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Abstract 

High frequency data exhibit non-constant variance. This paper models the exhibited fluctuations via 

asymmetric GARCH models. The Maximum Likelihood Estimation (MLE) and Estimating Functions (EF) 

are used in the estimation of the asymmetric GARCH family models. This EF approach utilizes the third 

and fourth moments which are common features in financial time series data analysis and does not rely on 

distributional assumptions of the data. Optimal estimating functions have been constructed as a 

combination of linear and quadratic estimating functions. The results show that estimates from the 

estimating functions approach are better than those of the traditional estimation methods such as the MLE 

especially in cases where distributional assumptions on the data are seriously violated. The implementation 

of the EF approach to asymmetric GARCH models assuming a generalized student-t distribution innovation 

reveals the efficiency benefits of the EF approach over the MLE method in parameter estimation especially 

for non-normal cases. 
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1 Introduction  

Financial market volatility can have a wide repercussion on the economy as a whole. The 

incidents caused by the terrorists attack of Boko Haram in the North East of Nigeria, some 

nefarious attitude of herdsmen on farmers in some parts of the country and the recent financial 

scandals of some political office holders in Nigeria have caused great turmoil in financial markets 

on several countries and a negative impact on the world economy ([1]Achumba, Ighomereho and 

Akpor-Robaro, 2013; [2]Mukolu and Ogodor, 2018). This is clear evidence of the important link 

between financial market uncertainty and public confidence. For this reason, policy makers often 

rely on market estimates of volatility as a barometer for the vulnerability of financial markets 

and the economy. High frequency financial time series data exhibit certain patterns which are 

crucial for correct model specification, estimation and forecasting. The stylized facts are fat tails, 

volatility clustering, leverage effects, long memory and co-movements in volatility ([3]Onyeka-

Ubaka, 2013). The GARCH family of models has proved to be successful in capturing volatility 



 
 

INTERNATIONAL JOURNAL OF MATHEMATICAL ANALYSIS AND 
                                    OPTIMIZATION: THEORY AND APPLICATIONS 

                       VOL. 2018, PP. 291 - 311 

 

 

292 

 

clustering and some amount of the excess kurtosis which characterize financial time series data. 

Asset prices are generally non stationary. Some financial time series are fractionally integrated. 

Return series usually show no or little autocorrelation. Serial independence between the squared 

values of the series is often rejected pointing towards the existence of non-linear relationships 

between subsequent observations ([3]Onyeka-Ubaka, 2013; [4]Onyeka-Ubaka, Abass and Okafor, 

2014; [5] Ogbogbo, 2018). Volatility of the return series appears to be clustered and normality has 

to be rejected in favour of some thick-tailed distribution ([6]Storti and Vitale, 2003). Some series 

exhibit so-called leverage effect, that is, changes in stock prices tend to be negatively correlated 

with changes in volatility. A firm with debt and equity outstanding typically becomes more 

highly leveraged when the value of the firm falls. This raises equity returns volatility if returns 

are constant. [7]Black, Fischer and Myron (1973) however, argued that the response of stock 

volatility to the direction of returns is too large to be explained by leverage alone. 

Volatilities of different securities very often move together. The works of [8]Engle (1982), 

[9]Bollerslev (1986) and various variants of the GARCH model have been developed to model 

volatility. Of great importance is the asymmetric GARCH family of models which address a 

major limitation of the [9]Bollerslev’s (1986) basic GARCH model, relating to the inability of this 

model to capture the asymmetric impact of news on volatility. That is, there exists a negative 

correlation between stock returns and volatility implying that negative returns tend to be 

followed by larger increases in volatility while positive returns of the same magnitude tend to be 

followed by lower volatility.  Different volatility models that capture this aspect have been 

proposed and widely applied to real life problems in the last two decades. Some of the most 

popular models include the EGARCH [10]Nelson (1991), GJR-GARCH [11]Glosten, Jagannathan 

and Runkle (1993), NAGARCH [12]Engle and Ng (1993), APARCH [13]Ding, Granger and Engle 

(1993), TGARCH [14]Zakoian (1994) and the QGARCH [15]Sentana, 1995). The motivation and 

objective of this paper is to explore the different impact of positive and negative shocks of equal 

magnitude on stock market volatility using asymmetric models.  
 

ARCH process ([16]Bollerslev, Engle and Nelson, 1994) 

The process )}({ 0 t  follows an Autoregressive Conditional Heteroskedasticity (ARCH) model if 

,2,10)]([ 01   ttt                         (1.1) 

and the conditional variance 

,2,10)]([)]([var)( 0

2

1010

2   tttttt    (1.2) 

depends non trivially on the  -field generated by the past observations: 

}),(),({ 0201   tt . 
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GARCH (p, q) Model ([9]Bollerslev, 1986) 

In order to model in a parsimonious way the conditional heteroskedasticity, [9]Bollerslev (1986) 

proposed the generalized ARCH model, i.e GARCH(p, q): 
222 )()( ttt LL          (1.3) 

where 
p

p

q

q LLLLLLLL    2

21

2

21 )(,)( . The GARCH(1,1) is 

the most popular model in the empirical literature: 
2

11

2

11

2

  ttt         (1.4) 

To ensure that the conditional variance is well defined in a GARCH (p, q) model, all the 

coefficients in the corresponding linear ARCH(∞) should be positive [17]Rossi  (2004): 
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ktk          (1.5) 

 02 t  if ω∗ ≥ 0 and all 0k . The non-negativity of ω∗ and k  is also a necessary condition 

for the non negativity of 
2

t  . In order to make ω∗ and 


0}{ kk  well defined, assume that: (i) the 

roots of the polynomial 1)( x  lie outside the unit circle, and that ω ≥ 0, this is a condition for 

ω∗ to be finite and positive. (ii) )(x  and )(1 x  have no common roots. These conditions are 

establishing nor that 2

t  neither that 


tt }{ 2  is strictly stationary. For the simple 

GARCH(1,1) almost sure positivity of 
2

t  requires, with the conditions (i) and (ii), that [18]Nelson 

and Cao (1992), 0,0,0  ii  . For the GARCH(1, q) and GARCH(2, q) models these 

constraints can be relaxed, e.g. in the GARCH(1, 2) model the necessary and sufficient conditions 

become: 0,10,0,0 21111   . 

For the GARCH(2, 1) model the conditions are: 0,1,0,0,0 2

2

12111   . 

These constraints are less stringent than those proposed by [9]Bollerslev (1986): 

qjpi ji ,,10;,,10;0     

These results cannot be adopted in the multivariate case, where the requirement of positivity for 

}{ 2

t means the positive definiteness for the conditional variance-covariance matrix. The process 

}{ t  which follows a GARCH(p, q) model is a martingale difference sequence. In order to study 

second-order stationarity it is sufficient to consider that: 

][)]([var)](var[]var[ 2

11 tttttt   
 

and show that is asymptotically constant in time (it does not depend upon time). A process }{ t  

which satisfies a GARCH(p, q) model with positive coefficient 0,0  i  

piqi i ,,10;,,1     is covariance stationary if and only if: 1)1()1(   . This 

is a sufficient but non necessary condition for strict stationarity. Because ARCH processes are 

thick tailed, the conditions for covariance stationarity are often more stringent than the 
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conditions for strict stationarity. [10]Nelson (1991) showed that when  2,0 t  almost 

surely and },{ 2

tt   is strictly stationary if and only if  .0)][ln( 2

11  tz  

)ln()](ln[)][ln( 11

2

11

2

11   tt zz     (1.6) 

when 111   , the model is strictly stationary. 0)][ln( 2

11  tz  is a weaker 

requirement than 111   . 

Example: ARCH(1), with )1,0(~,0,1 11  tz  

 )1ln()](ln[)][ln( 22  tt zz  

It is strictly but not covariance stationary. The ARCH(q) is covariance stationary if and only if 

the sum of the positive parameters is less than one. 

 

Forecasting with a GARCH(p, q) ([19]Engle and Bollerslev 1986): 

 
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222       (1.7) 

we can write the process in two parts, before and after time t: 
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where n = min{m, k-1} and by definition summation from 1 to 0 and from k > m to m both are 

equal to zero. Thus 
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In particular for a GARCH(1, 1) and k > 2: 
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When the process is covariance stationary, it follows that ][ 2

ktt    converges to 
2  as k → ∞. 

The GARCH(p, q) process characterized by the first two conditional moments: 

0][1   tt   

 
 

 
q

i

p

i

itiitittt

1 1

222

1

2 ][              (1.10) 

where ω ≥ 0, 0i  and 0i  for all i and the polynomial 0)()(1  xx   has d > 0 unit 

root(s) and max{p, q} − d root(s) outside the unit circle is said to be: integrated in variance of 

order d if ω = 0 and integrated in variance of order d with trend if ω > 0. The integrated 

GARCH(p, q) models, both with or without trend, are therefore part of a wider class of models 

with a property called persistent variance in which the current information remains important 
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for the forecasts of the conditional variances for all horizon. So we have the integrated GARCH(p, 

q) model when (necessary condition) 1)1()1(   .  

 
 
 
 

The EGARCH Model ([10]Nelson, 1991) 

In the EGARCH(p, q) model (Exponential GARCH(p, q)) put forward by Nelson the 
2

t  depends 

on both size and the sign of lagged residuals. This is the first example of asymmetric model: 

  
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22 )ln()ln(        (1.11) 

The left hand side is the log of the variance series. This makes the leverage effect exponential 

and therefore the parameters ij  ,,  are not restricted to be nonnegative, 

 2

1

1 2,1   tz  when )1,0(~ NIDzt . Let define ][)( tttt zzzzg    by 

construction 


ttzg )}({  is a zero-mean, i.i.d. random sequence. The components of )( tzg  are 

tz  and ][ tt zz  , each with mean zero. If the distribution of tz  is symmetric, the 

components are orthogonal, but not independent. Over the range  tz0 , )( tzg  is linear in 

tz  with slope   , and over the range 0 tz , )( tzg  is linear with slope   . The 

term ][ tt zz   represents a magnitude effect. If 0  and 0 , the innovation in 
2

1ln t  

is positive (negative) when the magnitude of tz  is larger (smaller) than its expected value. If 

0  and 0 , the innovation in conditional variance is now positive (negative) when returns 

innovations are negative (positive). A negative shock to the returns which would increase the 

debt to equity ratio and therefore increase uncertainty of future returns could be accounted for 

when 0i  and 0 . 

 
[10]Nelson (1991) assumes that tz  has a generalized error distribution (GED) (exponential power 

family). The density of a GED random variable normalized is: 
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where Γ(·) is the gamma function, and 
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where v is a tail thickness parameter, z’s distribution; υ = 2 (standard normal distribution);  υ < 2 

(thicker tails than the normal); υ = 1 (double exponential distribution); υ > 2 (thinner tails than 

the normal); υ = ∞ (uniformly distributed on 

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




 2
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3,3  with this density, 
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The asymmetric Non linear ARCH (p, q) model ([19]Engle and Bollerslev, 1986): 
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for 0k , the innovations in 
 t  will depend on the size as well as the sign of lagged residuals, 

thereby allowing for the leverage effect in stock return volatility. 

[11]The Glosten - Jagannathan - Runkle model (1993): 
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The asymmetric GARCH(p, q) model ([20]Engle, 1990): 
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The QGARCH by [15]Sentana (1995) 

The Quadratic GARCH model captures asymmetry and has the form: 
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when     qttqtx  ,,1  . The linear term )( qtx 
 allows for asymmetry. The off-diagonal 

elements of A accounts for interaction effects of lagged values of tx  on the conditional variance. 

The QGARCH nests several asymmetric models. The proliferation of GARCH models has 

inspired some authors to define families of GARCH models that would accommodate as many 

individual models as possible.  
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The Asymmetric Power ARCH ([13]Ding, Granger and Engle, 1993) 
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where pjqiqi jii ,,10;,,111;,,10;0;0    . This 

model imposes a Box-Cox transformation of the conditional standard deviation process and the 

asymmetric absolute residuals. The Box-Cox transformation for a positive random variable t : 

















0log

0
1

)(














t

t

t
      (1.18) 

The asymmetric response of volatility to positive and negative “shocks” is the well known 

leverage effect. This generalized version of ARCH model includes seven other models as special 

cases. 

(i) ARCH(q) model, just let δ = 2 and pjqi ji ,,1,0,,,1,0     

(ii) GARCH(p, q) model just let δ = 2 and qii ,,1,0   

(iii) Taylor/Schwert’s GARCH in standard deviation model just let δ = 1 and  

        qii ,,1,0   

(iv) GJR model just let δ = 2. 

 

The GARCH-in-mean (GARCH-M) proposed by [21]Engle, Lilien and Robins (1987) consists of the 

system: 
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where )( ftt rry  , where )( ft rr   is the risk premium on holding the asset, then the 

GARCH-M represents a simple way to model the relation between risk premium and its 

conditional variance. This model characterizes the evolution of the mean and the variance of a 

time series simultaneously. The GARCH-M model therefore allows analyzing the possibility of 

time-varying risk premium. It turns out that: 

)),((~ 22

2101 ttttt gxy   
         (1.20) 

In applications, )ln()(,)( 2222

tttt gg    and 
22 )( ttg     have been used. [6]Storti and 

Vitale (2003) proposed BL-GARCH model in Gaussian framework. [22]Diongue, Guegan and Wolff 

(2010) extended their works using elliptical noise to capture the leverage effect or negative 

correlation between asset returns and volatility. The BL-GARCH model is given as 
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where jikji candpjqi  4,,10;,,10;0 2

0   ; p, q, r are non-negative 

integers with r = min(p, q), 
2

t  is the conditional variance of the process }{ t  which only 

depends on past 
2  and 

2 ’s; t  is a sequence of independent identically distributed elliptical 

random variables with mean zero and unit variance, D(0, 1); tz  is an independent, identically 

distributed random variable with mean zero and variance  unity; tv  is the daily trading volume, 

which is used as a proxy variable for the current information flow to the market.  

 

If c = 0, the model (1.21) reduces to the state space representation of the GARCH model. In this 

sense, the bilinear generalized autoregressive conditional heteroskedasticity model is an 

asymmetric extension of the symmetric generalized autoregressive conditional heteroskedasticity 

model.  

 

The News Impact Curve 

News is a huge factor that affects stock prices and therefore measuring its impact on stock 

market volatility is a crucial area of research in financial theory. This news has asymmetric 

effects on volatility. In the asymmetric volatility models, good news and bad news have different 

predictability for future volatility. The news impact curve characterizes the impact of past return 

shocks on the return volatility which is implicit in a volatility model. Holding constant the 

information dated t-2 and earlier, we can examine the implied relation between 1t  and 
2

t , 

with piit ,,122   . This impact curve relates past return shocks (news) to current 

volatility. This curve measures how new information is incorporated into volatility estimates. 

For the GARCH model the News Impact Curve (NIC) is centered on 01 t . 

GARCH(1,1):  
2

1

2

1

2

  ttt   

The news impact curve has the following expression: 
2

1

2

 tt   where 
2  . 

In the case of EGARCH model the curve has its minimum at 01 t  and is exponentially 

increasing in both directions but with different parameters. 

 

EGARCH(1,1):   111

2

1

2 lnln   ttttt zzz   

where tttz  . The news impact curve is 
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The EGARCH allows good news and bad news to have different impact on volatility, while the 

standard GARCH does not. The EGARCH model allows big news to have a greater impact on 

volatility than GARCH model. EGARCH would have higher variances in both directions because 

the exponential curve eventually dominates the quadrature, [12]Engle and Ng (1993). 

The asymmetric GARCH(1,1) ([20]Engle, 1990):  
2

1

2

1

2 )(   ttt   

The NIC is 
2

1

2 )(   tt  is asymmetric and centered at  1t  

where .10,0,10,0,2    

The Glosten-Jagannathan-Runkle model: 
2
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1
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1

22
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
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S
t

t

0

01 1

1


   

The NIC is centered at  1t  





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if
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



  

where .1,10,0,10,0,2    

 

2 Estimating Functions Approach  

In the bulk of literature available for the family of GARCH models, the maximum likelihood 

estimation method has been the most preferred in parameter estimation due to its simplicity and 

desirable properties. However, this method is based on distributional assumptions which are 

often violated in practice and thus alternative parameter estimation approaches are required. An 

alternative method of estimation is based on the Estimating Functions (EF) approach of 
[23]Godambe (1985). This approach takes into account higher order moments while estimating 

unknown parameters and does not rely on any distributional assumptions on the data for 

optimality. The generalized student-t distribution with one skewness parameter and two-tailed 

parameters offers the study the potential to improve our ability to fit the data in the tail regions 

which are critical to the risk management and other financial economic application ([24]Onyeka-

Ubaka, Abass and Okafor, 2016). This is because downward movement of the markets is followed 

by higher volatilities than upward movement of the same magnitude (see [25]Campbell and 

Mackinlay, 1997; [26]Pagan and Schwert, 1990; [27]Locke and Sayers, 1993; [28]Muller and Yohai, 

2002; [29]Eraker, Johannes and Polson, 2003).  

 
We adapt optimal estimating functions’ application to asymmetric GARCH family of models of 
[30]Mutunga, Islam and Orawo (2014). [31]Godambe and Thompson (1989) extended the concept of 

optimality of [23]Godambe’s (1985) EF into a general setting using a more flexible conditioning 

method which is related to the concept of quasi-likelihood approach. Taking Y as an arbitrary 

sample space, they considered the class of EFs i  which is a real function defined on   

such that  

0]),,,([ 21  ini yyy                          (2.1)   



 
 

INTERNATIONAL JOURNAL OF MATHEMATICAL ANALYSIS AND 
                                    OPTIMIZATION: THEORY AND APPLICATIONS 

                       VOL. 2018, PP. 291 - 311 

 

 

300 

 

where   is the parameter space and ),,2,11( ki   is the   -field generated by a specified 

partition on the sample space,  . 

 

2.1    Parameter Estimation Using the Estimating Functions Approach   

To estimate parameters of the EGARCH and GJR-GARCH models in a regression model set up 

using the EFs approach, optimal estimating functions approach to discrete time stochastic 

processes by [31]Godambe and Thompson (1989) was applied.  Consider a general expression of 

the EGARCH and GJR-GARCH models in a regression model set up without making any 

distributional assumptions for the errors,   

),(~ 2

1 tttt

ttt

xy

xy








          (2.2)   

where 1t  is the information set at time t – 1, 
2

t  follows either  an EGARCH or GJR-GARCH 

process and the component tx  could be composed of exogenous variables and/or lagged variables 

of the variable ty  which is a  discrete time series process.  Consider the first EGARCH model:   

 
  111
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

     (2.3)   

where  tttt zzzzg   )(,11  and tz  is an independent and identically distributed 

sequence of random variables. Let ),,,(1   . We seek to estimate the unknown 

parameter vectors   and 1  in the regression model (2.2) where 
2

t  is as defined in (2.3). 

Similarly consider the first order GJR-GARCH model:  







 
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






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when
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0
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1

2

11

2

1

2







                      (2.4)  

where tz  is an independent and identically distributed sequence of random variables. Let 

),,,(2   . Similarly we seek to estimate the unknown parameter vectors   and 2   in 

the regression model (2.2) where 
2

t  is as defined in (2.4).   

 

To evaluate the optimal estimates of   and i  (i = 1, 2) in each case, [31]Godambe and 

Thompson’s (1989) theorem for stochastic processes is applied. A good combination for basic 

unbiased and mutually orthogonal EFs is it  and t2   such that   

22

12 )( ttt

ttit

xy

xy










                 (2.5)   
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The choice of these two estimating functions is based on the need to estimate the conditional 

mean tx  and conditional variance 
2

t  of 
ty  simultaneously. However the EF 



t2  is not 

orthogonal to the EF 
t1 .  This implies that   

0)( 21  

tt                                  (2.6)   
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

t2  is therefore orthogonalised using the Gram-Schmidt orthognalisation procedure as follows 

22

2 )( tttt xy    

      

    

1

2

2

22

1

1

1

2

1

22

1

)(
)()(

)()()()(
















 




t

t

tt

ttttt

ttttttttttt

xy
xyxy

xyxyxyxy









     (2.7)   

From (2.7), consider the component  







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2)(
t

t

tt xy



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                          (2.8)   

Dividing and multiplying (2.8) by t  we have 

tttt

t

tt xy
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
11
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3
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
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                    (2.9)   

where  t1  is the skewness of ty  conditional on 1t .  Thus  

ttttttt xy  1

22

2 )(                                 (2.10)   

Therefore the two elementary EFs are now orthogonal as:   
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1
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To estimate the coefficient vectors   and   in the regression model (2.2), optimal EFs are 

derived using the elementary EFs in (2.11). The theorem by [31]Godambe and Thompson (1989) is 

applied to form a linear combination of the elementary EFs as   
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                   (2.12)   

Let L be the class of all EFs ),( 21 gg  given by (2.12). The jointly optimal EFs ),( 21

 gg  are given 

by (2.8) with 
 tt aa 11  and 

 tt bb 11   for i = 1, 2   t = 1, 2, . . . T, where,   
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Solving the numerator in (2.14) we have 
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Solving the denominator in (2.15) we have
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 Multiplying and dividing (2.16) by 
2

t  leads to 
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Equation (2.18) represents the standardized conditional kurtosis (excess kurtosis).  Hence,   
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Substituting (2.13), (2.19), (2.20) and (2.21) into (2.12) gives the jointly 

 optimal EFs as   
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where  
2

t  is given by equations (2.3) and (2.4) and   
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The result in (2.23) is very general in that no distributional assumptions on 1tty  have been 

made. The estimates for the unknown parameter vectors   and   are obtained by solving the 

optimal EF in (2.23). This means numerically minimizing
  21 gg .   

021,   ggg              (2.24)   

where 


1g  and 


2g  are as defined in (2.22).  

3    Results and Discussion  

3.1   Data for the Study 

The First Bank of Nigeria (FBN), Guaranty Trust Bank (GTB), United Bank for Africa (UBA) 

and Zenith Bank (ZEB) data sourced from Central Bank of Nigeria Annual Bulletin are selected 

for study from 4th January, 2007 to 25th November, 2017. The period is so selected because it 

followed the period, that the world economy grew steadily from 2002 to 2006 on the back of 

emerging economies of scale and interest rates remain low worldwide [32]United Nations (2006). 

Thanks to globalization that provides very accommodative monetary conditions. This nurtured 

expectation for stable growth and firm assets’ prices to continue, result in a massive fund flow to 

money markets and a huge distortion in the market pricing of assets in October, 2008; and the 

Central Bank of Nigeria (CBN) intervention in consolidating and recapitalizing the banking 

sector through such process like the Expanded Discount Window (EDW). By means of purposive 
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sampling technique, four banks were selected for the study. These four banks were selected 

because they are considered to be more susceptible to volatility than other banks and had passed 

the screening exercise conducted by CBN in August, 2009 ([3]Onyeka-Ubaka, 2013). Their volume 

of stocks traded on the floor of the Nigeria Stock Exchange (NSE) for the sample period were 

collected and analyzed using asymmetric GARCH models under the MLE and EF procedures. In 

each case daily returns are computed as logarithmic price )( t  relatives.   

   

1

log





t

t

tr
             (3.1) 

where tr  is the log return series (continuously compounded return). Since 1̂  depends on 0  

which is unknown, we ignore this quantity and begin the calculation of the fitted values with 2̂ .  

 

3.2    Preliminary Tests  

Table 1 presents summary statistics and preliminary tests of normality and asymmetry for the 

daily stock returns of the four financial series. We noticed that the daily volatility for the FBN 

index, represented by the standard deviation (2.74%) is above the volatility (1.95%, 1.69% and 

1.83%) for the GTB, UBA and ZEB indices return series respectively.  

Series Statistics FBN GTB UBA ZEB 

Mean -0.00059 -0.000908 -0.000061 -

0.000792 

Std Dev 0.027351 0.019540 0.016851 0.018346 

Skewness -0.173290 -2.385904 -1.031667 -

0.168971 

Kurtosis 5.743612 8.137659 7.045382 9.452281 

Jarque-Bera 

(Probability) 

0.0000 0.0000 0.0000 0.0000 

  1 1 1 1 

ADF test (Probability) 1.200E-3 1.000E-3 1.011E-3 1.0456E-

3 
  1 1 1 1 

Cov ),( 1

2

tt rr  -0.071853 -0.089452 -0.068723 -

0.079530 

Table 1: Summary Statistics of the compounded returns tr  

 
The skewness coefficients are negative for all series suggesting that they have long left tail. The 

kurtosis coefficients on the other hand are very high, a reflection that the distributions of the 

four sets of real data are highly leptokurtic. The p-value corresponding to the Jarque-Bera 

normality test is zero at 5% level suggesting that the test is significant for all series. The test 

gave a value of 1  which indicates that the series tr  does not come from a normal 

distribution; in favour of 0  which indicates that the series tr  comes from a normal 

distribution with unknown mean and variance. The test results imply that the four series exhibit 

non-normal behaviour. The Augmented Dickey-Fuller (ADF) test rejects the unit root null 

hypothesis in all data sets. This is indicated by the minimal p-values at 5% level and the values 

of  . The test returns a value of 1  which indicates rejection of the unit root in favour of the 

trend-stationary alternative. 0  indicates failure to reject the unit root null. The series 

statistics show strong serial correlations in both levels of the return series. The results obtained 
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are consistent with the results of [33]Pitt and Shephard (1999), [34]Storvik (2002), [35]Johannes, 

Polson and Stroud (2006), [36]Raggi and Bordignon (2006), who found that serial correlations in 

DJIA returns are significant but unstable and depend on the sample period. Thus we conclude 

that the returns of all stock indices are stationary.  Finally, we performed the test for presence of 

asymmetric effects on conditional volatility in all empirical series. A simple diagnostic test for the 

leverage effects involves computing the sample correlation between squared returns and the 

lagged returns, Cov ),( 1

2

tt rr ([37]Zivot, 2008). A negative value for this coefficient provides 

evidence for potential asymmetric effects. All series have a negative value for this coefficient 

indicating evidence of asymmetry and hence asymmetric GARCH family of models could perform 

well in explaining conditional volatility in this case.    

Figure 1 presents the plot of daily logarithmic returns for the series over the sampled period.  We 

observe that volatility clustering is present in the four cases as the four series show periods of 

low volatility which tend to be followed by periods of relatively low volatility and other periods of 

high volatility which likewise tend to be followed by high volatility as observed by [38]Mandelbrot 

(1963). This aspect can be thought of as clustering of the variance of the error term over time, 

that is, the error term exhibits time varying heteroskedasticity.    

 

 

3.3     Model Estimation Results 

The first order EGARCH and GJR-GARCH models are fitted to the four empirical series and 

estimates obtained using the maximum likelihood estimation and estimating function   

approaches. In parameter estimation under maximum likelihood method, we assume a 

standardized Gaussian or Generalized student-t distribution with v = 10 degrees of freedom for 
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the innovations. Parameter estimates, corresponding standard errors (in parentheses), Akaike 

Information Criteria (AIC) and the log likelihood values are presented in Tables 2-4.   

 

Series/Estimate Method         

                   MLE* 

 

FBN           MLE** 

 

                    EF 

-0.127691 

(0.052301) 

-0.214366 

(0.046812) 

-0.203167 

(0.045352) 

0.972876 

(0.007974) 

0.958671 

(0.006382) 

0.958244 

(0.004867) 

0.173354 

(0.086452) 

0.149705 

(0.033415) 

0.1492856 

(0.032918) 

-0.262197 

(0.070125) 

-0.178261 

(0.027312) 

-0.175384 

(0.026843) 

                  MLE* 

 

GTB          MLE** 

 

                   EF 

-0.172631 

(0.103058) 

-0.290344 

(0.068125) 

-0.293143 

(0.071532) 

0.977015 

(0.019546) 

0.965567 

(0.007138) 

0.968134 

(0.007062) 

0.189403 

(0.076860) 

0.176915 

(0.038212) 

0.169326 

(0.0367313) 

-0.280332 

(0.069115) 

-0.169378 

(0.029436) 

-0.171457 

(0.028810) 

                  MLE* 

 

UBA          MLE** 

 

                   EF 

-0.150543 

(0.047332) 

-0.208421 

(0.056172) 

-0.203167 

(0.054850) 

0.984593 

(0.006774) 

0.970115 

(0.005843) 

0.975633 

(0.005621) 

0.170069 

(0.076635) 

0.157910 

(0.035782) 

0.162058 

(0.034924) 

-0.273548 

(0.083012) 

-0.183462 

(0.0276791) 

-0.179753 

(0.0272814) 

                  MLE* 

 

ZEB           MLE** 

 

                  EF 

-0.190345 

(0.050923) 

-0.247889 

(0.074138) 

-0.253716 

(0.069105) 

0.923487 

(0.008146) 

0.940178 

(0.007195) 

0.943812 

(0.007209) 

0.169572 

(0.001535) 

0.158731 

(0.036742) 

0.155849 

(0.033759) 

-0.269037 

(0.076770) 

-0.194782 

(0.026953) 

-0.189233 

(0.026687) 
*Standardized Gaussian distribution **Generalized Student’s- t distribution (with degree of freedom v = 10) 

Table 2: Parameter Estimates of EGARCH(1, 1) Model  

 

From our parameter estimates it is clear that the EF method is more efficient than the MLE 

method in parameter estimation of the first order EGARCH and GJR–GARCH models in finite 

samples. The assertion is evident from the bracketed standard errors. The standard errors of the 

EF method estimates are smaller than those of the maximum likelihood estimates assuming 

either a Gaussian or a Generalized Student–t distribution with 10 degrees of freedom. The gain 

in efficiency follows from the fact that the EF method does not rely on distributional 

specifications for optimality and that it accounts for higher order moments present in non–

normal data such as the present study financial time series. However, it is evident that the MLE 

method when assuming a Generalized Student-t error distribution competes reasonably well 

with the EF method and provides a better in-sample-fit than the MLE method when assuming a 

Gaussian error distribution across all data sets. This finding is expected considering the Jarque-

Bera normality test in Table 1 which implies that the empirical distributions of the four return 

series exhibit heavier tails than the standard normal distribution. Moreover, a Generalized 

Student–t distribution exhibits excess kurtosis and fat tail behaviour. 
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  Series/Estimate Method         

                   MLE* 

 

FBN           MLE** 

 

                    EF 

1.87412E-06 

(1.30583E-06) 

2.43951E-06 

(1.23046E-06) 

3.15926E-06 

(1.197452E-06) 

0.003196 

(0.059174) 

0.001264 

(0.021637) 

0.001185 

(0.018943) 

0.897354 

(0.048716) 

0.915479 

(0.020354) 

0.913285 

(0.019518) 

0.195734 

(0.067135) 

0.182961 

(0.038271) 

0.178354 

(0.035618) 

                  MLE* 

 

GTB          MLE** 

 

                   EF 

1.28574E-05 

(3.10345E-06) 

1.19312E-05 

(4.04186E-06) 

1.221694E-05 

(4.123794E-06) 

0.001282 

(0.062546) 

0.003679 

(0.027682) 

0.006281 

(0.025682) 

0.886479 

(0.050187) 

0.946577 

(0.019812) 

0.943672 

(0.016823) 

0.217138 

(0.070136) 

0.189761 

(0.043872) 

0.185591 

(0.037526) 

                  MLE* 

 

UBA          MLE** 

 

                   EF 

2.80367E-05 

(1.92613E-06) 

3.85395E-05 

(2.10798E-06) 

3.70159E-05 

(2.09681E-06) 

0.0021989 

(0.051068) 

0.0034976 

(0.004293) 

0.0031852 

(0.003950) 

0.860627 

(0.035148) 

0.858491 

(0.028354) 

0.854173 

(0.027159) 

0.207573 

(0.054615) 

0.173296 

(0.036729) 

0.168395 

(0.033768) 

                  MLE* 

 

ZEB           MLE** 

 

                  EF 

1.92458E-06 

(1.28673E-06) 

1.67213E-06 

(1.18695E-06) 

1.59764E-06 

(1.179148E-06) 

0.0021348 

(0.028714) 

0.0041975 

(0.037619) 

0.0040871 

(0.034712) 

0.877215 

(0.048716) 

0.903147 

(0.019683) 

0.901582 

(0.017069) 

0.220547 

(0.049670) 

0.212456 

(0.036127) 

0.198191 

(0.034918) 

*Standardized Gaussian distribution **Generalized Student’s- t distribution (with degree of 

freedom v = 10) 
Table 3: Parameter Estimates of GJR-EGARCH (1, 1) Model      

          EGARCH (1, 1)        GJR-GARCH (1, 1) 

 Model    

Diagnostics 

   FBN    GTB    UBA    ZEB     FBN    GTB    UBA     ZEB 

        AIC           

MLE 

                           

EF    

2070.8

6 

2071.1

7 

2308.5

1 

2310.8

5 

3546.8

7 

3548.3

6 

4618.1

9 

4620.4

5 

2146.5

8 

2147.1

1 

2316.5

9 

2318.0

3 

3571.1

2 

3572.2

3 

4625.0

3 

4627.1

5 

Log-Likelihood 

MLE 

                            

EF   

1839.4

7 

1842.0

9 

1841.7

6 

1843.3

7 

1832.6

9 

1836.3

4 

1822.9

4 

1827.2

6 

1839.2

1 

1842.0

3 

1841.2

6 

1843.5

2 

1832.0

8 

1835.6

7 

1822.1

2 

1827.0

7 
Table 4: Model Evaluation Criteria   
 

From the results, it is observed that both models have almost similar AIC and Log-likelihood 

values for the four financial series data. However, EGARCH (1,1)  has relatively higher Log-

likelihood and lower AIC values than GJR – GARCH (1,1) indicating that it performed relatively 

better  in explaining conditional volatility in all empirical series over the considered study period.  

The coefficients 
2 and   for the first order EGARCH and GJR-GARCH models respectively 

reflects the leverage effects. The estimates indicate the magnitude and sign of the leverage 

effects. The EGARCH model shows a negative parameter of asymmetry in all financial series 

suggesting that past negative shocks (bad news) have a greater impact on subsequent volatility 

of returns than positive shocks (good news) do. The GJR-GARCH model records positive leverage 
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effects, attesting that bad news in the market lead to a higher volatility of asset returns than 

good news. 

 
  

4   Conclusion   
In this paper, high frequency volatility data were modelled via asymmetric GARCH family 

models. The Maximum Likelihood Estimation and optimal Estimating Function methods were 

applied in parameter estimation. The results show that the EF method competes reasonably well 

with the MLE method especially in cases where there are serious departures from normality in 

finite samples. The paper extends and generalizes [30]Mutunga, Islam and Orawo (2014) by using 

generalized student-t distribution in asymmetric properties in high frequency volatility data. The 

present EF approach, therefore, provides a useful alternative method of estimation to the MLE 

method for the asymmetric GARCH models especially in cases where the true distribution of the 

data is unknown.  
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