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Abstract

Amebiasis is a parasitic infection of the intestine caused by the amoeba Entamoeba histolyt-
ica, and it is endemic in tropical countries with poor sanitation and hygiene practices. To
explore the dynamics of amebiasis and identify effective control interventions, a mathematical
model is developed. This model incorporates a treatment class within the human population
and accounts for the concentration of the amebiasis pathogen in the environment. The study
derived the steady states, stability, and the basic reproduction number of the infection. A
global sensitivity analysis is also conducted to identify the most significant parameters influ-
encing the disease’s spread. Subsequently, an optimal control model is formulated, featuring
four time-dependent controls: hygiene practices, efficient screening of infected individuals, ef-
fective treatment, and disinfection/sterilisation of the environment. This model is analysed
and simulated across four categories — single, double, triple, and quadruple combination cases
— to assess the impact of these control measures. Additionally, a cost-effectiveness analysis
is conducted using the incremental cost-effectiveness ratio (ICER) method. The findings of-
fer valuable insights that can help policymakers effectively control the disease while managing
limited resources. The results indicate that any control combination that includes efficient
screening of infected individuals is the most cost-effective strategy for reducing amebiasis in
society. However, in a single case where resources are limited, Strategy 2 - efficient screening
of infected individuals - emerges as the most cost-effective method for eradicating the disease.
With additional resources, the most effective double-combined control strategy for disease erad-
ication is Strategy 8, which combines Strategy 2 with efficient treatment. For the triple control
strategy, the most cost-effective control Strategy is Strategy 14, which integrates Strategy 8 and
disinfection/sterilisation of the environment. However, the overall most cost-effective strategy
remains Strategy 2.
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1 Introduction
Amebiasis is common in tropical countries with poor sanitation and hygiene practices [1, 2]. It is
endemic in developing countries of the Indian subcontinent, parts of Central and South America,
Mexico, Asia, and certain parts of Africa [3,4]. It has become a public health challenge [5]. About
50 million people across the globe develop an amebiasis infection each year, and about 0.1 million
people die of this disease yearly [4].

Amebiasis is known to be a parasitic infection of the intestine caused by the amoeba Entamoeba
histolytica or E. histolytica. E. histolytica is a single-celled protozoan that usually enters the human
body when a susceptible individual ingests cysts through food or water [2, 6]. It can also enter the
body through direct contact with faecal-oral means [3, 4]. It can also be transmitted during anal
sex, and oral sex [1, 5]. The cysts are a relatively inactive form of the parasite that can live for
several months in the soil or environment where they were deposited in faeces [6, 7].

Only about 10% to 20% of people infected with E. histolytica become ill [5, 6]. The symptoms
are mostly mild, which include diarrhoea, stomach pain and stomach cramping. Symptoms usually
appear (incubation period) within 2 to 4 weeks, but can develop later [4]. After the incubation
period, the infected individual may develop either an asymptomatic stage or an acute stage of
amebiasis colitis [7, 8]. In a rare complication of amebiasis, it can enter the bloodstream, and go
through various internal organs, which mostly can end up in the liver, but can also infect the heart,
brain or other organs [2, 3].

If this disease invades the internal organ, it tends to cause severe illness and death, potentially [1].
The mortality rates of dysenteric syndrome due to E. histolytica are less than 1% but the mortality
due to its complications rises to 75% [7].

Certain precautions can be taken to prevent amebiasis, even though there is no vaccine against
the disease presently. These precautions include proper sanitation, thorough hand washing with
soap and water after using the toilet and before handling food. Additionally, when travelling to areas
where the disease is endemic, hygiene practices should be observed at all times [2, 3, 7]. Following
a diagnosis, the disease can be treated with antibiotics. However, if left untreated, it may become
fatal. [4].

The mathematical modelling of infectious diseases is an essential tool for analysing the dynamic
nature of infectious diseases. It helps develop control strategies to forecast appropriate control
strategies [9]. While an optimal control problem requires regularising and solving problems by
choosing the best way in a dynamic process, which depends on controls and is always subject to
constraints [25]. This was employed by [11, 15, 38] among others. Meanwhile, Cost-effectiveness
analysis (CEA) is a type of economic evaluation and assessment focused on efficiency to maximise
the value of available resources, or, precisely, the value of money [26] as used by [12,21,24,39].

Many authors have utilised the concept of mathematical modelling to analyse the dynamics of
infectious diseases, such as [9] and [10], who employed mathematical modelling to study COVID-19,
and [11], who investigated the dynamics of the Zika virus using this approach. Relatedly, [12] used
the same concept to investigate the dynamics of typhoid fever.

Few authors have worked on amebiasis using the concept of mathematical modelling, among
them are: [14–19]. Although they produced some useful results, [14] examined the SEICR model,
whose findings suggest that infection propagation must reach a steady state, allowing for the eval-
uation of the extent and depth of the infection in a reasonable manner. However, they did not
take into account the treated compartment or the disease concentration in the environment. Addi-
tionally, they did not consider optimal control or cost-effectiveness analysis, which are essential for
determining the most cost-effective strategies, particularly in developing countries where resources
are limited and the disease is endemic.

Also, [15] studied SEICR model with incorporation of amebiasis pathogen compartment, B.
Their results show that for single control, an awareness program should be considered, while for
double control, an awareness program and treatment are the most effective strategies for eliminat-
ing the disease. They concluded that the most effective approach to eliminating the disease is a
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combination of these three controls, forming a triple control. However, they did not consider the
treatment compartment or the cost-effectiveness analysis, which would help determine the most
cost-effective strategy, especially in limited-resource countries where the disease is endemic.

Mpeshe [16] worked on SEIR model and their outcome revealed that personal prevention and
hygiene practices will help to reduce the number of cysts ingestion and as well reduce the trans-
mission rate. They failed to consider the treated compartment, as well as the disease pathogen
concentration class, which is the primary means of contracting the disease. They did not account
for this in their force of infection, nor did they consider global sensitivity analysis, optimal control,
and cost-effectiveness analysis in their work.

[17] also formulated SEICR with the pathogen compartment, and their results show that
indirect transmission has a greater influence on the spread of the disease, while screening, treatment,
and sanitation can significantly reduce its spread. However, they did not consider the treatment
compartment, nor did they perform global sensitivity analysis in their work. They also failed to
consider optimal control and cost-effectiveness analysis in their study.

[18] analysed the SEICR model for amebiasis dynamics, highlighting issues with the existence
and uniqueness of the Initial Value Problem (IVP) solutions under certain parameter conditions.
Their work overlooked the treatment compartment, the amebiasis pathogen class, global sensitivity
analysis, and the endemic equilibrium state. Additionally, optimal control and cost-effectiveness
analysis were not addressed.

Mwaijande and Mpogolo [19] studied SEICR in relation to the amebiasis pathogen and found
that carriers significantly impact the prevalence of amoebiasis, and ignoring them hampers contain-
ment efforts. However, they did not include a treatment compartment or conduct global sensitivity
analysis, optimal control, and cost-effectiveness analysis, which are crucial for determining cost-
effective strategies in resource-limited, endemic regions.

This study aims to investigate the dynamics of amebiasis by incorporating a treatment compart-
ment, the amebiasis pathogen compartment, and examining both direct and indirect transmission
modes, providing cost-effective optimal control interventions. This is to prevent infected individuals,
through treatment, from shedding and spreading the disease in the population, and also cut off the
means of transmission from the environment [1, 3]. A six-compartmental deterministic model will
be developed, including: Susceptible human population, Sh(t); Latent human population, Lh(t);
Infected human population, Ih(t); Treated human population, Th(t); Recovered human population,
Rh(t); and amebiasis pathogen concentration in the environment, Pc(t).

The paper is organised as follows: Section 2 presents the model formulation and mathematical
analysis of the amebiasis model. Section 3 includes results from global sensitivity analysis using
Latin Hypercube sampling (LHS) and optimal control analysis. Section 4 discusses numerical
simulations and cost-effectiveness analysis. Section 5 concludes with an overview of the research
findings. This initiative aims to protect individuals who are at high risk of exposure to the disease
due to to their occupations and to analyse the effects of treatment on infected humans

2 Model formulation
We develop a non-linear mathematical model to study the dynamics of amebiasis, incorporat-
ing a treatment compartment and pathogen compartment, along with both direct and indirect
transmission modes. The human population is divided into five compartments at time t: Suscep-
tible Sh(t), Latent Lh(t), Infected Ih(t), Treatment Th(t), and Recovered Rh(t), where N(t) =
Sh(t) + Lh(t) + Ih(t) + Th(t) +Rh(t). The model also considers the pathogen concentration in the
environment Pc(t). The following assumptions have been considered:

• It is assumed that the total human population in a given society is homogeneous at all
times [2, 3].

• It is assumed that people in the treatment class (infected individuals undergoing treatment)
can also spread the disease, as they are not confined to a restricted place [3]. Although
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they are aware of having the disease, the rate of contracting it from such individuals might
be minimal because some of them may be more conscious, which prompts the idea of the
modification parameter α.

• It is assumed that people can die of the disease in both Ih(t) and Th(t) [1, 5, 6].

In the model, births and immigration are added to the susceptible human population, Sh(t), at
the rate of Λh, and this population also increases at the rate of γ due to the recovery class from
loss of immunity. [3, 7]. Individuals in the compartment Sh(t) can contract the disease at a rate
λ, transitioning to the pre-infected or latent state Lh(t). The force of infection is defined by the
equation λ =

[
β1(Ih + αTh) + β2Pc

]
. In this equation, β1 represents the transmission rate from

human to human, α is the modification parameter for individuals receiving treatment, and β2 is
the transmission rate from the environment to humans [1, 2, 4].

Individuals in the Lh compartment decrease at a rate of σ and subsequently progress to the
infected class Ih after the incubation period [1].
The population of individuals in the infected class, denoted as Ih, decreases due to disease-induced
mortality, represented by the rate d1, as well as from the screening rate τ . This population then
progresses to the treated class, Th [3]. Meanwhile, the population of Th declines due to disease-
induced mortality at the rate d2 and as a result of the treatment rate η, which allows individuals
to progress to the recovered class, Rh [6]. Additionally, µh represents the natural death rate of the
human population.

The concentration of pathogens in the environment increases due to shedding from both the
infected class, Ih, and the treated class, Th, at rates π1 and π2 respectively [2]. Furthermore, the
concentration of pathogens decreases due to the natural decay rate, µc [3].

A graphical representation of the model formulation is shown in Figure 1, while the state vari-
ables and parameter descriptions are detailed in Table 1.

Figure 1: Systematic Diagram of the Amebiasis Model .

The following system of non-linear differential equations is formulated based on the assumptions
of the model, the parameters in Table 1 and Table 2, respectively, while the flow diagram is shown
in Figure 1 with the corresponding system of equations in (2.1):
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Table 1: State Variables of the Model
State Variable Epidemiological Interpretation Unit

Sh(t) Susceptible human population per time, t Human population
Lh(t) Latent(pre-infectious) human population per time, t Human population
Ih(t) Infected human population per time, t Human population
Th(t) Human population undergoing treatment per time, t Human population
Rh(t) Recovered human population per time, t Human population
Pc(t) Amebiasis pathogen concentration in the environment per time, t Pathogen concentration

dSh

dt
= Λh − λSh + γRh − µhSh,

dLh

dt
= λSh − (σ + µh)Lh,

dIh
dt

= σLh − (τ + d1 + µh)Ih,

dTh

dt
= τIh − (η + d2 + µh)Th,

dRh

dt
= ηTh − (γ + µh)Rh,

dPc

dt
= π1Ih + π2Th − µcPc,



(2.1)

with non-negative initial conditions, Sh(0), Lh(0), Ih(0), Th(0), Rh(0), and Pc(0), where λ =[
β1(Ih + αTh) + β2Pc

]
.

The model parameters are assumed to be non-negative except for human recruitment, which is
strictly positive.

Table 2: Description and parameter values of the model
Parameter Description Unit Value Source

Λh Human recruitment rate Human population
year 6 Estimated

β1 Human-to-human transmission rate year−1 0.0000165 Assumed
β2 Environment-to-human transmission rate year−1 0.001223 [23]
σ Progress rate from Lh to Ih after latent period year−1 0.0714 [7, 27]
α Modification parameter for Th contact rate Dimensionless 0.02 Assumed
µh Human natural death rate year−1 0.0000548 [29]
d1 Disease induced death rate by Ih year−1 0.000137 [15]
d2 Disease induced death rate by Th year−1 0.000219 Estimated
η Recovery rate due to treatment year−1 0.0714 [16,30]
γ Progress rate from Rh to Sh due to loss of immunity redyear−1 0.09 Assumed
τ Progress rate from Ih to Th year−1 0.4 Assumed
π1 Shedding rate from Ih to Pc year−1 0.07 Assumed
π2 Shedding rate from Th to Pc year−1 0.04 Assumed
µc Natural pathogen decay rate year−1 0.83 [15]

2.1 Invariant region
This region will be determined by applying the following theorem.

Theorem 2.1. The solution of the system is feasible for all t > 0 if they enter the invariant region
Π = Π1 ×Π2 such that
Π2 =

{
(Sh, Lh, Ih, Th, Rh) ∈ ℜ5

+, : Sh(0) > 0, Lh(0) ≥ 0, Ih(0) > 0, Th(0) and R(0) ≥ 0, N ≤ Λh

µh

}
and Π2 =

{
Pc ∈ ℜ1

+, : Pc(0) ≥ 0Pc ≤ Λh(π1+π2)
µhµc

}
.

142

 https://doi.org/10.5281/zenodo.17604865


International Journal of Mathematical Sciences and
Optimization: Theory and Applications

11(3), 2025, Pages 138 - 166
https://doi.org/10.5281/zenodo.17604865

As adopted by Tijani et al [13] , Odeh et al. [11] and Mpeshe [16], The total population is
defined as N(t) = Sh(t) + Lh(t) + Ih(t) + Th(t) +Rh(t), giving

dN

dt
= Λh − d1Ih − d2Th − µhN. (2.2)

In the absence of disease-induced death i.e. d1 = d2 = 0, the Equation (2.2) becomes.

dN

dt
≤ Λh − µhN. (2.3)

Solving the differential inequality (2.3) by finding the integrating factor (I.F), we have I.F =
e(

∫
µhtdt). Thus,

d

dt
(Ne(µht)) ≤ Λhe

(µht).

Integration on each side gives

(Ne(µht)) ≤ Λh

µh
e(µht) +A.

where A is the constant of integration. Therefore,

N(t) ≤ Λh

µh
+Ae(−µht). (2.4)

Applying the initial condition at t = 0 that is N(0) = N0 in Equation (2.5), we have

N ≤ Λh

µh
+ (N0 −

Λh

µh
)e(−µht).

Thus, applying the differential inequality by [20], then 0 ≤ N ≤ Λ
µ as t → ∞.

Therefore, the feasible solutions of the human population of the model (2.1) enter the region

Π1 =

{
(Sh, Lh, Ih, Th, Rh) ∈ ℜ5

+, : Sh(0) > 0, Lh(0) ≥ 0, Ih(0) > 0, Th(0) and R(0) ≥ 0, N ≤ Λh

µh

}
This implies that every solution with initial conditions in Π1 remains in the region for t > 0.
Therefore the region Π1 is positively invariant. Also, considering the pathogen concentration class
and the last equation of system (2.1) as in the work of [21], we have

dPc

dt
= π1Ih + π2Th − µcPc ≤ (π1 + π2)

Λh

µh
− µcPc, (2.5)

since N(t) ≤ Λh

µh
and Ih ≤ Λh

µh
and Th ≤ Λh

µh
. Employing the method of integrating factor to Equation

(2.5) and solving with the initial condition, Pc(0) = Pc0 yields

dPc

dt
≤ (π1 + π2)Λh

µhµc
+

(
Pc0 −

(π1 + π2)Λh

µhµc

)
e−µct. (2.6)

As t → ∞ in (2.6), Pc ≤ (π1+π1)Λh

µhµc
. Therefore, the feasible solution for the amebiasis pathogen

concentration enters the region, Π2 =

{
Pc ∈ ℜ+ : Pc ≤

(π1 + π1)Λh

µhµc

}
. Thus, the feasible region

for the model system of equations (2.1) is given by Π = Π1 ×Π2.
Additionally, given the non-negative parameters of the system described in equation (2.1), it is
important to note that the solutions to the system of equations of the amebiasis model are also
non-negative. Therefore, it is appropriate to examine the dynamics of the amebiasis model (2.1)
within the region Π = Π1 ×Π2.
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2.2 Positivity of solution of the model
Since we are dealing with the human population in relation to living organisms, we need to show
that each of the model equations (2.1) is positive. In this regard, we state the following theorem;

Theorem 2.2. The solutions
(
Sh(t), Lh(t), Ih(t), Th(t), Rh(t), Pc(t)

)
of the system of equations

(2.1) are non-negative for all time t > 0 for any given non-negative initial conditions.

Adopting the approach of [22], [35] and Tijani et al [13], we need to show that the solution, Sh(t)
is non-negative. Hence, we will prove this using a contradiction. Given that at time, t, S′

h(t1) < 0,
Lh(t1) > 0, Ih(t1) > 0, Th(t1) > 0, Rh(t1) > 0 such that Sh(t1) = 0.
From the first equation of system (2.1), we have

S′
h(t1) = Λh − λSh(t1) + γRh(t1)− µhSh(t1) = Λh + γRh(t1) > 0,

contradicting the assumption that S′
h(t1) < 0. Hence, Sh(t) > 0 for t > 0.

Also, for Lh(t), assume ∃ a time, t2, for t1 ̸= t2, with L′
h(t2) < 0 and all other variables being

non-negative at t ̸= t2 such that Lh(t) = 0 . Hence, from the second equation of system (2.1), we
get

L′
h(t2) = λSh(t2)− (σ + µh)Lh(t2) = λSh(t2) > 0

. This shows a contradiction to the assumption that L′
h(t2) < 0. Therefore, Lh(t) > 0 for t > 0.

For Lh(t), assume ∃ a time, t3, for t2 ̸= t3, with I ′h(t3) < 0 and all other variables being non-negative
at t ̸= t3 such that Ih(t) = 0 . Hence, from the third equation of system (2.1),

I ′h(t3) = σLh(t3)− (τ + d1 + µh)Ih(t3) = σLh(t3) > 0,

this contradict the assumption that I ′h(t3) < 0. Hence, Ih(t) > 0 for t > 0.
By following the same approach, we can establish that Th(t) > 0, Rh(t) > 0, and Pc(t) > 0.

This demonstrates that the model is mathematically well-posed and has biological significance,
making it a suitable framework for analysing the dynamics of amebiasis.

2.3 Existence of disease-free equilibrium (DFE) and computation of ba-
sic reproduction number,R0

The basic reproduction number, R0, is the average number of secondary cases that are reproduced
when an infected person is introduced into a totally susceptible population. It is a crucial threshold
quantity for infectious disease invasion in the population, implying that R0 < 1 (R0 > 1) means
that the disease is eliminated (disease persists) in the population. R0 is derived using the Next-
generation matrix [31]. This will be applied in this study as used by [11, 12]. We compute R0 at
the disease-free equilibrium, E0.

The disease-free equilibrium of the system (2.1), E0, is the equilibrium state in the absence
of amebiasis disease. Therefore, solving (2.1) at the equilibrium state simultaneously gives the
disease-free equilibrium (DFE)

E0 =
(
S0
h, L

0
h, I

0
h, T

0
h , R

0
h, P

0
c

)
=

(
Λh

µh
, 0, 0, 0, 0, 0

)
. (2.7)

With apporach of the Next-generation method, we obtain

F =


0 β1S

0
h αβ1S

0
h β2S

0
h

0 0 0 0
0 0 0 0
0 0 0 0

 , V =


f1 0 0 0
−σ f2 0 0
0 −τ f3 0
0 −π1 −π2 µc

 .
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and

V −1 =


1
f1

0 0 0
σ

f1f2
1
f2

0 0
τσ

f1f2f3
τ

f2f3
1
f3

0
σ(τπ2+π1f3)

f1f2f3µc

σ(τπ2+π1f3)
f2f3µc

π2

f3µc

1
µc

 ,

where
f1 = (σ + µh), f2 = (τ + d1 + µh), f3 = (η + d2 + µh), f4 = (γ + µh). (2.8)

Hence, basic reproduction number, R0, which is spectra radius of (FV −1) is given as

R0 =
S0σβ1(ατ + f3)

f1f2f3
+

S0σβ2(τπ2 + π1f3)

f1f2f3µc
. (2.9)

Equation (2.9) can be represent as

R0 = R0HH +R0EH ,

where

R0HH =
Λhσβ1(ατ + (η + d2 + µh))

µh(σ + µh)(τ + d1 + µh)(η + d2 + µh)
, R0EH =

Λhσβ2(τπ2 + π1(η + d2 + µh))

µh(σ + µh)(τ + d1 + µh)(η + d2 + µh)µc
.

(2.10)
This can be further written as

R0HH1
=

Λhσβ1ατ

µh(σ + µh)(τ + d1 + µh)
, R0EH1

=
Λhσβ2τπ2

µh(σ + µh)(τ + d1 + µh)µc

R0HH2
=

Λhσβ1

µh(σ + µh)(τ + d1 + µh)
, R0EH2

=
Λhσβ2π1

µh(σ + µh)(τ + d1 + µh)µc
..

(2.11)

Here, R0HH stands the reproduction number contribution for human-to-human interaction with
the transmission rate, β1 in a total population of size Λh

µh
. In contrast, R0EH is the reproduction

number contribution of the contaminated environment to human interaction with the transmission
rate, β2, in a population size Λh

µh
.

It is noteworthy to mention that, R0HH is further split into R0HH1 and R0HH2 , which signifies the
contribution for human-to-human interaction for treatment and infected human population while
R0EH1

and R0EH2
represents the contribution for environment-to-human interaction for treatment

and infected human population through shedding.

2.4 Existence of the endemic equilibrium (EE)
An endemic equilibrium state refers to a condition in which a disease persists within a population.
To determine the endemic equilibrium (EE), we set each equation in the system defined by (2.1)
to zero. This leads us to derive the expressions from the third, fourth, fifth, and sixth equations of
the system (2.1) as follows:

Lh =
f2Ih
σ

, Th =
τIh
f2

, Rh =
ητIh
f3µc

, Pc =
β2(π1f3 + π3τ)Ih

f3µc
. (2.12)

Substituting Lh, Th, and Pc into second equation of system (2.1), we get for

Ih ̸= 0, Sh =
f3µcf2f1

σ

[
β1µc(f3 + ατ) + β2(π1f3 + π2τ)

] .
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Therefore, substituting Sh, Lh, Th, Rh and Pc into the first equation of system (2.1) yields

Ih =
µhf1f2f3µc(R0 − 1)f3f4[

β1µc(f3 + ατ) + β2(π1f3 + π2τ)

][
f1f2f3f4 + γητσ

] . (2.13)

Substituting (2.13) in (2.12) to get, Lh, Th, Rh and Pc, respectively, we have

Lh =
µhf1f

2
2 f3µc(R0 − 1)f3f4

σ

[
β1µc(f3 + ατ) + β2(π1f3 + π2τ)

][
f1f2f3f4 + γητσ

] . (2.14)

Th =
τµhf1f3µc(R0 − 1)f3f4[

β1µc(f3 + ατ) + β2(π1f3 + π2τ)

][
f1f2f3f4 + γητσ

] . (2.15)

Rh =
ητµhf1f3(R0 − 1)f4[

β1µc(f3 + ατ) + β2(π1f3 + π2τ)

][
f1f2f3f4 + γητσ

] . (2.16)

Pc =
β2(π1f3 + π3τ)µhf1f3(R0 − 1)f4[

β1µc(f3 + ατ) + β2(π1f3 + π2τ)

][
f1f2f3f4 + γητσ

] . (2.17)

With Ih, Lh, Ih, Th, Rh and Pc > 0 if R0 > 1, it implies that the values of Lh, Ih, Th, Rh and Pc

must be positive. Hence, it indicates that amebiasis disease is said to be endemic whenever R0 > 1.

2.5 Stability analysis of the disease-free equilibrium state
2.5.1 Local Stability of the disease-free equilibrium state of the model

The local stability of the disease-free equilibrium point E0 =
(
S0
h, L

0
h, I

0
h, T

0
h , R

0
h, P

0
c

)
=
(

Λh

µh
, 0, 0, 0, 0, 0

)
can be analyzed by examining the linearized form of the equations at the given equilibrium state,
E0 using the theorem below.

Theorem 2.3. The disease-free equilibrium state of the model (2.1) is locally asymptotically stable
if R0 < 1 and unstable if R0 > 1.

To determine the local asymptotic stability of the disease-free state, we will employ the lin-
earization method by differentiating each equation in model equations (2.1) with respect to the
variables Sh, Lh, Ih, Th, Rh, and Pc at the disease-crime free equilibrium state and subsequently
solve for the eigenvalues. Hence, the Jacobian matrix, J(E0) is given as follow;

J(E0) =


−µh 0 −β1S

0
h −αβ1S

0
h γ β2S

0
h

0 −f1 β1S
0
h αβ1S

0
h 0 β2S

0
h

0 σ −f2 0 0 0
0 0 τ −f3 0 0
0 0 0 η −f4 0
0 0 π1 π2 0 −µc

 . (2.18)

Solving for the eigenvalues of matrix (2.18) and using the inspection technique as adopted by [33],
we have the first two eigenvalues as λ1 = −µh, λ3 = −f4. Therefore, the characteristic equation
of the remaining 4× 4 matrix of (2.18) is given by

λ4 +Aλ3 +Bλ2 + Cλ+D = 0, (2.19)

146

 https://doi.org/10.5281/zenodo.17604865


International Journal of Mathematical Sciences and
Optimization: Theory and Applications

11(3), 2025, Pages 138 - 166
https://doi.org/10.5281/zenodo.17604865

where

A =
(
µc + f3 + f2 + k1

)
,

B = f1f2
(
1−R0HH1

)
+ f3

(
f1 + f2

)
+ µc

(
f1 + f2 + f3

)
+,

C = f1f2f3
(
1−R0HH

)
+ f1f2µc

(
1−R0HH1

)
+ f1f2

(
1−R0EH1

)
+ f1f3µc,

D = f1f2f3µc

(
1−R0

)
.

(2.20)

According to [28] as employed by [13], the characteristic equation has all negative real part
solutions if the coefficients of the characteristic equation are all positive. Therefore, from the
characteristic Equation (2.19), we have A,B,C,D > 0 if R0HH1

, R0EH1
, R0HH < 1. Therefore, the

Jacobian Matrix, J(E0) has negative real eigenvalues whenever R0HH1
, R0EH1

, R0HH < 1. Thus,
the disease-free equilibrium, E0, is locally asymptotically stable if R0 > 1.To eliminate the disease,
certain conditions must ensure that R0 < 1.

2.5.2 Global Stability of the disease-free equilibrium state of the model

With the concept of the Comparison method established [32] as adopted by [11],the E0 global
stability is derived by redrafting the model Equation(2.1) as;

dX

d t
= Π(X,Y ), (2.21)

dY

d t
= Ω(X,Y ), Ω(X, 0) = 0 (2.22)

where X =
(
Sh ∈ ℜ1

+

)
is the sub-class that is disease-free, Y = (Lh, Ih, Th, Pc) ∈ ℜ4

+ represents
the classes that contain the amebiasis disease, which is the sub-classes; humans sub-population and
pathogen concentration in the environment that contains the disease. Rh classes are utterly zero
without infection in the population.

With X0 as E0, we show that the under listed conditions are satisfied;

Γ1 : For
dX

dt
= Π(X0, 0) , X0is globally asymptotically stable.

Γ2 : Ω (X,Y ) = AY − Ω̂ (X,Y ) , Ω̂ (X,Y ) ≥ 0,

where (X,Y ) ∈ D is the region where the model has a feasible solution and as well makes sense
epidemiologically, and A = Dy [Ω (X0, 0)] is an M -matrix resulting from the partial derivative of
the infected compartment at DFE. We state the following theorem of stability for the global state
at E0.

Theorem 2.4. Provide R0 < 1 when there is no disease-related death rate, the disease-free equilib-
rium state is given as

E0 =
(
S0
h, L

0
h, I

0
h, T

0
h , R

0
h, P

0
c

)
=

(
Λh

µh
, 0, 0, 0, 0, 0

)
of the model of the system of Eq. (2.1) is globally asymptotically stable, otherwise it is unstable,
which implies R0 > 1 .

Following the first condition of the Comparison theorem, the disease-free compartment in the
sub-model could be presented as

dX

dt
= (X, 0),

where

Π(X, 0) =
(
Λh −

[
β1(Ih + αTh) + β2Pc

]
Sh + γRh − µhSh

)
.
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with X⊤ = [Sh] as the disease-free state variable of the model under consideration, and the disease
state variables class [Lh, Ih, Th, Pc] are all zero. The Jacobian matrix of Π(X, 0) is derived as follow

Π(X, 0) =
(
−µh

)
. (2.23)

For the sub-model to be globally asymptotically stable, the eigenvalue of the Jacobian matrix
F (X, 0) (2.23) must be real and negative. The eigenvalue of the Jacobian matrix F (X, 0) (2.23) is
−µh. This implies that the sub-model under consideration is globally asymptotically stable.
For Γ2 condition, Ω (X,Y ) = AY − Ω̂ (X,Y ) with

Ω (X,Y ) =


[
β1(Ih + αTh) + β2Pc

]
Sh − (σ + µh)Lh

σLh − (τ + d1 + µh)Ih
τIh − (η + d2 + µh)Th

π1Ih + π2Th − µcPc

 , A =


−f1 β1S

0
h αβ1S

0
h β2S

0
h

σ −f2 0 0
0 τ −f3 0
0 π1 π2 −µc

 ,

and

Ω̂ (X,Y ) =


(S0

h − Sh)

[
β1Ih + β1αTh + β2Pc

]
0
0
0

 .

With this outcome, it is clear that Ω̂ (X,Y ) ≥ 0 since S0
h ≥ Sh.

Thus, Ω̂ (X,Y ) ≥ 0 as S0
h ≥ Sh, this satisfies the two conditions, Γ1 and Γ2. Therefore, the

E0 of the sub-model is globally asymptotically stable if R0 < 1, which implies that the amebiasis
disease will be cleared from the population irrespective of the initial sub-populations provided that
R0 < 1.

3 Global sensitivity analysis
In this subsection, we conducted a global sensitivity analysis (GSA) to identify the parameters
that significantly influence the reproduction number R0 with multiple points of entry. We utilised
the Latin Hypercube Sampling (LHS) method along with the Partial Rank Correlation Coefficient
(PRCC) for our analysis. This involved generating 1,000 samples from a uniform distribution
within the specified ranges of each parameter, as detailed in the works of [34], [37], [36] and [38]. The
parameter values used for the sensitivity analysis are listed in Table 2. The graphical representations
of the PRCCs for the parameters affecting R0 and the results from the 1,000 sampled parameter
sets are shown in Figure 2.

As illustrated in Figure 2, the signs (+ and -) of the PRCC indicate a clear qualitative relation-
ship between the parameters and the output of the basic reproduction number, R0. Parameters with
a positive PRCC suggest that increasing their values will also increase R0. Conversely, parameters
with negative PRCC values indicate that as their values increase, R0 decreases. According to Figure
2, R0 rises as the progression rate from Lh to Ih after the latent period, σ, increases. Additionally,
it increases with the shedding rates from Th to Pc (denoted as π2), from Ih to Pc (denoted as π1), as
well as with the environment-to-human transmission rate β2 and the human-to-human transmission
rate β1. This implies that as these parameters increase, the disease is likely to continue spreading
in society. Although π2, π1, and β2 have significant effects, other parameters are insignificant based
on their monotonicity, with PRCCs < |0.5|. However, the insignificant parameters also tend to
influence the spread of the disease.
As the pathogen decay rate (µc), the recovery rate due to treatment (η), and the progression rate
from Ih to Th due to screening (τ) increase, the basic reproduction number (R0) decreases. This
indicates that as these parameters increase, the disease is more likely to be eliminated from society
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Figure 2: Partial Rank Correlation Coefficient(PRCCs) for important parameters of R0.

as they have a more significant impact. It is important to highlight that µc and η are the key
parameters driving this effect, as their PRCCs ≥ |0.5. While other factors can also influence the
spread of the disease.

3.1 Optimal Control Analysis
In this subsection, we have expanded the basic model of amebiasis from system (2.1) into an optimal
control model (3.1), building on the results of the sensitivity analysis. This extension highlighted
the need for time-dependent controls, such as:

• u1: hygiene practices control,

• u2: effective and efficient screening of infected individuals,

• u3: efficient and effective treatment control, and

• u4: disinfection and sterilisation of the environment control.

The optima control model is given as

dSh

dt
= Λh − (1− u1(t))

[
β1(Ih + αTh) + β2Pc

]
Sh + γRh − µhSh,

dLh

dt
= (1− u1(t))

[
β1(Ih + αTh) + β2Pc

]
Sh − (σ + µh)Lh,

dIh
dt

= σLh −
(
τ(1 + u2(t)) + d1 + µh

)
Ih,

dTh

dt
= τ(1 + u2(t))Ih −

(
η(1 + u3(t)) + d2 + µh

)
Th,

dRh

dt
= η(1 + u3(t))Th − (γ + µh)Rh,

dPc

dt
= (1− u1(t))π1Ih + (1− u1(t))π2Th − (1 + u4(t))µcPc,



(3.1)
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with initial conditions of the system (2.1).
The objective function to be minimised is given as

J(u1(t), u2(t), u3(t), u4(t)) =

∫ tf

0

(
A1Ih +A2Pc +

1

2

4∑
i=1

miu
2
i (t)

)
dt, (3.2)

where the coefficient associated with the infected state variables, A, B, and C and the control
weight coefficients, m1,m2, m3,m4, are assumed positive. The quadratic form of the control vari-
ables,

∑4
i=1 miu

2
i (t) in (3.2), is due to the nonlinearity of the cost of controls and as used in the

literature on optimal control model of infectious diseases [11,38,39].
The objective functional goal is to minimise the number of infected humans, bacteria concen-
tration in the environment and the cost of implementing them. Thus, the optimal controls,
u∗
1(t), u

∗
2(t), u

∗
3(t), u

∗
4(t) is sought such that

J (u∗
1(t), u

∗
2(t), u

∗
3(t), u

∗
4(t)) = min

Φ1

J (u1(t), u2(t), u3(t), u4(t)) , (3.3)

where

Φ1 =
{
ui(t), i = 1, 2, 3, 4 are measurable with ui(t) ∈ [0, 1], for 0 ≤ t ≤ tf

}
. (3.4)

The state and the control variables of equations (3.2) are non-negative as established in Subsection
(3.1), and the condition in Equation (3.4); this implies that the set Φ1 is closed, convex and exists.
The optimal control exists by applying Corollary 4.1 of Pages 68-69 in [42] as implemented in [11,39].
We, therefore, derived the Hamiltonian and optimality system by applying the Pontryagin maximum
principle (PMP) [41] to the optimal control problem. PMP transforms Equations (3.1) and (3.2)
into a problem of minimizing pointwise Hamiltonian, H, and it is presented as;

H (Sh, Lh, Ih, Th, Rh, Pc) = L(Ih, Pc, u1(t), u2(t), u3(t), u4(t))

+ λ1
dSh

dt
+ λ2

dLh

dt
+ λ3

dIH
dt

+ λ4
dTh

dt

+ λ5
dRh

dt
+ λ6

dPc

dt
,

(3.5)

where λ1, λ2, λ3, λ4, λ5, λ6 are the adjoint variables for the respective state variables. Using a similar
approach in [11,12,39], we derive the following optimality system;
Theorem 4.1. With the optimal control u∗

1(t), u
∗
2(t), u

∗
3(t), u

∗
4(t) and solutions Sh, Lh, Ih, Th, Rh, Pc

that minimizes J(u1(t), u2(t), u3(t), u4(t)) over Φ1, there exist non-trivial adjoint functions λi, for
i = 1, ..., 6 that satisfies;

dλ1

dt
= (λ1 − λ2)(1− u1(t))

[
β1(Ih + αTh) + β2Pc

]
+ λ1µh,

dλ2

dt
= (λ2 − λ3)σ + λ2µh,

dλ3

dt
= −A1 + (λ1 − λ2)(1− u1(t))β1Sh + (λ3 − λ4)(1 + u2(t))τ + λ3(µh + d1)− λ6(1− u1(t))π1,

dλ4

dt
= (λ1 − λ2)(1− u1(t))β1αSh + (λ4 − λ5)(1 + u3(t))η + λ4(µh + d2)− λ6(1− u1(t))π2,

dλ5

dt
= (λ5 − λ1)γ + λ5µh,

dλ6

dt
= −A2 + (λ2 − λ1)β2(1− u1(t))Sh + λ6(1 + u4(t))µc,

(3.6)
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with the transversality condition λi(tf ) = 0, i = 1, ..., 6 and the controls u∗
1(t), u

∗
2(t), u

∗
3(t), u

∗
4(t)

satisfies the optimality condition;

u∗
1 = max

{
0,min

(
1,

((λ2 − λ1)
[
β1(Ih + αTh) + β2Pc

]
Sh + λ6(π1Ih + π2Th)

m1

)}
,

u∗
2 = max

{
0,min

(
1,

(λ3 − λ4)τIh
m2

)}
,

u∗
3 = max

{
0,min

(
1,

(λ4 − λ5)ηTh

m3

)}
,

u∗
4 = max

{
0,min

(
1,

λ6µcPc

m4

)}
.

(3.7)

Proof. Using PMP, the adjoint system (3.6) is obtained by differentiating equation (3.5) with
respect to their corresponding state variables, Sh, Lh, Ih, Th, Rh, Pc, which is obtained by eval-
uating the optimal control functions u1(t), u2(t), u3(t), u4(t) and then applying the negative to
the differentials. The optimality condition equation (3.7) is obtained by solving for the controls,
u∗
1(t), u

∗
2(t), u

∗
3(t), u

∗
4(t) at the respective steady states;

∂H

∂u1
=

∂H

∂u2
=

∂H

∂u3
=

∂H

∂u4
= 0

on the interior of the control set. Thus, the optimality system comprises Equations (3.6) and (3.7)
substituted into (3.1). This ends the proof.

4 Numerical Simulations and Cost-Effectiveness Analysis

4.1 The optimal control problem simulations
The numerical simulation of the optimal control system’s outcome is conducted to illustrate the
system’s dynamics over time. The fourth-order Runge-Kutta method, implemented in MATLAB
R2025a, is utilised for these simulations. For details on the fourth-order Runge-Kutta method and
its stability, please refer to [11, 38]. Table 2 is the parameter values used for the simulations while
the initial conditions and weight coefficient values are as follows; Sh(0) = 100000, Lh(0) = 1000,
Ih(0) = 10, Th(0) = 5, Rh(0) = 3, Pc(0) = 10, A = 1, B = 2, m1 = 20, 000, m2 = 100, m3 = 100
and m4 = 100. The weight coefficient values are chosen so that the control variables are within the
feasible region, u(t) ∈ [0, 1].
The simulations are sectioned into four (4) possible cases according to control combinations;
Case A: one control implementation

• Strategy 1 (u1): hygiene practices (u1 ̸= 0, u2 = u3 = u4 = 0),

• Strategy 2 (u2): effective and efficient screening of some infected humans (u2 ̸= 0, u1 = u3 =
u4 = 0),

• Strategy 3 (u3): the efficient and effective treatment (u3 ̸= 0, u1 = u2 = u4 = 0),

• Strategy 4 (u4): the disinfection/sterilization of the environment control (u4 ̸= 0, u1 = u2 =
u3 = 0).

Case B: Two controls combine implementation

• Strategy 5 (u12): hygiene practices + effective and efficient screening of some infected humans
(u1, u2 ̸= 0, u3 = u4 = 0),
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• Strategy 6 (u13): hygiene practices + the efficient and effective treatment (u1, u3 ̸= 0, u2 =
u4 = 0),

• Strategy 7 (u14): hygiene practices + the disinfection/sterilization of the environment control
(u1, u4 ̸= 0, u2 = u3 = 0),

• Strategy 8 (u23): effective and efficient screening of some infected humans + the efficient and
effective treatment (u2, u3 ̸= 0, u1 = u4 = 0),

• Strategy 9 (u24): effective and efficient screening of some infected humans+ the disinfection/s-
terilization of the environment control (u2, u4 ̸= 0, u1 = u3 = 0),

• Strategy 10 (u34): the efficient and effective treatment +the disinfection/sterilization of the
environment control (u3, u4 ̸= 0, u1 = u2 = 0).

Case C: three controls combine implementation

• Strategy 11 (u123):hygiene practices + effective and efficient screening of some infected humans
+ the efficient and effective treatment (u1, u2, u3 ̸= 0, u4 = 0),

• Strategy 12 (u124): hygiene practices + effective and efficient screening of some infected
humans+ the disinfection/sterilization of the environment control (u1, u2, u4 ̸= 0, u3 = 0) ,

• Strategy 13 (u134):hygiene practices + the efficient and effective treatment + the disinfec-
tion/sterilization of the environment control (u1, u3, u4 ̸= 0, u2 = 0),

• Strategy 14 (u234): effective and efficient screening of some infected humans + the efficient
and effective treatment + the disinfection/sterilization of the environment control (u2, u3,
u4 ̸= 0, u1 = 0).

Case D: all controls combine implementation

• Strategy 15: (u1234) hygiene practices + effective and efficient screening of some infected hu-
mans + the efficient and effective treatment + the disinfection/sterilization of the environment
control (u1, u2, u3, u4 ̸= 0).

Figure 3: Optimal Control Simulation for Single control on Ih using the parameter values in Table
2.2.
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Figure 4: Optimal control simulation for single control on Pc using the parameter values in Table
2.2.

Figure 5: Optimal Control Profile for the Single control strategy using the parameter values in
Table 2.2.

4.1.1 Discussion of the optimal control simulation for Case A: Single control imple-
mentation

Figures 3, 4, and 5 present the results of a single implementation of control measures on infected
humans, the concentration of amebiasis in the environment, and the control profile, respectively.
In Figure 3, we observed that Strategy 2, which involves effective and efficient screening of infected
humans, has the most significant impact on reducing the number of infected individuals, denoted as
Ih. This is followed by Strategies 4, 3, and 1 in that order. Although Strategies 4 and 1 do not peak
as quickly as the others, by day 60, they become almost insignificant in controlling Ih. Figure 4
shows that Strategy 4, which focuses on the disinfection and sterilisation of the environment, is the
most effective at eliminating the amebiasis pathogen in the environment, represented as Pc. This
is followed by Strategy 2, which emphasises the effective and efficient screening of some infected
individuals, although some remain infectious, particularly after approximately day 30. This finding
is consistent with the work of [17] and aligns with the recommendations from [4, 5]. The third
figure, 5, illustrates the control profile, highlighting the optimal implementation patterns for each
control strategy based on the observed results.
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Figure 6: Optimal Control Simulation for Double control on Ih using the parameter values in Table
2.2.

Figure 7: Optimal Control Simulation for Double control on Pc using the parameter values in Table
2.2.

Figure 8: Optimal Control Profile for Double control strategy using the parameter values in Table
2.2.

4.1.2 Discussion of the optimal control simulation for Case B: Double control imple-
mentation

Figures 6, 7, and 8 illustrate the results of a dual approach to controlling infected humans, amebiasis
concentration in the environment, and the corresponding control profiles. Notably, in Figure 6,
Strategy 9, which combines practical and efficient screening of specific infected individuals with
disinfection and sterilisation of the environment, has the most significant impact on reducing the
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number of infected humans, Ih. This is followed by Strategy 8, which involves the effective and
efficient screening of infected individuals, along with effective treatment. Although Strategy 7 did
not exhibit rapid increases in the early days, it ultimately proved ineffective, similar to Strategies 5,
6, and 10, particularly between days 50 and 100. In Figure 7, Strategy 9 is again the most effective
in eliminating the amebiasis pathogen in the environment, denoted as Pc. This is followed by
Strategy 7, which incorporates hygiene practices and awareness campaigns along with environmental
disinfection and sterilisation. Strategy 10, focusing on efficient and effective treatment, follows next,
followed by Strategy 8. This result clearly demonstrates that immediate treatment of individuals
who test positive for amebiasis can significantly reduce the spread of amebiasis disease within the
population. This finding aligns with the outcomes from [15,17] and supports the recommendations
from [2, 6]. The optimal implementation patterns for these combinations of controls, based on the
results discussed, are presented in Figure 5.

Figure 9: Optimal Control Simulation for Triple control on Ih using the parameter values in Table
2.2.

Figure 10: Optimal Control Simulation for Triple control on Pc using the parameter values in Table
2.2.
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Figure 11: Optimal Control Profile for Triple control strategy using the parameter values in Table
2.2.

4.1.3 Discussion of the optimal control simulation for Case C: Triple control imple-
mentation

Figures 9, 10, and 11 illustrate the results of a comprehensive approach to controlling infected hu-
mans, pathogen concentration in the environment, and the corresponding control profile. In Figure
9, Strategy 12, which combines hygiene practices, effective screening of infected individuals, and
environmental disinfection/sterilisation, emerges as the most significant strategy for reducing the
number of infected humans, denoted as Ih. This is followed by Strategy 14, which includes efficient
screening of infected individuals, effective treatment, and environmental disinfection/sterilisation.
Other strategies prove to be ineffective in comparison to the absence of any control measures. In
Figure 10, Strategy 12 again stands out as the most effective approach for eliminating pathogen
concentrations in the environment, represented as Pc. This is followed by Strategies 14, 13, and
11, in that order. This conclusion is consistent with the results from [15–17,19] and adheres to the
recommendations of [3]. Figure 5 illustrates the recommended implementation patterns for each
combination of controls in this triple control strategy.

Figure 12: Optimal Control Simulation for Quadruplet (All) control on Ih using the parameter
values in Table 2.2.
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Figure 13: Optimal Control Simulation for Quadruplet (All) control on Pc using the parameter
values in Table 2.2.

Figure 14: Optimal Control Profile for Quadruplet (All) control strategy using the parameter values
in Table 2.2.

4.1.4 Discussion of the optimal control simulation for Case D: Quadruplet control
implementation

Figures 12, 13, and 14 illustrate the optimal control simulations for all quadruplet implementations
regarding infected humans, pathogen concentration in the environment, and the control profile,
respectively. The implementation of all control measures results in the reduction of infected humans,
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Ih, to nearly zero, as shown in Figure 12. Similarly, Figure 13 demonstrates that the pathogen
concentration in the environment is also eradicated to almost zero. Figure 14 presents the patterns
for implementing all controls as combined control scenarios.

4.2 Cost-effectiveness analysis
Cost-effectiveness analysis is a method used to evaluate the costs and economic outcomes associated
with one or more control measures. Its purpose is to identify the most cost-effective strategy for
eliminating a disease while minimising expenses. In this study, we utilise the incremental cost-
effectiveness ratio (ICER) as part of our cost-effectiveness analysis methodology [ [43], [44]].

The incremental cost-effectiveness ratio (ICER) measures the difference in costs and health ben-
efits between two competing intervention strategies that vie for the same limited resources. In the
ICER approach, the effectiveness of one strategy is compared to a less effective alternative. The
ICER is calculated using the following formula:
When comparing two control intervention strategies, m and n, the Incremental Cost-Effectiveness
Ratio (ICER) is calculated as follows:

ICER =
Change in total costs in strategies m and n

Change in control benefits in strategies m and n
.

The numerator of the Incremental Cost-Effectiveness Ratio (ICER) represents the difference in
costs associated with disease infections averted, including expenses related to prevention, disinfec-
tion, and screening, among other factors. The denominator of the ICER represents the difference
in health outcomes, specifically the total number of infections averted, which is calculated by de-
termining the difference in the total infectious population.

When calculating ICERs, the strategy with the highest ICER value is excluded from considera-
tion, as it represents the most costly and least effective approach. The total infections averted are
organised in ascending order in Table 3.

Table 3: Case A (Single control implementation) for Infected cases averted.

Strategy Infection averted Total cost
Strategy 3 153.8670 8.9775
Strategy 4 1.0229× 105 5.7721× 103

Strategy 1 1.2013× 105 1.1436× 105

Strategy 2 6.9810× 105 1.2241× 103

Calculation of ICERs for infected cases averted

ICER for single control implementation for infected cases averted

For Case A, the ICERs are calculated using Table 3 as follows:

ICER(3) =
8.9775 − 0

153.8670 − 0
= 0.05835, ICER(4)=

5.7721× 103 − 8.9775

1.0229× 105 − 153.8670
= 0.05626,

ICER(1) =
1.1436× 105 − 5.7721× 103

1.2013× 105 − 1.0229× 105
= 6.08677, ICER(2) =

1.2241× 103 − 1.1436× 105

6.9810× 105 − 1.2013× 105
=

−0.19575.

The computed results indicate that the ICER value for Strategy 1, denoted as ICER (1), signifi-
cantly dominates the other strategies. This means that the implementation of u1 is more costly and
less effective compared to the strategies based on u2, u3, and u4. Therefore, Strategy 1 is removed
from the list of alternative control strategies. As a next step, we will calculate the ICERs for u2,
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u3, and u4 in ascending order based on the total number of infections averted. This yields

ICER(3) =
8.9775 − 0

153.8670 − 0
= 0.05835, ICER(4)=

5.7721× 103 − 8.9775

1.0229× 105 − 153.8670
= 0.05626,

ICER(2) =
1.2241× 103 − 5.7721× 103

6.9810× 105 − 1.0229× 105
= −0.007635.

Based on the computed outcomes, the ICER for Strategy 3 is higher than that of Strategies 4
and 2. This indicates that Strategy 3 will be removed from the list of alternative control strategies.
Therefore, we will calculate the ICERs for u4 and u2 in ascending order of the total number of
infections averted as

ICER(4) =
5.7721× 103 − 0

1.0229× 105 − 0
= 0.05643, ICER(2)=

1.2241× 103 − 5.7721× 103

6.9810× 105 − 1.0229× 105
= −0.007635.

Since the ICER of Strategy 4 is significantly higher than that of Strategy 2, it indicates that
Strategy 4 is more expensive and less effective. Consequently, Strategy 4 has been removed from the
list of alternative control interventions. As a result, Strategy 2, which focuses on the effective and
efficient screening of some infected individuals (u2), is considered the most cost-effective optimal
control strategy for combating the bacterial disease. This is followed by Strategy 4, which involves
the disinfection and sterilisation of the environment (u4), as illustrated in Figures 3 and 4.

The total infections averted for the double control combination are organised in ascending order
in Table 4.

Table 4: Case B (Double control implementation) for Infected cases averted.

Strategy Infection averted Total cost
Strategy 10 1.0227× 105 5.7836× 103

Strategy 6 1.2126× 105 1.1626× 105

Strategy 7 5.1609× 105 6.0626× 105

Strategy 8 6.9778× 105 1.2379× 103

Strategy 9 7.9137× 105 7.3213× 103

Strategy 5 7.9447× 105 8.0299× 104

ICER for double control implementation for infected cases averted

The ICER for Case B is calculated as follows using Table 4;

ICER(10) =
5.7836× 103 − 0

1.0227× 105 − 0
= 0.0566, ICER(6)=

1.1626× 105 − 5.7836× 103

1.2126× 105 − 1.0227× 105
= 5.8144,

ICER(7) =
6.0626× 105 − 1.1626× 105

5.1609× 105 − 1.2126× 105
= 1.2411, ICER(8) =

1.2379× 103 − 6.0626× 105

6.9778× 105 − 5.1609× 105
=

−3.3299,

ICER(9) =
7.3213× 103 − 1.2379× 103

7.9137× 105 − 6.9778× 105
= 0.0650, ICER(5) =

8.0299× 104 − 7.3213× 103

7.9447× 105 − 7.9137× 105
=

23.541.

The results indicate that the ICER for Strategy 5 is greater than those of the other strategies in
Case B. Therefore, Strategy 5 has been removed from the list of substitute intervention strategies.
We will now calculate the ICERs for the remaining strategies—10, 6, 7, 8, and 9—arranging them
in ascending order based on the total number of infections averted. This is given as
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ICER(10) =
5.7836× 103 − 0

1.0227× 105 − 0
= 0.0566, ICER(6)=

1.1626× 105 − 5.7836× 103

1.2126× 105 − 1.0227× 105
= 5.8144,

ICER(7) =
6.0626× 105 − 1.1626× 105

5.1609× 105 − 1.2126× 105
= 1.2411, ICER(8) =

1.2379× 103 − 6.0626× 105

6.9778× 105 − 5.1609× 105
=

−3.3299,

ICER(9) =
7.3213× 103 − 1.2379× 103

7.9137× 105 − 6.9778× 105
= 0.0650.

The ICER for Strategy 6 is higher than that of the other strategies, indicating that it is more
expensive than the competing options. Consequently, we will exclude Strategy 6 from the list of
alternative interventions for Case B. We will then calculate the ICERs for the remaining strategies,
presented in ascending order based on the number of infections averted. gives this

ICER(10) =
5.7836× 103 − 0

1.0227× 105 − 0
= 0.0566, ICER(7)=

6.0626× 105 − 5.7836× 103

5.1609× 105 − 1.0227× 105
= 1.4511,

ICER(8) =
1.2379× 103 − 6.0626× 105

6.9778× 105 − 5.1609× 105
= −3.3299, ICER(9) =

7.3213× 103 − 1.2379× 103

7.9137× 105 − 6.9778× 105
=

0.0650.

Based on the calculations, Strategy 7 is more costly and less effective. Therefore, it has been
removed from the list of control intervention options. We will now compute the ICERs for the
remaining three strategies, arranging them in ascending order by the number of infections averted.
This gives

ICER(10) =
5.7836× 103 − 0

1.0227× 105 − 0
= 0.0566, ICER(8)=

1.2379× 103 − 5.7836× 103

6.9778× 105 − 1.0227× 105
= −0.00763,

ICER(9) =
7.3213× 103 − 1.2379× 103

7.9137× 105 − 6.9778× 105
= 0.0650.

Strategy 9 has an ICER higher than the other strategies, indicating that it is strongly dom-
inated; it is both more expensive and less effective. As a result, Strategy 9 is eliminated from
consideration among the alternative control strategies. We will then evaluate the ICERs of the
remaining two strategies in order of the number of infections averted, as outlined below:

ICER(10) =
5.7836× 103 − 0

1.0227× 105 − 0
= 0.0566, ICER(8)=

1.2379× 103 − 5.7836× 103

6.9778× 105 − 1.0227× 105
= −0.00763.

The results indicate that the ICER of Strategy 10 is higher than that of Strategy 8, making
it more expensive and less effective. Consequently, Strategy 10 has been eliminated from con-
sideration. The remaining viable option is Strategy 8. This strategy, which combines effective
and efficient screening of infected individuals with efficient and effective treatment (u23), is iden-
tified as the most cost-effective approach for disease containment in the context of double control
implementation. This is illustrated graphically in Figures 6 and 7.

Table 5: Case C (Triple control implementation) for Infected cases averted.

Strategy Infection averted Total cost
Strategy 13 5.4639× 105 6.5441× 105

Strategy 14 7.9142× 105 7.3394× 103

Strategy 11 7.9477× 105 8.0797× 104

Strategy 12 8.3212× 106 9.1281× 106

ICER for triple control implementation for infected cases averted
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The ICER for Case C is calculated as follows using the details in Table 5;

ICER(13) =
6.5441× 105 − 0

5.4639× 105 − 0
= 1.1977, ICER(14) =

7.3394× 103 − 6.5441× 105

7.9142× 105 − 5.4639× 105
= -2.6408,

ICER(11) =
8.0797× 104 − 7.3394× 103

7.9477× 105 − 7.9142× 105
= 21.9276, ICER(12) =

9.1281× 106 − 8.0797× 104

8.3212× 106 − 7.9477× 105
=

1.2021.

The calculations indicate that the ICER for Strategy 11 is both more expensive and less effec-
tive. Consequently, it is removed from the list of alternative control strategies for Case C. Next, we
calculate the ICERs for the remaining three strategies, organising them in ascending order based
on the number of infections they have averted, as follows:

ICER(13) =
6.5441× 105 − 0

5.4639× 105 − 0
= 1.1977, ICER(14) =

7.3394× 103 − 6.5441× 105

7.9142× 105 − 5.4639× 105
= -2.6408,

ICER(12) =
9.1281× 106 − 7.3394× 103

8.3212× 106 − 7.9142× 105
= 1.2113.

The results indicate that Strategy 12 has a higher ICER than the other two strategies, meaning
it is both more expensive and less effective. As a result, Strategy 12 is eliminated from the list of
competing intervention strategies. We will now calculate the ICERs for the remaining two strate-
gies, in order of the number of infections averted, starting with the one that yields the lowest. This
is given as

ICER(13) =
6.5441× 105 − 0

5.4639× 105 − 0
= 1.1977, ICER(14) =

7.3394× 103 − 6.5441× 105

7.9142× 105 − 5.4639× 105
= -2.6408.

The results indicate that the ICER for Strategy 13 is greater than that of Strategy 14, which
implies that Strategy 13 is more costly and less effective. Consequently, Strategy 14, which com-
bines efficient and effective screening of infected individuals, effective treatment, and environmental
disinfection and sterilisation (denoted as u234), emerges as the most cost-effective triple-combined
control strategy for combating amebiasis disease in Case C. Following closely is Strategy 13, which
integrates hygiene practices and awareness campaigns with efficient treatment and environmental
disinfection (denoted as u134). This information is illustrated graphically in Figures 9 and 10.

Table 6: The most Cost-Effective Strategy of each Case in ascending Order of Total Infections
Averted.

Strategy Infection averted Total cost
Strategy 8 6.9778× 105 1.2379× 103

Strategy 2 6.9810× 105 1.2241× 103

Strategy 14 7.9142× 105 7.3394× 103

Strategy 15 3.9656× 106 1.1159× 107

Calculation of overall ICER for infection cases averted

We present the overall total infection averted and their respective total cost in Table 6. The
information is used to calculate the overall ICERs for the most cost-effective strategies in Cases A,
B, and C, as well as Case D. The computation is given as follows:

ICER(8) =
1.2379× 103 − 0

6.9778× 105 − 0
= 0.001774, ICER(2) =

1.2241× 103 − 1.2379× 103

6.9810× 105 − 6.9778× 105
= -0.04313,
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ICER(14)=
7.3394× 103 − 1.2241× 103

7.9142× 105 − 6.9810× 105
= 0.0655, ICER(15)=

1.1159× 107 − 7.3394× 103

3.9656× 106 − 7.9142× 105
=

3.51324.

Based on these results, Strategy 15 has a higher ICER than the other three strategies (8, 2, 14).
This indicates that Strategy 15 is costly and not very effective, leading to its elimination from the
list of alternative control intervention strategies. Consequently, we will compute the ICERs of the
remaining two strategies in ascending order based on the total number of infections averted. This
is presented as follows:

ICER(8) =
1.2379× 103 − 0

6.9778× 105 − 0
= 0.001774, ICER(2) =

1.2241× 103 − 1.2379× 103

6.9810× 105 − 6.9778× 105
= -0.04313,

ICER(14)=
7.3394× 103 − 1.2241× 103

7.9142× 105 − 6.9810× 105
= 0.0655.

Based on the results, Strategy 14 has a higher ICER compared to the other two strategies,
indicating that it is less effective and more costly. Therefore, Strategy 14 has been removed from
the list of alternative control intervention strategies. The ICERs of the remaining two strategies
will be calculated in order of the total infections averted, as shown below:

ICER(8) =
1.2379× 103 − 0

6.9778× 105 − 0
= 0.001774, ICER(2) =

1.2241× 103 − 1.2379× 103

6.9810× 105 − 6.9778× 105
= -0.04313.

Strategy 8, which combines effective and efficient screening of some infected individuals with
efficient treatment, has a greater ICER than Strategy 2. This indicates that Strategy 8 is both
more expensive and less effective. As a result, it has been removed from the list of control strategy
options. Therefore, Strategy 2, which focuses on effective and efficient screening of some infected
individuals, is identified as the most cost-effective strategy for containing the amebiasis parasite.

5 Conclusion
In this paper, we present a nonlinear deterministic mathematical model formulated using ordinary
differential equations to study the dynamics of amebiasis. We established the invariant region,
ensured the positivity of solutions, and identified the steady states of the system. To calculate the
basic reproduction number, R0, we employed the next-generation method.

We analysed the local and global stability of the disease-free equilibrium (DFE) and found that
it is asymptotically stable both locally and globally when R0 < 1 and unstable when R0 > 1.
Additionally, we conducted a global sensitivity analysis using LHS in conjunction with the PRCC
to identify the most sensitive parameters influencing the spread of the disease.
Following the sensitivity analysis results, we proposed an optimal control model that incorporates
four time-dependent interventions to combat the spread of amebiasis disease. These interventions
are: Hygiene practices (control variable u1), Effective and efficient screening of infected individuals
(control variable u2), Efficient and effective treatment of infected individuals (control variable u3),
and Disinfection and sterilisation of the environment (control variable u4). supports these inter-
ventions citeBarwell, Shirley. The model is analysed using the Pontryagin Maximum Principle,
with numerical simulations conducted for the infected human population, represented as Ih(t), and
the concentration of the amebiasis pathogen in the environment, denoted as Pc(t). The analysis
includes four different cases: A, B, C, and D.
The results from the optimal control simulations are used to conduct a cost-effectiveness analysis
based on the Incremental Cost-Effectiveness Ratio (ICER). The findings indicate that any com-
bination of controls, including effective and efficient screening of infected individuals, is the most
cost-effective strategy for reducing amebiasis within the community. If sufficient resources are avail-
able, all four controls can be implemented simultaneously. However, when resources are limited,
the most cost-effective approach for Case A (single control) is the efficient screening of a subset
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of infected individuals, denoted as u2. In the case of a double combined control strategy, when
additional resources are available, Strategy 8—which includes both effective screening of infected
individuals and efficient treatment, represented as u23—is identified as the most effective in eradi-
cating the disease. For Case C, which involves a triple control strategy with ample resources, the
most cost-effective option is Strategy 14. This strategy combines practical screening of infected
individuals, efficient treatment, and environmental disinfection/sterilisation, represented as u234.

Overall, the most cost-effective strategy identified is Strategy 2, which focuses solely on the
effective and efficient screening of a subset of infected individuals (u2). This indicates that when
individuals infected with amebiasis are screened and confirmed, it leads to immediate treatment,
which can cure the disease and reduce its transmission dynamics, either directly or indirectly. This
conclusion aligns with the findings of [17] and resonates with the recommendations made by [4, 5].

The limitations of this study include the derivation of stability for the endemic equilibrium and
the application of real-world data, both of which will be addressed in future research.

6 Data availability
All the Data (parameter values) used in this work have been cited appropriately in Table2
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