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Abstract

This paper explores the properties of multivalued maps associated with quantum stochastic
operators as formulated by Hudson and Parthasarathy. We focus on key aspects including
the measure of noncompactness, continuity of multivalued operators, and the condensing prop-
erty. Also, we consider measurability, strong measurability, the Castaining representation, and
the Lusin property. These findings contribute to a deeper understanding of the behavior of
multivalued operators in quantum stochastic analysis and highlight the interconnectedness of
these properties within the framework of quantum stochastic analysis. By investigating this
properties, our work provides valuable insights that could inform future research and enhance
the theoretical foundation of quantum stochastic processes.

Keywords: Multivalued operators, Quantum stochastic operator, Quantum stochastic processes.
MSC2010: 35Q40.

1 Intoduction
The theory of multivalued maps has evolved into a well-established and sophisticated branch of
modern mathematics, characterized by its own distinct subjects and methodologies. This area of
study has proven to be immensely valuable, particularly in the field of differential equations, and
has found applications across a variety of other mathematical domains. The foundational work of
Kuratowski [1] was pivotal in treating continuous multivalued maps as independent mathematical
entities, paving the way for extensive research and analysis in this field. Kuratowski significantly
advanced the theory of multivalued functions by formalizing the concept of multivalued maps, He
introduced the idea of a set-valued function, which maps each point in its domain to a set of possible
outputs rather than a single output. He developed several key theorems regarding the continuity
and compactness of multivalued maps. One of his critical contributions is the characterization of
continuity for multivalued functions, establishing conditions under which the graph of a multivalued
map is closed. The literature surrounding the analysis of multivalued maps is vast and diverse, with
numerous monographs and studies dedicated to elucidating both the theory and its practical appli-
cations. Prominent contributions include the works of Aubin and his colleagues [2–8]. Jean-Pierre
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Aubin made significant contributions to the field of set-valued analysis, particularly in the study of
multivalued maps. His work focused on the mathematical properties and applications of set-valued
functions, which assign a set of values to each point in their domain. He is known for formulating
important theorems that address the continuity, compactness, and convexity of multivalued maps.
His results often provide conditions under which solutions to differential inclusions exist, which are
integral in optimization and control theory. Aubin’s research has implications for differential inclu-
sions, where the solution is not a single function but a set of functions. This framework is crucial
in understanding systems governed by multiple criteria or constraints, particularly in economics
and engineering. He also contributed to the development of fixed point theorems for multivalued
maps, which are essential for proving the existence of solutions to various mathematical problems,
including those in non-linear analysis and game theory. Castaing and Valadier [9], Deimling [10],
and Federchuk and Filippov [11]. A comprehensive bibliographic guide to the general theory of
multivalued maps can be found in the text by Hu and Papageorgious [12].

In the realm of quantum mechanics, quantum stochastic differential inclusions serve as a mul-
tivalued counterpart to quantum stochastic differential equations. This framework represents a
non-commutative extension of classical differential equations. The groundwork for this operator-
theoretic generalization was laid by Hudson and Parthasarathy in 1984 [13], giving rise to what is
now known as quantum stochastic calculus. This advanced calculus encompasses the construction of
quantum stochastic integrals, the formulation of quantum Itô’s formula, and the exploration of ex-
istence and uniqueness for linear quantum stochastic differential equations (QSDEs). Furthermore,
it delineates the necessary and sufficient conditions for the unitarity of solutions and the dilation of
quantum dynamical semigroups. Central to this theory is the conceptualization of an integration
framework on Boson Fock space, characterized by four integrative processes—creation, annihila-
tion, preservation (or gauge), and time, denoted as A+

f , Af ,Λπ and t respectively. These processes
are intricately linked to well-known constructs in quantum field theory. Since 1984, Hudson and
Parthasarathy’s formulation of quantum stochastic calculus; there have been numerous reformula-
tions and generalizations of quantum stochastic integrals. Among the most notable advancements
is the extension of exponential vectors to a broader integral domain through an abstract Itô calculus
on Fock space, as explored by S. Attal [2]. This work employs techniques from non-classical stochas-
tic analysis and Malliavin calculus. Attal also developed an approach that synergizes the original
definitions of Hudson and Parthasarathy with these newer methodologies. The first multivalued
generalization of quantum stochastic calculus was introduced by Ekhaguere [14], who defined mul-
tivalued stochastic processes on certain locally convex spaces. Ayoola in 2008 looked at topological
properties of solution sets of Lipschitzian Quantum Differential Inclusions [15]. In 2013 Ogundiran
and Ayoola considered lower semicontinuous quantum stochastic differential inclusion [16]’

In the present paper, we delve into various properties of quantum stochastic multivalued op-
erators. Our exploration includes their upper semicontinuity, lower semicontinuity, compactness,
measurability, measures of non-compactness, the condensing property, and the Castaing representa-
tion. Through this investigation, we aim to contribute to the broader understanding of multivalued
maps and their applications within the framework of quantum stochastic calculus.

2 Multivalued Maps
The classical characterizations of continuity of a single-valued map is grouped into different cate-
gories when generalized to multifunctions. Let Q and S such that

P (S) = {B ⊂ S|B ̸= ∅} and D ⊆ S

be topological spaces. Φ : Q → P (S) be a multivalued map. The small preimage Φ−1
+ (D) of a set

D is given by the collection
Φ−1

+ (D) = {q ∈ Q : Φ(q) ⊂ D},
the complete preimage Φ−1

− (D) of a set D is given by the collection

Φ−1
− (D) = {q ∈ Q : Φ(q) ∩D ̸= ∅}
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We adopt the following definitions from [Kamenskii et al. 2001] [17]
Let Q and S be topological spaces and let P(S) represent the collection of every nonempty subsets
of S, A multivalued map Φ : Q → P(S) is

• Upper semicontinuous (usc) given

Φ−1(V ) = {q ∈ Q : Φ(q) ⊂ V }

to be an open subset of Q. for each open V ⊂ S.

• Closed if its graph defined by

GraphΦ := {(q, s) : s ∈ Φ(q)}

is a closed subset of the product space Q× S

• Measure of noncompactness (MNC): For E = R ⊗ Γ(H) and (B,≥) a partially ordered
collection, a function γ : P(E) → B is said to be a (MNC) in E if γ(CoΛ) = γ(Λ) for each
Λ ∈ P(E)
A MNC is said to be
(i) Monotone if Λ0,Λ1 ∈ P(E), Λ0 ⊂ Λ1 implies γ(Λ0) ≤ γ(Λ1)
(ii) Non singular if γ({a} ∪ Λ) = γ(Λ) for each a ∈ E, Λ ∈ P(E),
(iii) Real if B[R+] with respect to the natural ordering and γ(Λ) < +∞ for each bounded
Λ ⊂ E

Theorem 1 (Kamenskii et al., 2001) [17] Suppose the following conditions hold:

i M ⊂ E is a closed convex subset of E

ii The multivalued map Φ : M → KV (M) is closed and γ−condensing

iii γ is a nonsingular measure of non compactness stated on subsets of M,

Therefore, the fixed points set
FixΦ := {q : q ∈ Φ(q)} ̸= ∅

The theorem stated below gives some criteria for lower semicontinuity
Theorem 2 [Cardinalli & Rubbioni. 2005] [10]

i The multivalued map Φ is lower semicontinuous

ii The set Φ−1
− (W ) is open for every open set W ⊂ S

iii The set Φ−1
+ (X) is closed for every closed set X ⊂ S

iv Given that the system of open collections {Wj}j∈J form a base for the topology of S such
that the collection Φ−1

− (Wj) is open in Q

v Φ−1
+ (D) ⊇ (Φ−1

+ D) for every set D ⊂ S

vi Φ(B) ⊆ Φ(B) for every set B ⊂ Q,

vii for each q ∈ Q, if {qα} ⊂ Q is a generalized sequence such that qα → q,, then for each
s ∈ Φ(q), there is a generalised sequence {sα} ⊂ S s− α ∈ Φ(sα), sα → s

Theorem 3 (Kamenskii et al, 2001)

(i) Let Φ : Q → K(S) be a locally compact and closed multivalued map, such that Φ is upper
semicontinuous.
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(ii) Let Φ : Q → C(S) be a closed multivalued map. If B ⊂ Q is compact collection, its image
Φ(B) is a subset of S and it is closed

(iii) Let Φ : Q → K(V ) be an upper semicontinuous multivalued map. If B ⊂ Q is a compact
collection,

then its image Φ(B) is a subset of S and it is compact
Here

Φ(B) =
⋃
q∈B

Φ(q)

Definition 1

Let Λ be a closed subset of E, γ : P(E) → B be measure of non compactness on E, and
K(E)[Kν(E)] represent the collection of all nonempty compact (respectively compact convex) sub-
sets of E.
A multivalued map Φ : W → K(E) is called γ−condensing multivalued map if for each Λ ∈ W the
correspondence γ(Φ) ≥ γ(Λ) logically suggest the relative compactness of Ω.

3 Main Result
Let I ⊂ R such that I = [0, T ] be an interval that is compact, let µ be a Lebesque measure on the
interval I and B̃ a locally convex space.
(i)A multivalued map F : I → K(B̃) is measurable if for each open subset ω ⊂ B̃ the inverse set
denoted by F−1

+ (ω) is measurable.
Remark 1: An equivalent definition is the measurability of the complete preimage F−1

− of every
closed subset Q ⊂ B̃
(ii) A map f : I → B̃ is a measurable selection of a multivalued map F : I → K(B̃) if f is measurable
and also if f(t) ∈ F (t) for µ− almost all t ∈ [0.T ]
The collection of all selections that are measurable in F will be represented by SF

(iii) A countable family {fnξ}∞n=1 ⊂ SF is referred to as a Castaining representation of F if

∞⋃
n=1

f(t) = F (t), for Lebesque measure µ− almost all t ∈ [0, T ]

F : I → K(B̃) is said to be a step multivalued map if there exists a partition of I into a countable
collection of disjoint measurable subsets {Ij},∪jIj = I to this extent F is a constant on every Ij
(iv) A multivalued map F : I → K(B̃) is strongly measurable if there is a sequence {Fn,ξ}∞n=1, of
steps multivalued maps to this extent

h(Fn,ξ(t), Fξ(t)) → 0 as n → ∞

for µ− almost every t ∈ [0, T ] such that h is the Hausdorff metric on K(B̃)

{Fξ(t) := (F (t))ξ, ξ ∈ D⊗E

Proposition 1
For each ξ ∈ D⊗E, and for the multifunction Fξ defined by Fξ : [0, T ] → K(Ẽξ) where

Ẽξ = SF

∞⋃
n=1

Fξ,n(I) ⊆ B̃ξ where I = [0, T ]. (1)

and for µ−a.e t ∈ [0, T ], Fξ(t) ⊆ Ẽξ, then the following conditions are well defined:
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(a) Fξ is measurable for each ξ ∈ D⊗E,

(b) for each countable dense subset {xnξ}∞n=1 of Ẽξ, the function {Φnξ}∞n=1 defined by Φn,ξ :
[0, T ] → R, Φn,ξ(t) = d(xnξ, Fξ(t)) are measurable.

(c) for each ξ ∈ D⊗E, Fξ(.) has a Castaining representation.

(d) Fξ is said to be strongly measurable multivalued map

(e) Fξ is said to be measurable as a single-valued map from I = [0, T ] into a pseudo-metric space
(K(Ẽξ), h)

(f) Fξ is said to have the Lusin property, by implication for each δ > 0, there exist a subset Ij ⊂ I
that is closed such that µ(I \ Ij) ≤ δ and the limitation of Fξ(.) on Ij is continuous.

Proof :
(a) ⇔ (b) The collection of the balls {Br(xnξ)} of radius r forms a countable base of the topology
of the space Ẽξ. Since every element y in Ẽξ, is of the form ỹξ for some ỹξ ∈ B̃ξ, then

Br(xnξ) = {ỹξ ∈ B̃ξ/||ỹξ − xnξ|| < r||}

where ||.|| is the norm of R⊗ Γ(H),H = L2
γ(R+).

This implies that measurability of Fξ is equivalent to the measurability of the preimage

F−1
ξ (Br(xnξ)) = {t ∈ I|Fξ ∩Br(xnξ) ̸= ∅

which is the same as the Lebesgue collection

∆xn,ξ
(r) = {t ∈ I|ϕn,ξ(t) < r}

For each n, the function ϕn,ξ(t) = d(xnξ, Fξ(t)) measures the distance of xnξ from Fξ(t) Since Fξ

is measurable and d is continuous, the function ϕn,ξ is also measurable.
(b) ⇒ (c)
Given that N = {xnξ}∞n=1 is a countable subset of the set Ẽξ. and is dense in Ẽξ. we state that the
sequence of functions

{φk,ξ}∞k=1, φk,ξ : [0, T ] → Ẽξ

by the inductive process, we set φ1,ξ(t) = xiξ such that for any t ∈ I, i is the least index, to this

extent Φi,ξ = d(xiξ, Fξ(t)) ≤
1

2
if φk,ξ(t) is constructed then

φk+1,ξ(t) = xiξ

assuming that t ∈ I, i is the least member to this extent

Φi,ξ(t) ≤
1

2k+1

and
d(φk,ξ(t), xiξ) ≤

1

2k−1

we observed that the functions φk,ξ are measurable. The functions have a countable number of the
values,also the Lebesgue collections of the function Φi,ξ is given by

∆i,ξ(α) = {t ∈ I : Φi,ξ(t) ≤ α}

are measurable.
The function φ1,ξ is therefore measured since the set

{t ∈ I : Φ1,ξ(t) = xi} = ∆i,ξ(
1

2
) \

⋃
p<i

∆p,ξ(
1

2
)
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By induction hypothesis, assume that the function φk,ξ, k ≥ 1 is measurable,then the set

{t ∈ I : φk+1,ξ(t) = xiξ} =

{
∆i,ξ

(
1

2k+1

)⋂[
t ∈ I : d (φk,ξ(t), xpξ) ≤

i

2k−1

]}

\

⋃
p<i

[
∆p,ξ

(
1

2k+1

)⋂[
t ∈ T : d (φk,ξ(t), xpξ) ≤

i

2k−1

]]
giving the measurability of the function φk+1,ξ for every t ∈ I, we have

d(φk,ξ(t), φk+1,ξ(t)) ≤
1

2k−1
.

Then the sequence {φk,ξ}∞k=1 converges to a measurable function uniformly
φN,ξ : I → Ẽξ since

d(φk,ξ(t), Fξ(t)ξ) ≤
1

2k+1

then it follows that φN,ξ is a measurable selection Fξ(.). Therefore a measurable selection of φN,ξ

can be assigned to every countable dense subset N ⊂ Ẽξ. Again, if for any t ∈ I and any xξ ∈ Fξ(t),
we have

d(xξ, x1ξ) ≤
1

2k
,

then
φk,ξ(t) = x1ξ

and
d(xξ, φN,ξ(t)) ≤

1

2k−2
+

1

2k

Let {Nm}∞m=1 be a sequence of countable subsets of Ẽξ that is dense, the notion is stated as follows:
if

N0 = {x1ξ, x2ξ, ˙........, xiξ ˙.....}

then
Nm = {xm1ξ, xm2ξ, ˙........, xmiξ ˙.....}

where xm1ξ = xm+rξ. The sequence of functions {fm1ξ}∞n=1 such that fm1ξ = φNm,ξ(t) form a
Castaing representation of Fξ(.). We know that if t ∈ I, and xξ ∈ Fξ(t) and integer k > 0 are given,
therefore we can figure out a number m to this extent

d(xξ, φNm,ξ(t)) ≤
1

2k−2
+

1

2k

(c) ⇒ (a). Assume that Fξ has a Castaing representation, that is a sequence {xnξ}∞n=1 ⊂ Ẽξ such
that Fξ(t) = {xnξ : xnξ ∈ Fξ(t)} for µ a. e t ∈ [0, T ]. This implies that Fξ is measurable
(a) ⇒ (d).
Given that Fξ : [0, T ] → K(Ẽξ) is measurable, there exist f(t) : [0, T ] → Ẽξ such that f(t) ∈ Fξ(t)

for a.e t ∈ [0, T ]. Let {xnξ}∞n=1 be a dense countable subset of Ẽξ this implies that for every x ∈ Ẽξ

there exist a {xnξ}∞n=1 such that xnξ → x, for each n, fnξ(t) = minx∈x1,..,xn ||x− Fξ(t)||ξ, since Fξ

is measurable and ||.|| is continuous, we have ||x− Fξ(t)||ξ = infz∈Fξ(t) ||x− z||. Since {xnξ}∞n=1 is
dense in Ẽξ, the sequence {fnξ} converges to Fξ in the sense that the closure of {fnξ}∞n=1 is equal
to Fξ a.e

(d) ⇔ (e) ⇔ (f) it is well established that the pseudo-metric space (K(Ẽξ), h) is separable.
To show that (f) ⇒ (a) Let A ⊂ Eξ be a closed set. For any given ϵ > 0, let Iϵ ⊂ I be a closed
subset such that µ(I/Iϵ) ≤ ϵ given that the limitation of Iϵ is continuous; furthermore inverse image
F−1
− (A) contain a closed set F−1

− (A)∩ Iϵ and another set F−1
− (A)∩ (I/Iϵ) whose outer measure ≤ ϵ
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∴ F−1
− (A) is measurable.

(c) ⇒ (e)
Let N ∈ K(Eξ), also let {fm,ξ}∞m=1 be a Castaing representation of F. Then

h(Nξ, Fξ(t)) = max{sup
m

d(fm,ξ(t), Nξ), sup
x∈N

inf
m

xξ − fm,ξ(t)}

∴ t → h(Nξ, Fξ(t)); t ∈ I

is measurable Q.E.D
Theorem 4

Assume that for each x ∈ B̃, ξ ∈ D⊗E, the multivalued map

P (., x)ξ : [0, T ] → K(B̃ξ)

is strongly measurable. Then the map is measurable and has a Castaining representation.

Proof
Assume that P (., x)ξ is strongly measurable, there exist a sequence of a measurable single-valued
function {fn,ξ(t)}∞n=1 such that

P (t, x)ξ = {fnξ(t)}∞n=1, for a.e t ∈ [0, T ]

since each fn,ξ(t) is measurable for open set U ∈ B̃ξ, the preimage f−
n (U) is measurable. Therefore,

for each t the set [t ∈ [0, T ] : P (t, x)ξ ∩ U ̸= ∅] is measurable, which implies that P (t, x)ξ is
measurable. Also, we have

P (t, x)ξ = {fnξ(t)}∞n=1, for a.e t ∈ [0, T ]

such that fnξ(t) is a sequence of a measurable selections. Let {hnξ(t)} be defined by

hnξ(t) =
1

n

n∑
k=1

fk(t)

where fk is a measurable function. Each hnξ(t) is a measurable selection. The closed convex hull of
{hnξ(t)}∞n=1, for each t is a compact, convex set that is induced in P (t, x)ξ. The strong measurability
of P (t, x)ξ implies that

P (t, x)ξ = conv({hnξ(t)}∞n=1) for a.e t ∈ [0, T ]

where conv denote the convex hull.□

Corollary 1
Let {Fj}j∈J be an almost countable collection of measurable multivalued maps

Fj : I → K(B̃ξ)

to this extent ⋂
j∈J

Fj ̸= ∅ for all t ∈ I

therefore the intersection of these multivalued maps⋂
j∈J

Fj : I → K(B̃ξ)

is measurable.

Theorem 5
Let P : I × B̃ → 2B̃ be a multivalued map such that for each ξ ∈ D⊗E,
P(., .) : I × B̃ → K(B̃ξ) satisfying the following
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(i) for any x ∈ B̃ the multimap Fξ(.) = P(., X)ξ : I → K(B̃ξ) has a strongly measurable selection;

(ii) for almost all t ∈ I, the multimap P(t, .)ξ : B̃ → K(B̃ξ) is upper semicontinuos.

Therefore for any stochastic process q : I → B̃ such that the associated map
q(.)ξ : I → B̃ξ is strongly measurable, there is a strongly measurable selection ϕ(.)ξ : I → K(B̃ξ)
of the multimap Φ(.)ξ : I → K(B̃ξ) such that

Φ(t) = P(t, q(t))ξ.

Proof
Let

{qn(.)}∞n=1, qn(.)ξ : I → B̃ξ, qn(.)ξ ∈ B̃ξ,

be a sequence of step functions for some simple processes qn : I → B̃ converging a.e on I respectively
to q(.) in B̃. Using the assumption in (i), we formulate a sequence of maps that is strongly measurable
{ϕn(.)ξ}∞n=1,
ϕn(.)ξ : I → B̃ξ,
for some processes ϕn : I → B̃, n = 1, 2, ˙.....∞ and to such that

ϕn(t) ∈ P(t, ϕn(t)ξ), µ.a.e t ∈ I

Redefining this sequence on a set of a null measure, we can assume the sequence of maps {ϕn(.)}
takes values in a separable locally convex subspace

E
′
ξ = SF

∞⋃
n=1

ϕn(I) of B̃ξ

For a.e t ∈ I and m ≥ 1, we can define;

Φm(t)ξ :=

∞⋃
k=m

ϕk(t)ξ

From condition (ii) and theorem (3 (ii)), it implies that the collections Φn(t)ξ are compact also by
theorem (1) {Φnξ}∞n=1, Φn(.)ξ : I → K(E

′

ξ) is the sequence of measurable multivalued maps.
For almost all t ∈ I, the sets Φm(.)ξ,m ≥ 1 becomes a sequence of compact sets that is decreasing
also considering (Corollary 1), we can finally say that the multivalued map Φ̃(.)ξ : I → K(E

′
),

given by

Φ̃(t)ξ =

∞⋂
m=1

Φm(t)ξ, for µ− almost all t ∈ I,

is well posed and measurable. From assumption in (ii), we can infer that

Φ̃(t)ξ ⊆ Φ(t)ξ = P(t, q(t))ξ, for µ− a.e t ∈ I,

also applying of proposition (1) give rise to the existence of a map ϕ : I → B̃ such that ϕ(.)ξ ∈ SΦ(.)ξ

which is strongly measurable selection of Φ(.)ξ,
since Φ̃(t)ξ ⊆ E

′

ξ. Q.E.D

Corollary 2
Suppose the conditions in theorem (5) holds. Then for every adapted absolutely continuous mul-
tivalued stochastic process Q : I → 2B̃, such that the associated multifunction Q(.)ξ : I → K(B̃ξ)
is strongly measurable, then there exist a strongly measurable selection ϕ(.)ξ : I → B̃ξ of a multi-
function Φ such that

Φ(t)ξ = P(t,Q(t))ξ
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Proof
Redefining the multimap Q(.)ξ on a null set in I, we can assume that its range is contained in a
separable subspace of E

′

ξ. of B̃ξ Then by Theorem (5) we were able to established a selection q(.)ξ

that is a strongly measurable multifunction from Q(.)ξ where q : I → B̃ a selection of Q to which
theorem (5) was applied.

4 Conclusion
The measurability, strong measurability, the existence of a Castaining representation, measurabil-
ity as a single-valued map, and the Lusin property—serves to unify different perspectives on the
behavior and properties of multifunctions (set-valued maps) in functional analysis and measure
theory. The importance of these properties lies in their ability to provide a cohesive and unified
theory of multifunctions. They ensure that different ways of understanding and analyzing these
objects are consistent with each other and that the properties they exhibit are robust across various
perspectives. This properties is a powerful tool in both theoretical exploration and practical ap-
plication within mathematical. Each of these conditions provides a different way of understanding
and working with multifunctions. Demonstrating their properties shows that no matter which per-
spective or definition you start with, you can arrive at the same conclusion about the nature of the
multifunction. This consistency is crucial in mathematical analysis, ensuring that the concept is
robust and well-defined across various contexts The importance of extending the property relations
of measurability, strong measurability, and related properties to quantum multivalued operators
lies in the unification and generalization of classical mathematical concepts to the quantum realm.
This extension supports the development of a consistent and comprehensive framework for quantum
theory, enhances our ability to model and compute in quantum systems, and provides new insights
into the foundational aspects of quantum mechanics and quantum information science.
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