inventory model for non-instantaneously deteriorating items under trade credit is developed.
The demand is in two–phase, in the first phase, when there is no deterioration, the demand
is stock dependent due to freshness of the stocked items whereas in the second phase, when
deterioration sets in, the demand is assumed to be price dependent as a result of reduction in
quality of the product. Profit functions of the model was obtained. The necessary and sufficient
conditions for the existence and uniqueness of the optimal solutions to the profit functions was
established. The Newton-Raphson iterative method was employed to find the solutions to the
numerical examples using MATLAB. Sensitivity analysis was carried out to test the sensitivity
of the model’s parameters on the model. The major findings reveal that the holding cost,
deterioration cost and the interest charged rate significantly influence the optimal cycle period
and the maximum total profit.
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1 Introduction
Inventory models for deteriorating items have received much attention from researchers in the past
years. Most physical goods such as drugs, vegetables deteriorate over time [1]. Deterioration is
the damage, spoilage, dryness, vaporization, etc., that result in the decrease of usefulness of the
commodity. Ghare and Schrader [2] were the first to consider the optimal ordering policies for
deteriorating items. They presented an EOQ model for an exponentially deteriorating item. The
work was extended by Covert and Philip [3] who developed an EOQ model for a variable rate of
deterioration. Shah [4] generalized the work of Ghare and Shrader [2] to allow for backordering.
Hollier and Mark [5] developed a model for inventory replenishment policies for deteriorating items
in a declining market. Cheng and Chen [6] considered deteriorating items in a periodic review
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environment with shortages. Recently, Macías-López et al. [7] studied an inventory model with a
shelf space constrained and nonlinear holding cost for a perishable item.
In the literature of deteriorating items, the researchers assume that the deterioration of the items
is instant on their arrival in the warehouse. But in reality, most goods would have a span of main-
taining quality or original condition before they start to deteriorate. Wu et al. [8] defined such a
phenomenon as “non-instantaneous deterioration” or delayed deteriorating [11]. Wu et al. [8] devel-
oped a replenishment policy for non-instantaneous deteriorating items with stock dependent demand
and partial backlogging. Ouyang et al. [9] proposed an inventory model for non-instantaneously
deteriorating items with permissible delay in payments. In the work, the demand rate is constant
and shortages are not allowed. Maihami and Kamalabadi [10] developed a model for joint pricing
and inventory control of non-instantaneous deteriorating item that allowed shortages with the un-
satisfied demand being partially backlogged. Musa and Sani [11] considered delayed deteriorating
items having two–phase demand. In the two phases, the demands of the item are both constants
but different. Of recent, Liao et al. [12] addressed an EOQ inventory model with a delay in payment
policy for non-instantaneous deteriorating items with the aim of finding an optimal ordering policy.
In the traditional inventory model, it is assumed that the supplier will receive payment for the goods
as soon as they are delivered. In practice, the supplier may grace the retailer with a permissible delay
in payment period. The retailer may accrue sales during this credit period and get interest on those
sales. But beyond the allowed period, the supplier adds interest to the outstanding debt. Goyal
[13] developed an EOQ model under the condition of a permissible delay in payments. Aggarwal
and Jaggi [14] then extended Goyal’s model to allow for deteriorating items under permissible
delay in payments. Aliyu and Sani [15] considered two–level trade credit in developing model for
deteriorating items.
Nowadays it is observed that putting massive displays of consumer goods in supermarkets raises
demand and attracts in more shoppers. As a result, when choosing the optimum inventory policy,
the impact of stock dependent demand cannot be disregarded. In this line, Hou and Lin [16]
considered an EOQ inventory model for deteriorating items with price-and-stock dependent demand,
were shortages and full backordering was considered. Agi and Soni [17] developed an inventory
model for joint optimal pricing and inventory management for a perishable item under stock-, age-
, and price-dependent demand, allowing surplus inventory at the end of the cycle. Idowu et al.
[18] addressed the JIT scheduling problem on flow shop where jobs incur penalties if they are not
completed within their specific due windows. Kwaghkor et al. [19] derived a two-state stochastic
model from the interval transition probability of a Semi-Markov model used to study the transition
rae between two labour market states.
This research work contributes to the field of inventory by providing an EOQ model for non-
instantaneous deteriorating items, considering two–phase demand and incorporating a two–level
trade credit. The model expands upon existing literature and provides insights into optimizing
inventory management in situations involving non-instantaneous deterioration.

2 Notation and assumptions
The notation used in the model are:

c, p: The purchasing cost and selling price per unit item, where p > c.
h: The holding cost per unit item per unit time excluding the capital cost.
θ: The constant deterioration rate of the stocked item.
t1, T : The beginning time of the item deterioration and the replenishment cycle (T > t1).
I1(t): The inventory level during the period [0, t1].
I2(t): The inventory level during the period [t1, T ].
I0: The maximum inventory level/stocking capacity of the warehouse.
Ie, Ip: The retailer’s interest earned and interest charged per unit item.
M : The retailer’s trade credit period offered by the supplier.
N : The customer’s trade credit period offered by the retailer.
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A: The inventory ordering cost.

The assumptions used in building the model are:

i. A single non-instantaneous deteriorating item is considered.

ii. The replenishment rate is infinite.

iii. The lead time (the length of time between placement and receipt of an order) is zero.

iv. The demand rate in the first phase is stock dependent, i.e. D(I(t), t) = a+ bI(t), whereas in
the second phase, the demand depends on the price, i.e. D(p, t) = a+ bp, where a > 0 is the
initial demand and b > 0 is the demand rate.

v. Shortages are not allowed.

vi Interest charged is assumed to be higher than the interest earned (Ip > Ie). This serves as a
penalty whenever the retailer fails to settle the account as at when agreed.

vii. We restrict N < M and also N < t1 for convenience.

3 The model formulation
At the beginning, I0 units of item are stocked. During the time interval [0, t1], the inventory level
decreases due to demand only. Subsequently the inventory level drops to zero due to both demand
and deterioration during the time interval [t1, T ].This phenomenon is represented as follows:

dI1(t)

dt
= −D(I1(t), t) = −(a+ bI1(t)), 0 ≤ t ≤ t1 (1)

with the initial condition I1(0) = I0
and

dI2(t)

dt
+ θI2(t) = −D(p, t) = −(a+ bp) t1 ≤ t ≤ T (2)

with the boundary condition I2(T ) = 0
The solutions to equations (1) and (2) are respectively given as:
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I1(t) =
a

b
(e−bt − 1) + I0e

−bt, 0 ≤ t ≤ t1 (3)

I2(t) =
(a+ bp)

θ

(
eθ(T−t) − 1

)
, t1 ≤ t ≤ T (4)

For continuity, we let I1(t1) = I2(t1). Using equations (3) and (4), I0 can be obtained as:

I0 =
(a+ bp)ebt1

θ

[
eθ(T−t1) − 1

]
+

a

b
(ebt1 − 1) (5)

Substituting (5) into (3) gives

I1(t) =
(a+ bp)eb(t1−t)

θ

[
eθ(T−t1) − 1

]
+

a

b
(eb(t1−t) − 1), 0 ≤ t ≤ t1 (6)

To get the total profit per cycle (denoted by TP ), we obtain the following:

i. Ordering Cost

The annual ordering cost (OC) is

OC =
A

T
(7)

ii. Holding Cost

The annual holding cost (HC) is given by

HC =
h

T

[∫ t1

0

I1(t)dt+

∫ T

t1

I2(t)dt

]
=

h

T
[
(
ebt1 − 1

)( (a+ bp)(eθ(T−t1) − 1)

bθ
+

a

b2

)
+

t1

(
a+ bp

θ
− a

b

)
+

a+ bp

θ2

((
eθ(T−t1) − 1

)
− θT

)
]8 (3.1)

iii. Deterioration Cost

The annual deterioration cost (DC) is given by

DC =
cθ

T

∫ T

t1

I2(t)dt =
c(a+ bp)

T

[(
eθ(T−t1) − 1

)
θ

+ (t1 − 1)

]
(9)

iv. Sales Revenue

The annual sales revenue (SR) is given by

SR =
p

T

[∫ T

0

D (t) dt

]
=

p

T

[∫ t1

0

D1 (t) dt+

∫ T

t1

D2 (t) dt

]
=

p

T
[
(
ebt1 − 1

)
(
(a+ bp)(eθ(T−t1) − 1)

θ
+

a

b
) + (a+ bp) (T − t1)]10 (3.2)
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v. Annual interest earn and interest payable

To calculate the interest earn and interest payable by the retailer with respect to M,N and
T , and restricting N < M and N < t1, the following 3 cases may arise as shown in Figure 2:

1) N < M < t1

2) t1 < M < T

3) T < M.

Case (1) : N < M < t1
After the allowed trade credit period M , the retailer must pay interest on all unsold items. There-
fore, the interest payable by the retailer using equations (4) and (6), is given by:

IP1 =
cIp
T

∫ T

M

I(t)dt =
cIp
T

[∫ t1

M

I1 (t) dt+

∫ T

t1

I2 (t) dt

]

=
cIp
T

[(eb(t1−M) − 1)

(
(a+ bp)

(
eθ(T−t1) − 1

)
bθ

+
a

b2

)
+

a

b
(M − t1) +

(a+ bp)

θ2
×

(
eθ(T−t1) − 1 + θ (t1 − T )

)
]11 (3.3)

The retailer will earn interest on the sales revenue during the period [N,M ], and is given by:

IE1 =
pIe
T

∫ M

N

D1 (t) dt =
pIe
T

∫ M

N

(a+ bI1 (t)) dt

=
pIe
T

[(
eb(t1−N) − eb(t1−M)

)( (a+ bp)
(
eθ(T−t1) − 1

)
θ

+
a

b

)]
(12)

Combining the above results, the retailer’s annual total profit can be expressed as follows using
equations (7) , (8) , (9) , (10) , (11) and (12) :

TP1 =
1

T
{

(
(a+ bp)

(
eθ(T−t1) − 1

)
θ

+
a

b

)
((p− h

b
)
(
ebt1 − 1

)
− cIp

b
(eb(t1−M) − 1)+
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pIe

(
eb(t1−N) − eb(t1−M)

)
) + (a+ bp)(p (T − t1)−

(
eθ(T−t1) − 1

)
θ2

(h+ cθ + cIp)−

1

θ
(ht1 + cIp (t1 − T ) + cθ(t1 − 1)))−A− hθT +

a

b
(ht1 − cIp (M − t1)} (13)

Case (2) : t1 < M < T
In this case the retailer has to pay the interest for the unsold items after the time M . Therefore,
the interest payable, using equation (4), is given by:

IP2 =
cIp
T

∫ T

M

I2(t)dt =
cIp
T

[
(a+ bp)

θ2

(
eθ(T−M) − 1 + θ (M − T )

)]
(14)

The retailer will earn interest on the sales revenue generated during the period [N,M ] and is given
by:

IE2 =
pIe
T

[∫ t1

N

(a+ bI1(t)) dt+

∫ M

t1

(a+ bp) dt

]

=
pIe
T

[(
(a+ bp)

(
eθ(T−t1) − 1

)
θ

+
a

b

)(
eb(t1−N) − 1

)
+ (a+ bp) (M − t1)

]
(15)

Therefore, the retailer’s total profit in this case using equations (7) , (8) , (9) , (10) , (14) and (15) is
given by:

TP2 =
1

T
{

(
(a+ bp)

(
eθ(T−t1) − 1

)
θ

+
a

b

)
((p− h

b
)
(
ebt1 − 1

)
+ pIe

(
eb(t1−N) − 1

)
) + (a+ bp)×

(p ((T − t1) + Ie (M − t1))−
(
eθ(T−t1) − 1

)
θ2

(h+ cθ)− cIp
θ2

(
eθ(T−M) − 1 + θ (M − T )

)
−

1

θ
(ht1 + cIp (t1 − T ) + cθ(t1 − 1)))−A− h(θT +

at1
b

)} (16)

Case (3) : T < M
In this case, the items have been sold before the time M. Therefore, the retailer will pay no interest,
that is:

IP3 = 0 (17)
The annual interest earn by the retailer is given by:

IE3 =
pIe
T

[∫ t1

N

(a+ bI1(t)) dt+

∫ T

t1

(a+ bp) dt+ (a+ bp) (M − T )

]

=
pIe
T

[(
(a+ bp)

(
eθ(T−t1) − 1

)
θ

+
a

b

)(
eb(t1−N) − 1

)
+ (a+ bp) (M − t1)

]
(18)

Therefore, the retailer’s total profit in this case using equations (7) , (8) , (9) , (10) , (17) and (18) is
given by:

TP3 =
1

T
{

(
(a+ bp)

(
eθ(T−t1) − 1

)
θ

+
a

b

)
((p− h

b
)
(
ebt1 − 1

)
+ pIe

(
eb(t1−N) − 1

)
) + (a+ bp)×

(p ((T − t1)+ Ie (M − t1))−
(
eθ(T−t1) − 1

)
θ2

(h+ cθ)− 1

θ
(ht1+ cθ(t1−1)))−A−h(θT +

at1
b

)} (19)
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4 Optimization and analysis
Since we are dealing with two decision variables t1 and T , we use multivariable optimization ap-
proach.
The necessary conditions for TP1 to be maximized are ∂TP1

∂t1
= 0 and ∂TP1

∂T = 0. That is, using
equation (13) ,

∂TP1

∂t1
=

1

T
{a+ bp

θ
{p
(
(b− θ) eθ(T−t1)+bt1 − θ

(
eθ(T−t1) + 1

)
+ bebt1

)
− h

b
((beθ(T−t1) + ebt1×

(
eθ(T−t1) − 1

)
+ 1)− θ

(
eθ(T−t1)

(
ebt1 − 1

))
− cθ(1− eθ(T−t1))− cIp

b
(beb(t1−M)

(
eθ(T−t1) − 1

)
+

(
1− eθ(T−t1))

)
− θ

(
eθ(T−t1)

(
eb(t1−M) − 1

))
+

a

b
(pbebt1 − h(ebt1 − 1)− cIp(e

b(t1−M) − 1))+

pIe[

(
a+

b (a+ bp)
(
eθ(T−t1) − 1

)
θ

)(
eb(t1−N) − eb(t1−M)

)
+ eθ(T−t1) (a+ bp) (eb(t1−M)−

eb(t1−N))]} = 0 (20)

and

∂TP1

∂T
=

1

T
{(a+ bp) (p(

(
1− eθ(T−t1)

(
1− ebt1

))
− h(eθ(T−t1)

(
1

θ
+

ebt1 − 1

b

)
− 1

θ
)−

c(eθ(T−t1) − 1)− cIp(

(
eθ(T−t1)

) (
eb(t1−M) − 1

)
b

+

(
eθ(T−t1)

)
θ

) + pIe(e
θ(T−t1)×(

eb(t1−N) − eb(t1−M)
)
)) + θcIp − TP1} = 0 (21)

The solutions to (20) and (21) give the values of t1 and T .
To find the critical point

(
t1∗1 , T ∗

1

)
, equations (20) and (21) are solved simultaneously. To obtain the

maximum total profit, the following conditions must be satisfied for the critical point: ∂2TP1

∂t21
.∂

2TP1

∂T 2 −
∂2TP1

∂t1∂T
.∂

2TP1

∂T∂t1
> 0 and ∂2TP1

∂t21
< 0, ∂2TP1

∂T 2 < 0. Thus, we give a lemma to prove some important
theoretical results:

Lemma 1: If eb(t1−N) < eb(t1−M) and ebt1 < 1, then

i.
∂2TP1(t1∗1 ,T∗

1 )
∂t21

< 0 and
∂2TP1(t1∗1 ,T∗

1 )
∂T 2 < 0.

ii.
∂2TP1(t1∗1 ,T∗

1 )
∂t21

>
∂2TP1(t1∗1 ,T∗

1 )
∂t1∂T

and
∂2TP1(t1∗1 ,T∗

1 )
∂T 2 >

∂2TP1(t1∗1 ,T∗
1 )

∂T∂t1

Proof:

i. We have

∂2TP1

(
t1∗1 , T ∗

1

)
∂t21

=
1

T
{p[Ie

(
eb(t1−N) − eb(t1−M)

)
(b(a+

b (a+ bp)
(
eθ(T−t1) − 1

)
θ

)+
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eθ(T−t1) (a+ bp) (θ − 2b)) + (abebt1 +
a+ bp

θ
(eθ(T−t1)((b− θ)

2
ebt1 + θ2) + b2ebt1))]−

c (a+ bp)
[
θeθ(T−t1)

]
− h[

a+ bp

bθ
(b
(
(b− θ) eθ(T−t1)+bt1 − bebt1 − θeθ(T−t1)

)
− θ((b−

θ)eθ(T−t1)+bt1 + θeθ(T−t1))) + aebt1 ]− cIp[
a+ bp

bθ
(b2eb(t1−M)

(
eθ(T−t1) − 1

)
+ (eθ(T−t1) −

1) + θ2eθ(T−t1)
(
eb(t1−M) − 1

)
+ bθeθ(T−t1)

(
1− 2eb(t1−M)

)
) + aeb(t1−M)]}

From hypothesis, if eb(t1−N) < eb(t1−M) then eb(t1−N) − eb(t1−M) < 0, and so Ie(e
b(t1−N)−

eb(t1−M))(b(a+
b(a+bp)(eθ(T−t1)−1)

θ )+ eθ(T−t1) (a+ bp) (θ − 2b)) < 0. Also if ebt1 < 1, then (abebt1 +
a+bp

θ (eθ(T−t1)((b− θ)
2
ebt1 +θ2)+b2ebt1)) < 0. Therefore all the terms in the equation are negative.

Sum of negative terms is negative. Hence
∂2TP1(t1∗1 ,T∗

1 )
∂t21

< 0.

Also,

∂2TP1

(
t1∗1 , T ∗

1

)
∂T 2

=
1

T
{p[θ (a+ bp) (eθ(T−t1))((Ie(e

b(t1−N) − eb(t1−M))) +
(
ebt1 − 1

)
)]−

h[eθ(T−t1) (a+ bp)

(
1 +

θ

b

(
ebt1 − 1

))
]− c (a+ bp)

[
θeθ(T−t1)

]
− cIp[e

θ(T−t1) (a+ bp)×

(1 +
θ

b

(
e(bt1−M) − 1

)
)]}

Similarly from the hypothesis, it is seen that
∂2TP1(t1∗1 ,T∗

1 )
∂T 2 < 0.

ii. Let F (t1) =
∂2TP1(t1∗1 ,T∗

1 )
∂t21

− ∂2TP1(t1∗1 ,T∗
1 )

∂t1∂T
. We show that F (t1) > 0. Thus we have

F (t1) =
1

T
{(a+ bp)(eθ(T−t1))[(

b

θ
− 1)(pbebt1 + hebt1 − cIpe

b(t1−M)) +
1

b
(h(1− θ)+

cIp(
1

θ
− θ)) + pIe((e

b(t1−M) − eb(t1−N))(
b2

θ
− θ + 2b))] +

a+ bp

θ
[−pb2ebt1 − hebt1 +

cIp(be
b(t1−M) + 1) + pIe(b

2(eb(t1−M) − eb(t1−N)))]− aebt1(pb− h) + cIp(ae
b(t1−M)) +

pIe(ab(e
b(t1−M) − eb(t1−N)))}

Since T > t1, then eθ(T−t1) > 0. From the hypothesis, if ebt1 < 1 and assuming b
θ < 1 then

( bθ −1)(pbebt1+hebt1−cIpe
b(t1−M)) > 0, 1

b (h(1−θ)+cIp(
1
θ −θ)) > 0, a+bp

θ (−pb2ebt1−hebt1) > 0 and
−aebt1(pb−h) > 0. Also if eb(t1−M)− eb(t1−N) > 0, then pIe((e

b(t1−M)− eb(t1−N))( b
2

θ −θ+2b)) > 0

and cIp(ae
b(t1−M)) > 0. Hence it is seen that F (t1) > 0 and thus

∂2TP1(t1∗1 ,T∗
1 )

∂t21
>

∂2TP1(t1∗1 ,T∗
1 )

∂t1∂T
.

Let F (T ) =
∂2TP1(t1∗1 ,T∗

1 )
∂T 2 − ∂2TP1(t1∗1 ,T∗

1 )
∂T∂t1

. We show that F (T ) > 0. We have
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F (T ) =
1

T
{(a+ bp)(eθ(T−t1))[p(ebt1(θ − b− 1) + (1 + θ)) + h(2− ebt1) + cIp(e

b(t1−M))+

pIe(b(e
b(t1−M) − eb(t1−N)))]}

Similarly we have p(ebt1(θ − b − 1) + (1 + θ)) + h(2 − ebt1) + cIp(e
b(t1−M)) + pIe(b(e

b(t1−M) −
eb(t1−N)))] > 0. Therefore

∂2TP1(t1∗1 ,T∗
1 )

∂T 2 >
∂2TP1(t1∗1 ,T∗

1 )
∂T∂t1

Theorem 1: If the Hessian Matrix for equation (13) is negative definite, then TP1

is a concave function.
Proof:

Lemma 1 confirms that the required Hessian Matrix is negative definite, since
∂2TP1(t1∗1 ,T∗

1 )
∂t21

>

∂2TP1(t1∗1 ,T∗
1 )

∂t1∂T
and also

∂2TP1(t1∗1 ,T∗
1 )

∂T 2 >
∂2TP1(t1∗1 ,T∗

1 )
∂T∂t1

. Thus the determinant

∂2TP1(t1∗1 ,T∗
1 )

∂t21
.
∂2TP1(t1∗1 ,T∗

1 )
∂T 2 − ∂2TP1(t1∗1 ,T∗

1 )
∂t1∂T

.
∂2TP1(t1∗1 ,T∗

1 )
∂T∂t1

> 0. Hence TP1 is concave.

Similar approach is applied for TP2 and TP3 respectively.

The necessary conditions for TP2 to be maximized are ∂TP2

∂t1
= 0 and ∂TP2

∂T = 0. That is, using
equation (16) :

∂TP2

∂t1
=

1

T
{a+ bp

θ
{p
(
(b− θ) eθ(T−t1)+bt1 − θ

(
eθ(T−t1) + 1

)
+ bebt1

)
− h

b
((beθ(T−t1) + ebt1×

(
eθ(T−t1) − 1

)
+ 1)− θ

(
eθ(T−t1)

(
ebt1 − 1

))
− cθ(1− eθ(T−t1)) + θpIe(e

θ(T−t1)(
b

θ
eb(t1−N)−

eb(t1−N) + 1)− θ)) +
a

b
(pba(ebt1 + Iee

b(t1−N))− h(ebt1 − 1))} = 0 (22)

and

∂TP2

∂T
=

1

T
{(a+ bp) (p(

(
1− eθ(T−t1)

(
1− ebt1

))
− h(eθ(T−t1)

(
1

θ
+

ebt1 − 1

b

)
− 1

θ
)−

c(eθ(T−t1) − 1)− cIp(

(
eθ(T−M) − 1

)
θ

) + pIe(e
θ(T−t1)

(
eb(t1−N) − 1

)
))− TP2} = 0 (23)

The solutions to (22) and (23) give the values of t1 and T .

For the sufficient condition, we have found that the determinant of the Hessian matrix

[
∂2TP2

∂t21

∂2TP2

∂T∂t1
∂2TP2

∂t1∂T
∂2TP2

∂T 2

]
evaluated at

(
t2∗1 , T ∗

2

)
is negative definite.

The necessary condition for TP3 to be maximized are ∂TP3

∂t1
= 0 and ∂TP3

∂T = 0. That is, using
equation (19) :

∂TP3

∂t1
=

1

T
{a+ bp

θ
{p
(
(b− θ) eθ(T−t1)+bt1 − θ

(
eθ(T−t1) + 1

)
+ bebt1

)
− h

b
((beθ(T−t1) + ebt1×
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(
eθ(T−t1) − 1

)
+ 1)− θ

(
eθ(T−t1)

(
ebt1 − 1

))
− cθ(1− eθ(T−t1)) + θpIe(e

θ(T−t1)(
b

θ
eb(t1−N)−

eb(t1−N) + 1)− θ)) +
a

b
(pba(ebt1 + Iee

b(t1−N))− h(ebt1 − 1))} = 0 (24)

and

∂TP3

∂T
=

1

T
{(a+ bp) (p(

(
1− eθ(T−t1)

(
1− ebt1

))
− h(eθ(T−t1)

(
1

θ
+

ebt1 − 1

b

)
− 1

θ
)−

c(eθ(T−t1) − 1) + pIe(e
θ(T−t1)

(
eb(t1−N) − 1

)
))− TP3} = 0 (25)

The solutions to (24) and (25) give the values of t1 and T .

For the sufficient conditions, we have found that the determinant of the Hessian matrix

[
∂2TP3

∂t21

∂2TP3

∂T∂t1
∂2TP3

∂t1∂T
∂2TP3

∂T 2

]
evaluated at

(
t3∗1 , T ∗

3

)
is negative definite.

5 Result and analysis
Based on the analyses provided above, the following algorithm can be utilized to find the optimal
solution of this model.

5.1 Algorithm
We use this algorithm for case 1, N < M < t1

Step 1: Start with k = 0 and the initial value of X0 = (t10 , T0) .
Step 2: By using (20) and (21), find the initial X0 = (t10 , T0).
Step 3: Use the result in step 2 to determine the optimal Xk+1 = (t∗1, T

∗) by using the
Newton-Raphson formula

Xk+1 = Xk −
(
Hf |(Xk)

)−1

∇f |(Xk) where Hf |(Xk)
=

(
∂2TP1

∂t1
∂2TP1

∂t1∂T
∂2TP1

∂T∂t1
∂2TP1

∂T 2

)
|(Xk) and

∇f |(Xk) =

(∂TP1

∂t1
∂TP1

∂T

)
|_(X_k)fork=0,1,2,...

Step 4: If the difference between Xk+1 and Xk is sufficiently small (i.e.,|Xk+1 −Xk| ≤
0.0001), then Xk+1 is the optimal (t∗1, T ∗), so stop. Otherwise set Xk+1 = Xk

and go back to step 3.

By using above algorithm, we obtain the optimal TP ∗
1 by using equation (13) .The algorithm is

repeated for case 2 and case 3. Due to the non–linear nature of the equations, they are solved using
MATLAB software.

5.2 Numerical Examples
To illustrate the solution procedure and the results, the proposed algorithm is applied to solve the
following numerical examples. The graph for the total pofit is shown in Fig. 3 below.
Example 1: for case 1 (N < M < t1)
Consider an inventory system with the following input parameters: A = 600, p = 20, c = 12, a =
150, b = 0.30, h = 0.4,M = 0.25, N = 0.15, θ = 0.30, Ip = 0.15, Ie = 0.12. Here we obtain as follows
the values of the optimal length of time with positive inventory t1∗1 = 0.4802 year (175 days), the
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optimal cycle length T ∗
1 = 0.9088 year (332 days), and the optimal total profit TP ∗

1 = 2835.2110
per year. Observe that the condition N < M < t1 is satisfies.
Example 2: for case 2 (t1 < M < T )
The data is the same as in Example 1 except that N = 0.1. Here we obtain as follows the values
of the optimal length of time with positive inventory t2∗1 = 0.1218 year (44 days), the optimal
cycle length T ∗

2 = 0.7613 year (278 days), and the optimal total profit TP ∗
2 = 1249.0173 per year.

Observe that t1 < M < T which satisfies the condition.
Example 3: for case 3 (T < M)
The data is the same as in Example 1 except that M = 1.0, N = 0.35. Here we obtain as follows
the values of the optimal length of time with positive inventory t3∗1 = 0.4050 year (148 days), the
optimal cycle length T ∗

3 = 0.9107 year (332 days), and the optimal total profit TP ∗
3 = 1061.1442

per year. Observe that T < M which satisfies the condition.

5.3 Sensitivity Analysis
In order to illustrate the effect of the parameters on the optimal policies of the example, a sensitivity
analysis is performed by changing the values of only one parameter at a time and keeping the rest
of the parameters at their initial values. The results are shown in Tables 1, 2 and 3.

Table 1. Sensitivity analysis result of cases (percentage change in system parameters against
values for case 1)
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Parameter % change New t∗1 % in t∗1 New T ∗ % in T ∗ New TP ∗ % in TP ∗

in parameter
A +10 0.4883 1.6868 0.9311 2.4538 2867.3385 1.1332

+5 0.4842 0.8330 0.9200 1.2324 2851.3457 0.5691
+0 0.4802 0 0.9088 0 2835.2110 0
−5 0.4761 −0.8538 0.8975 −1.2434 2818.7985 −0.5789
−10 0.4720 −1.7076 0.8862 −2.4868 2801.9838 −1.1719

c +10 0.4796 −0.1249 0.8694 −4.3354 2762.7695 −2.5551
+5 0.4801 −0.0208 0.8914 −1.9146 2796.9833 −1.3483
+0 0.4802 0 0.9088 0 2835.2110 0
−5 0.4805 0.0625 0.9318 2.5308 2869.6389 1.2143
−10 0.4808 0.1249 0.9574 5.3477 2921.4828 3.0429

h +10 0.4797 −0.1041 0.8708 −4.1813 2792.1152 −1.5200
+5 0.4801 0.0208 0.8994 −1.0343 2821.0242 −0.5004
+0 0.4802 0 0.9088 0 2835.2110 0
−5 0.4802 0 0.9181 1.0233 2849.7866 0.5141
−10 0.4814 0.2499 0.9365 3.0480 2898.9016 2.2464

θ +10 0.4244 −11.6202 0.8742 −3.8072 2520.4296 −11.1026
+5 0.4453 −7.2678 0.8963 −1.3754 2624.8119 −7.4209
+0 0.4802 0 0.9088 0 2835.2110 0
−5 0.5006 4.2482 1.0324 13.6004 3117.5903 9.9597
−10 0.5009 4.3107 1.0914 20.0924 3342.9147 17.9071

p +10 0.5154 7.3303 1.0331 13.6774 3024.8303 6.6880
+5 0.4659 1.1870 0.9298 2.3107 2980.8418 5.1365
+0 0.4802 0 0.9088 0 2835.2110 0
−5 0.4746 −1.1662 0.8876 −2.3327 2692.3423 −5.0391
−10 0.4582 −4.5814 0.8227 −9.4740 2631.3085 −7.1918

119

 https://doi.org/10.5281/zenodo.17604789


International Journal of Mathematical Sciences and
Optimization: Theory and Applications

11(3), 2025, Pages 108 - 127
https://doi.org/10.5281/zenodo.17604789

Parameter % change New t∗1 % in t∗1 New T ∗ % in T ∗ New TP ∗ % in TP ∗

in parameter
a +10 0.4745 −1.1870 0.8806 −3.1030 3137.7411 10.6705

+5 0.4773 −0.6039 0.8945 −1.5735 2987.7583 5.3805
+0 0.4802 0 0.9088 0 2835.2110 0
−5 0.4824 0.4581 0.9200 1.2324 2685.1547 −5.2926
−10 0.4847 0.9371 0.9315 2.4978 2531.8274 −10.7006

b +10 0.3328 −30.6955 0.8087 −11.0145 3289.3211 16.0168
+5 0.4172 −13.1195 0.8769 −3.5101 3236.1317 14.1408
+0 0.4802 0 0.9088 0 2835.2110 0
−5 0.4944 2.5614 0.9784 7.6585 2491.2686 −12.1311
−10 0.4925 2.9571 1.0212 12.3680 2206.5712 −22.1726

Ip +10 0.4830 0.5831 0.9613 5.7768 2752.9516 −2.9014
+5 0.4819 0.3540 9345 2.8279 2794.3002 −1.4430
+0 0.4802 0 0.9088 0 2835.2110 0
−5 0.4775 −0.5623 0.8858 −2.5308 2872.7706 1.3248
−10 0.4739 −1.3120 0.8606 −5.3037 2915.9077 2.8462

Ie +10 0.4810 0.1666 0.9110 0.2421 2836.8657 0.0584
+5 0.4806 0.0833 0.9099 0.1210 2836.0384 0.0292
+0 0.4802 0 0.9088 0 2835.2110 0
−5 0.4798 −0.0833 0.9077 −0.1210 2834.3833 −0.0292
−10 0.4794 −0.1666 0.9066 −0.2421 2833.5555 −0.0584

M +10 0.4942 2.9155 0.9562 5.2157 2859.1117 0.8430
+5 0.4841 0.8122 0.9220 1.4525 2846.8510 0.4106
+0 0.4802 0 0.9088 0 2835.2110 0
−5 0.4762 −0.8330 0.8955 −1.4635 2824.0998 −0.3919
−10 0.4722 −1.6660 0.8821 −2.9379 2783.6177 −1.8197

N +10 0.4814 0.2499 0.9121 0.3631 2829.3608 −0.2063
+5 0.4808 0.1249 0.9104 0.1761 2834.0033 −0.0426
+0 0.4802 0 0.9088 0 2835.2110 0
−5 0.4798 −0.0833 0.9077 −0.1210 2836.5971 0.0489
−10 0.4796 −0.1249 0.9071 −0.1871 2837.8207 0.0920

Table 2. Sensitivity analysis result of cases (percentage change in system parameters against
values for case 2)
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Parameter % change New t∗1 % in t∗1 New T ∗ % in T ∗ New TP ∗ % in TP ∗

in parameter
A +10 0.1255 3.0378 0.7812 2.6139 1369.1970 9.6219

+5 0.1236 1.4778 0.7712 1.3004 1308.3035 4.7466
+0 0.1218 0 0.7613 0 1249.0173 0
−5 0.1199 −1.5599 0.7513 −1.3135 1188.0843 −4.8785
−10 0.1180 −3.1199 0.7413 −2.6271 1127.1311 −9.7586

c +10 0.0961 −21.1002 0.7059 −7.2770 809.0986 −35.2212
+5 0.1085 −10.9195 0.7324 −3.7961 1023.3607 −18.0667
+0 0.1218 0 0.7613 0 1249.0173 0
−5 0.1384 13.6289 0.7985 4.8864 1325.2235 6.1013
−10 0.1512 24.1379 0.8279 8.7482 1534.3285 22.8429

h +10 0.1025 −15.8456 0.7544 −0.9063 936.0068 −25.0605
+5 0.1122 −7.8818 0.7579 −0.2102 1093.6899 −12.4360
+0 0.1218 0 0.7613 0 1249.0173 0
−5 0.1312 7.7176 0.7644 0.4072 1351.0756 8.1711
−10 0.1406 15.4351 0.7675 0.8144 1400.3892 12.1193

θ +10 0.0930 −23.6453 0.6971 −8.4329 1089.4099 −12.7786
+5 0.0933 −23.3990 0.7339 −3.5991 1110.5268 −11.0880
+0 0.1218 0 0.7613 0 1249.0173 0
−5 0.1526 25.2874 0.7842 3.0080 1307.8870 4.7133
−10 0.1749 43.5961 0.7864 3.2970 1483.5457 18.7770
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Parameter % change New t∗1 % in t∗1 New T ∗ % in T ∗ New TP ∗ % in TP ∗

in parameter
p +10 0.1323 8.6207 0.8300 9.0240 1632.0358 30.6656

+5 0.1230 0.9852 0.7705 1.2085 1367.6253 9.4961
+0 0.1218 0 0.7613 0 1249.0173 0
−5 0.1163 −4.5156 0.7143 −6.1737 1065.5064 −14.6924
−10 0.1124 −7.7176 0.6662 −12.4918 913.9849 −26.8237

a +10 0.1202 −1.3136 0.7394 −2.8767 1405.3350 12.5153
+5 0.1210 −0.6568 0.7510 −1.3529 1327.8283 6.3098
+0 0.1218 0 0.7613 0 1249.0173 0
−5 0.1226 0.6568 0.7705 1.2085 1168.9024 −6.4142
−10 0.1236 1.4778 0.7789 2.3118 1090.4125 −12.6984

b +10 0.0736 −39.5731 0.7121 −6.4626 1415.5333 13.3318
+5 0.1150 −5.5829 0.7341 −3.5728 1369.7022 9.6624
+0 0.1218 0 0.7613 0 1249.0173 0
−5 0.1286 5.5829 0.7760 1.9309 1120.5694 −10.2839
−10 0.1536 26.1084 0.7797 2.4169 1015.6940 −18.6805

Ip +10 0.1230 0.9852 0.7678 0.8538 1229.4481 −1.5668
+5 0.1222 0.3284 0.7634 0.2758 1239.2337 −0.7833
+0 0.1218 0 0.7613 0 1249.0173 0
−5 0.1212 −0.4926 0.7581 −0.4203 1255.5443 0.5226
−10 0.1206 −0.9852 0.7549 −0.8407 1268.5783 1.5661

Ie +10 0.1428 17.2414 0.7681 0.8932 1356.4450 8.6010
+5 0.1374 12.8079 0.7619 0.0788 1305.0269 4.4843
+0 0.1218 0 0.7613 0 1249.0173 0
−5 0.1191 −2.2167 0.7571 −0.5517 1202.2498 −3.7443
−10 0.0928 −23.8095 0.7525 −1.1559 1089.6043 −12.7631

M +10 0.1231 1.0673 0.7684 0.9326 1279.0956 2.4082
+5 0.1224 0.4926 0.7648 0.4597 1263.2656 1.1408
+0 0.1218 0 0.7613 0 1249.0173 0
−5 0.1211 −0.5747 0.7577 −0.4729 1233.0958 −1.2747
−10 0.1204 −1.1494 0.7541 −0.9458 1217.1282 −2.5531

N +10 0.1218 0 0.7633 0.2627 1245.3097 −0.2968
+5 0.1218 0 0.7623 0.1314 1247.1621 −0.1485
+0 0.1218 0 0.7613 0 1249.0173 0
−5 0.1217 −0.0821 0.7603 −0.1314 1249.2476 0.0184
−10 0.1217 −0.0821 0.7593 −0.2627 1251.1084 0.1674

Table 3. Sensitivity analysis result of cases (percentage change in system parameters against
values for case 3)
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Parameter % change New t∗1 % in t∗1 New T ∗ % in T ∗ New TP ∗ % in TP ∗

in parameter
A +10 0.4142 2.2716 0.9494 4.2495 1179.0224 11.1086

+5 0.4097 1.1605 0.9302 2.1412 1120.7355 5.6158
+0 0.4050 0 0.9107 0 1061.1442 0
−5 0.4001 −1.2099 0.8906 −2.2071 1000.2422 −5.7393
−10 0.3948 −2.5185 0.8701 −4.4581 936.784 −11.7219

c +10 0.3761 −7.1358 0.8296 −8.9052 814.44462 −23.2483
+5 0.3924 −3.1111 0.8750 −3.9201 951.4140 −10.3407
+0 0.4050 0 0.9107 0 1061.1442 0
−5 0.4216 4.0987 0.9575 5.1389 1192.6198 12.3900
−10 0.4398 8.5926 1.0095 10.8488 1329.7648 25.3142

h +10 0.3747 −7.4815 0.9026 −0.8894 877.9883 −17.2602
+5 0.3900 −3.7037 0.9070 −0.4063 970.9368 −8.5010
+0 0.4050 0 0.9107 0 1061.1442 0
−5 0.4196 3.6049 0.9138 0.3404 1148.0286 8.1878
−10 0.4338 7.1111 0.9165 0.6369 1231.6455 16.0677
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Parameter % change New t∗1 % in t∗1 New T ∗ % in T ∗ New TP ∗ % in TP ∗

in parameter
θ +10 0.3056 −24.5432 0.9095 −0.1318 748.5092 −29.4621

+5 0.3149 −22.2469 0.9096 −0.1208 999.3627 −5.8222
+0 0.4050 0 0.9107 0 1061.1442 0
−5 0.4268 5.3827 0.9170 0.6918 1195.2237 12.6354
−10 0.4911 21.2593 0.9589 5.2926 1579.9845 48.8944

p +10 0.4227 4.3704 1.0515 15.4606 1407.1874 32.6104
+5 0.4148 2.4198 0.9826 7.8950 1238.3154 16.6962
+0 0.4050 0 0.9107 0 1061.1442 0
−5 0.3993 −1.4074 0.8733 −4.1067 913.4203 −13.9212
−10 0.3770 −6.9136 0.7535 −17.2614 771.0424 −27.3386

a +10 0.4010 −0.9877 0.8720 −4.2495 1245.0784 17.3336
+5 0.4033 −0.4198 0.8927 −1.9765 1153.7143 8.7236
+0 0.4050 0 0.9107 0 1061.1442 0
−5 0.4064 0.3457 0.9265 1.7349 967.6472 −8.8110
−10 0.4075 0.6173 0.9406 3.2832 871.7970 −17.8437

b +10 0.3499 −13.6049 0.9039 −0.7467 1325.2813 24.8917
+5 0.3970 −1.9753 0.9069 −0.4173 1219.8596 14.9570
+0 0.4050 0 0.9107 0 1061.1442 0
−5 0.4202 3.7531 0.9172 0.7137 1002.2714 −5.5480
−10 0.4961 22.4938 0.9186 0.8675 957.2585 −9.7900

Ip +10 0.4050 0 0.9107 0 1061.1442 0
+5 0.4050 0 0.9107 0 1061.1442 0
+0 0.4050 0 0.9107 0 1061.1442 0
−5 0.4050 0 0.9107 0 1061.1442 0
−10 0.4050 0 0.9107 0 1061.1442 0

Ie +10 0.4145 2.3457 0.9248 1.5483 1145.3904 7.9392
+5 0.4099 1.2099 0.9179 0.7906 1104.2311 4.0604
+0 0.4050 0 0.9107 0 1061.1442 0
−5 0.3998 −1.2840 0.9030 −0.8455 1016.1212 −4.2429
−10 0.3944 −2.6173 0.8949 −1.7349 969.7853 −8.6095

M +10 0.4109 1.4568 0.9350 2.6683 1135.7230 7.0281
+5 0.4080 0.7407 0.9229 1.3396 1098.7579 3.5446
+0 0.4050 0 0.9107 0 1061.1442 0
−5 0.4020 −0.7407 0.8982 −1.3726 1023.5109 −3.5465
−10 0.3988 −1.5309 0.8856 −2.7561 984.5949 −7.2138

N +10 0.4069 0.4691 0.9234 1.3945 1035.1988 −2.4450
+5 0.4060 0.2469 0.9171 0.7028 1048.4694 −1.1944
+0 0.4050 0 0.9107 0 1061.1442 0
−5 0.4041 −0.2222 0.9042 −0.7137 1074.4838 1.2571
−10 0.4031 −0.4691 0.8978 −1.4165 1087.2285 2.4581

5.4 Discussion of the Results
It is observed from figure 3 together with tables 1, 2&3 that:

1. As the ordering cost A increases, t∗1, T
∗ and TP ∗ also increase for all cases. In practical

situations, when the ordering cost is high, the retailer tends to order more goods, which leads
to an increase in the replenishment cycle time and the overall total profit.

2. As the demand rate b increases, t∗1 and T ∗ decrease while TP ∗ increases for all cases. This
aligns with real-life expectations, as a higher demand rate typically leads to a decrease in the
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optimal replenishment length. In practical situations, when the demand rate is high, retailers
tend to order more goods, which results in more sales and an increase in total profit.

3. As the deterioration rate θ increases, t∗1, T
∗ and TP ∗ decrease for all cases. In real-life

situations, if the rate of deterioration is high, the replenishment length actually decreases
due to the deterioration of goods. This decrease in replenishment length, in turn, leads to a
decrease in the total profit.

4. As the selling price p increases, t∗1, T ∗ and TP ∗ also increase for all cases. This aligns with
expectations in real life. When the selling price is high and the annual total relevant inventory
costs increase, retailers tend to sell fewer items as customers tend to buy from cheaper retailers.
Consequently, the time it takes for the inventory to reach zero also increases.

5. As the interest earned Ie increases, t∗1, T ∗ and TP ∗ also increase for all cases. This is also as
expected in real life because as the interest earned is increasing the total profit function is
also increasing.

6. As the initial demand a is increasing, t∗1 and T ∗ decrease while TP ∗ increases for all cases.
In a real life situation, a higher demand leads to an increase in sales and hence an increase in
total profit.

7. As the interest charged Ip increases, t∗1 and T ∗ increase while TP ∗ decreases for all cases.
This aligns with real life situation because as the interest payable is increasing the total profit
function is decreasing, and the cycle time increases due to delay in payment.

8. As the upstream credit period M increases, t∗1, T ∗ and TP ∗ increase for all cases. In the real
world this is expected because an increase in the credit period means an increase in the cycle
time, and an increase in the total profit from items sold.

9. As the downstream credit period N increases, t∗1 and T ∗ increase while TP ∗ decreases for all
cases. In the real world this is expected because an increase in the credit period means an
increase in the cycle time, but the total profit decreases due to an increase in interest charged
for any delay incurred from N .

10. As the holding cost h and the purchasing cost c increase, t∗1, T
∗ and TP ∗ decrease for all

cases. In the real world higher holding cost and purchasing cost leads to higher inventory
costs which reduces the total profit. Also the cycle time decreases since the retailer tends to
buy fewer items due to high inventory costs.

6 Summary
In this paper, we have studied inventory system for non-instantaneous deteriorating items, which
presents challenges in business planning. The existing model by Maihami and Kamalabadi (2011)
was expanded to incorporate a demand function that considers both price as well as stock–dependent
demand. Additionally, a two–level trade credit system was included to enhance the model’s applica-
bility. Various assumptions were made, and a mathematical model with three cases was developed.
The non-linearity of the cost functions required the use of the Newton Raphson method to find op-
timal solutions. For the first case, it was found that t1∗1 = 0.4802 year (175 days),T ∗

1 = 0.9088 year
(332 days), TP ∗

1 = 2835.2110. For the second case, t2∗1 = 0.1218 year (44 days), T ∗
2 = 0.7613 year

(278 days), TP ∗
2 = 1249.00173, and for the third case, t3∗1 = 0.4050 year (148 days), T ∗

3 = 0.9107
year (332 days), TP ∗

3 = 1061.1442. Sensitivity analyses were carried out on the decision parameters
to see how sensitive are they on the model.
In conclusion, based on the numerical examples provided, the analysis demonstrates that the total
annual profit is highest in the first case, indicating that it is more cost-effective for the retailer to
order larger quantities, extend the inventory depletion period, and adjust the optimal cycle length.
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Sensitivity analysis reveals that the holding cost, deterioration cost and the interest charged rate
significantly influence the optimal cycle period and the maximum total profit.
It is recommended that the model can be extended to consider stochastic demand function, which
would allow for better demand forecasting by incorporating randomness and variability. Further-
more, the model could be extended to include dynamic backlogging so as enhance its practicality
and relevance in real-world scenarios.
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