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Abstract

This study investigates the influence of Dufour, Soret, radiation and dissipation on an unsteady,
free convective heat and mass transfer of a viscous incompressible, gray, absorbing-emitting
magnetohydrodynamics (MHD) fluid flowing past an impusively started vertical plate in a
porous medium. The governing equations are reduced to two-dimensional and two dependent
problems involving velocity, temperature, and concentration with appropriate boundary conditions.
The Rosseland diffusion approximation was employed to analyze the radiative heat flux which
is appropriate for non-scattering media. The governing equations for the model are simplified
and non-dimensionalized. The dimensionless governing equations are solved using an implicit
finite-difference method of Crank-Nicolson type. A parametric study is performed to illustrate
the influence of the emerging thermophysical parameters (Prandtl number, thermal Grashof
number, species Grashof number, etc.) on the velocity, temperature, and concentration profiles.
Also, the behaviour of the local and average skin-friction, Nusselt number and Sherwood
number are presented graphically. The results obtained are compared with previously published
ones and are found to be in excellent agreement. This model finds applications in transport of
fires in porous media (forest fires), the design of high temperature chemical processing systems,
solar energy collection systems and porous combustors.
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1 Introduction
The influence of Dufour, Soret, radiation and dissipation on an unsteady, free convective heat and

mass transfer of a viscous incompressible, gray, absorbing-emitting hydromagnetic fluid flowing past
an impusively started vertical plate in a porous medium was investigated.
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Heat and mass transfer occur simultaneously in many processes such as drying evaporation at
the surface of a wet body, energy transfer in a wet cooling tower, flow in a desert cooler, polymer
production and food processing. Hence, it is of interest to examine the combined effects of heat
and mass transfer with chemical reaction, MHD, Dufour and Soret because of their applications.
Loganatha et al. [1], studied the effect of chemical reaction on an unsteady two dimensional
free convective heat and mass transfer, past a vertical plate with variable viscosity and thermal
conductivity.

Many high temperature processes in the industrial design and combustion and fire science involve
thermal radiation, heat transfer in combination with conduction, convection and mass transfer. For
example, radiative heat transfer flows arise in industrial furnace systems, astrophysical flows, forest
fire dynamics and fire spread in building, Alam et al. [2], Mahjan and Gebhart, [3], Mansour, [4],
Modest [5]. Considerable research has therefore been carried out on radiative convective flows in
a variety of geometrical configurations using various mathematical models. Bratis and Novotny [6]
studied the effects of the thermal radiation on the convection boundary layer-regime of an enclosure.
Chang and Kang [7] used a radiative flux diffusion approximation to model the interaction of
convective and radiative heat transfer in a two dimensional channel. Hossain et al. [8] studied
the effects of thermal radiation and heat transfer on combined forced and free convection boundary
layer past a horizontal cylinder. Chamkha et al. [9] discussed the natural convective power-law fluid
past a vertical plate embedded in a non-Darcian porous medium in the presence of a homogeneous
chemical reaction.

Extensive research work has been published on an impulsively started vertical plate with different
boundary conditions. Hall [10] solved the problem of Stewartson by finite difference method of
a mixed explicit type which is convergent and stable. Soundalgelar et al. [11] obtained the
exact solution of Stokes problem for the case of an infinite vertical plate. For the first time,
Muthuenmaraswamy [12] studied the natural convection of the flow past an impulsively started
vertical plate with variable surface heat flux. Temperature distribution in the fabric layers were
shown to be strongly affected by moisture contents and thermal radiation flux. Generally, for
low velocity hydromechanics of porous media, a Dacian model is used which relates the bulk
matrix impedance in the regime to the pressure drop. This approach is generally accurate for
situations where Reynold number is less than approximately 10. Beyond this value, inertial effects
become significant and must be incorporated in mathematical models. Both Darcian and Darcy-
Forchheimer (inertial) model have been employed extensively in radiative convection flow in porous
media. Chamkha [13] examined the influence of solar radiation on free convection flow in an
isotropic, homogeneous porous medium using a computational method. Mohammadein et al. [14]
employed a regular two-parameter perturbation analysis while studying radiative flux effects on free
convection in a non-Darcian porous medium. They discussed four different flow regimes i.e. flow
that is adjacent to the isothermal surface, flow with a uniform heat flux, plane plume flow and also
the flow generated from a horizontal line energy source on a vertical adiabatic surface.

Takhar et al. [15] carried out a computational analysis of coupled convection radiation dissipation
non-gray gas flow in a non-Darcy porous medium using the Keller-Box implicit scheme. Chamkha et
al. [16] investigated the influence of thermal radiation on steady natural convection in a viscoelastic
fluid saturated by non-Darcian porous medium using Keller-Box numerical scheme.

Dada and Adefolaju [17] studied dissipation, MHD and Radiation effects on an unsteady convective
heat and mass transfer in a Darcy-Forcheimmer porous medium and found out that temperatures
increases slightly with the increasing value of magnetic field parameter. This also holds for species
concentration. Zueco [18] used network simulation method (NSM) to study the effects of viscous
dissipation and radiation on unsteady MHD free convection flow past vertical porous plate.

It is also well known ( Idowu et al. [19]) that the effect of viscous dissipation which is often
neglected in the studies of laminar convection, can be relevant and important if highly viscous
fluids with low thermal conductivity are considered. Viscous dissipation effect in duct flow of
molten polymers was examined by Berardi et al. [20].
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All the above studies did not consider the combined influence of Dufour, Soret, radiation and
dissipation on an unsteady free, convective heat and mass transfer of a viscous incompressible,
gray, absorbing-emitting hydromagnetic fluid flowing past an impusively started vertical plate in a
non-Darcy porous medium, which this study investigates. The governing boundary value problem
is nondimensionalized. The resulting dimensionless problem is found to be characterized by the
following thermophysical parameters; thermal Grashof number, species Grashof number, Darcy
number, Reynold number, Forchheimer number, magnetic field, Eckert number, Prandtl number,
Schmidt number, Dufour number and Soret number. The influence of these parameters on the
velocity profile, temperature function and mass transfer function are presented and discussed.

2 Formulation of the Problem

The problem under investigation is made up of an unsteady two-dimensional natural convective
laminar flow of a viscous incompressible, electrically conducting, radiating and dissipative fluid
past an impulsively started semi-infinite vertical plate under a transverse magnetic field. It is
assumed that the fluid is absorbing-emitting, gray and not scattering.

The origin of z’'-axis is taken to be at the leading edge of the plate while the gravitational
acceleration “¢” is assumed acting downward. On the other hand, the y’-axis is taken perpendicular
to the plate at the leading edge but the z’-axis is chosen along the plate in the upward direction.
At time ¢’ = 0, it is assumed that the plate and the fluid are at the ambient temperature T and
the species concentration C’_ . On the other hand, for ¢ > 0, the temperature of the plate and
the species concentration are denoted by T, (such that T, < T,) and C/, (such that C’_ < C.)),
respectively.

The corresponding configuration of the system is as shown in Figure 1 below.

At time ¢ = 0, the plate commences an impulsive motion in the z’-direction, with constant
velocity ug, and the plate temperature and concentration levels are instantaneously increased and
are kept constant thereafter.

Effect of viscous dissipation is considered in the binary mixture and assumed to be very small
compared with other chemical species, which are present. A uniformly transverse magnetic field is
applied in the direction of flow. The fluid properties are assumed to be constant except for the body
forces terms in the momentum equation which are approximated by Boussinesq relations. Thermal
radiation is assumed to be present in the form of an uni-directional flux in the y’-direction i.e. g, is
transversed to the vertical surface. Then based on the above assumptions, the governing boundary
layer equations with Boussinesq approximation are:

Mass conservation:

ou o
a0 "oy =" M
Momentum conservation:
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Energy equation:
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Species conservation:
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'
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Figure 1: Configuration of the System

The corresponding initial and boundary conditions for the study are prescribed as follows:
=0, v'=0,v=0T =T, c'=Cl
>0, v=upv=0T=T,C=C, aty =0

=0 1T=T,, C'=C at 2’ =0

=0T =T, C'"—C asy — oo

In equations (1)-(5), v/, v’ are velocity components in 2’, 3y directions respectively, ¢’ is the time,
g is the acceleration due to gravity, 8 is the volumetric coefficient of thermal expansion, 5* is the
volumetric coefficient of expansion with concentration, 7" is the temperature of the fluid in the
boundary layer, C” is the species concentration in the boundary layer, T/, is the wall temperature,
T is the free stream temperature far away from the plate, C?, is the concentration at the plate,
C’, is the free stream concentration in the fluid far away from the plate, k is the permeability of the
porous medium, By is the magnetic induction, v is the kinematic viscosity, « is the fluid thermal
diffusivity, p is the density of the fluid, C}, is the specific heat constant pressure, g, is the radiation
heat flux, D is the species diffusivity, D,, is the species diffusion coefficient, o is the electrical
conductivity of the fluid and K is the thermal diffusion ratio.

By the Rosseland approximation (Brewster [21]), the radiative heat flux ¢, is given by

4o, 0T

qr:i?)ik‘eaiy’ (6)
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where o, is the Stefan-Boltzmann constant and k. is the mean absorption coefficient. It should be
noted that by using the Rosseland approximation the present analysis is limited to optically thick
fluids. If temperature differences within the flow are sufficiently small, then equation (6) can be
linearized by expanding 7' into the Taylor series about T, which after neglecting higher order

terms takes the form
T = ATRT — 3102 (7)

In view of equations (6) and (7), equation (3) reduces to:

ar’ a1 T T | v {au'r 160,173 9*T' D, Kr 9*¢ ®)

or " ow TV ey Ty T o, Loy T Bkepc, ay7 T ToC, 027
Equations (1), (2), (4) and (8) with boundary conditions in equation (5) constitute a two-point

boundary value problem which is fairly challenging to solve. Next we non-dimensionalize the model
by introducing the following non-dimensional quantities:

/ / 2
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where X and Y are dimensionless coordinates, U and V are dimensionless velocities, ¢ is the
dimensionless time, 7' is the dimensionless temperature function, C' is the dimensionless concentration
function, v is the conduction radiation heat transfer parameter, Pr is the Prandtl number, Sc is
the Schimdt number, Da is the Darcy number, F's is the Forchheimer (non-Darcy) initial number,
Re is the Reynold number, Gr is the thermal Grashof number, Gm is the species Grashof number,
M is the magnetic field parameter, Ec is the Eckert number, Sr is the Soret number and Du is the
Dufour number.

Applying these non-dimensional quantities in equation (9), the set of equations (1), (2), (4) and
(8) reduces to the following non-dimensional equations

oU oV
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The corresponding initial and boundary conditions take the form

t<0, U=0, V=0, T=0, C=0
t>0, U=1, V=0, T=1 C=1 atY =0

U =0, T=0, C=0, at X =0

U —0, T—0, C—0 atY —

For the type of fluid under consideration, the local as well as average values of skin-friction, Nusselt
number and Sherwood number are important, and these are given in dimensionless form as reported
by Modest [5] as follows:

oU _ 'Tou
T — |:6}/:| YZO, T = —/O |:8Y:| veo dX (15)
v, 7= (]
Nu,=-X || [ NO=-[ || dx 16
{65/ v—=0 o LOY Jy_o (16)
) =L [
Shy = - X | 2= ., Sh= it dx 17
* [6}7 Y=0 0 oy Y=0 ( )

3 Method of Solution

The coupled nonlinear partial differential equations (10), (11), (12) and (13) with boundary conditions
(14) are solved using an implicit finite difference method of Crank-Nicolson type. Following
Suneetha and Bhaskar [22]) we consider a rectangular region with X varying from 0 to 1 and
Y varying from 0 to Ymax = 14 where Ymax corresponds to Y = oo and X = 1 corresponds to
the height of the plate. The co-ordinate (X,Y,t) of the mesh points of the solution is defined by
X =iAX,Y =jAY, and t = kAt, where i, j are positive integers and k is a non negative integer.
The values of U at these mesh points are denoted by U(iAX, jAY, kAt) = UZ The finite difference
equations corresponding to equations (10), (11), (12) and (13) are given as follows

[Uilf;rl - Uzk—Jrll,] + Uik,j - Uik—l,j + Uzk,:j—ll - Uik—Jrll,j—l + Ui]fj—l - Uz'k—l.j—l]
ANX (18)

N Vit -V Vs Vil ) 0
2AY N

k+1 k k k+1 k+1 k k
Uy —Uj +Uij[Ui7j - Ui+ UE - UR ]

i—1,7
At 2AX
+W;‘ [Urh - US55 + US o - UE ]
ANY
k+1 k k+1 k
_ Gr [Ti,j + Ti,j] N Gm [Ci,j + Ci7j}
2 2
N [UF2 =208 + UL + UEy - 208, + UE ]
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1 [uift+ul] R UBIUST 4 UR) MUST + U] (19)
DaRe? 2 DaRe 2 2
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The subscript ¢ implies the grid point along the X-direction, j along the Y-direction and % along
t-direction. We therefore divide X and Y into M and N grid spacing respectively. The mesh sizes
are AX =0.1, AY =0.25 and At = 0.01.

In the computations, as discussed in Suneetha and Bhaskar [22] and Dada and Adefolaju [17],
the coefficient Ui’fj and Vi’fj appearing in the difference equations are treated as constants in any
one time step. The values of C,T,U and V are known at all grid point at ¢ = 0 from the initial
conditions. The value of C,T,U and V at (k+1)!" time level are calculated using the known values
at previous time level (k). The finite difference equation (21) at every nodal point on a particular
i-level constitutes a tridiagonal system of equations, which is solved by the aid of Matlab package
using Thomas algorithm as discussed in Carnahan, Luther and Willkes [23]. Hence the values of
C are known at every internal nodal point on a particular i at (k + 1) time level. Similarly,
the value of T are calculated from equation (20). Using the value of C and T at (k + 1)!* time
level in equation (19), the values of U at (k + 1) time level are found in a similar manner. Then
the values of V' are calculated explicitly using equation (18) at every nodal point at particular
i-level at (k + 1)** time level. This process is repeated for various i-levels. Thus the values of
C,T,U and V are known, at all grid points in the rectangular region at (k + 1)!* time level. The
process is repeated several times for various i-level until the required time is reached. To test the
accuracy of the results, we have compared the velocity profile against Y for various thermal Grashof
number, Species Grashof number, Schmit number and Conduction-radiation parameter with the
Crank-Nicolson computation of Ramachandra Prasad et al. [24]) by setting the values M = 0,
Da — oo (Da = 10°) and F, = 0 in our finite difference equations and the mesh sizes are taken
to be AX = 0.05, AY = 0.25 and At = 0.01. The local truncation error is O(At? + Ay? + Ax)
and it tends to zero as At, Az, and Ay respectively tends to zero. Thus the scheme is compatible.
According to Ramachandra Prasad et al. [25], the finite difference scheme is unconditionally stable.
Hence compatibility and stability ensures the convergence of the scheme.
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4 Discussion of Results

Series of computations was carried out for the influence of controlling thermo and hydrodynamic
parameters on the dimensionless velocity(U), temperature(T) and concentration(C). The present
analysis concerns the case of optically thick boundary layers where thermal boundary layer is
expected to become very thick as the medium is highly absorbing. The Rosseland diffusion model
adds radiative conductivity to the conventional thermal conductivity. The effect of radiation is
to thicken the thermal boundary layer similar to the effect of decreasing Prandtl number. In this
study, the default values for parameters are Pr = 0.71 (air), S¢ = 0.6, N = 3.0, M = 1.0, E. =
0.001, Gr =20,Gm =20, D, = 0.1, Fs = 0.1, Re = 1. Unless otherwise stated on the graph, all
the graphs correspond to these default values.

In order to validate the present scheme, we compared the present solutions with available
solutions of Dada and Adefolaju [17] (see figure 2a and 2b). They employed the scheme to study the
same flow field in the absence of Dufour and Soret. This comparison resulted in a good agreement.

Figure 3 shows the effect of N on the dimensionless velocity profile against Y-coordinate and it
shows that an increase in NV induces a rise in the steady state velocity profile. The increase gives a
rapid rise in the velocity near the wall and the velocity decends smoothly towards zero.

Figure 4 shows the effect of Gr on the dimensionless velocity profile against Y-coordinate. From
the graph, Gr indicates the relative effect of thermal buoyancy force to the viscous hydrodynamic
force in the boundary layer. An increase in Gr induces a rise in the steady state velocity profiles,
the increase gives a rapid rise in the velocity near the wall and the velocity descends smoothly
towards zero.

Figure 5 depicts the effect of magnetic field M on the dimensionless velocity profile. Increase
in the magnetic field causes reduction in the velocity profile. This is due to the fact that the
application of magnetic field on an electrically conducting fluid results to a resistive type of force
called Lorentz force which has tendency to slow down the motion of a fluid and its temperature.

Figure 6 illustrates the effect of conduction-radiation heat transfer parameter (N) on the
temperature profile and it shows that an increase in IV correspond to an increase in the contribution
of conduction of thermal radiation heat transfer. As N — oo, conduction heat transfer dominates
and the contribution of thermal radiative flush disappears. Small values of N corresponds physically
to stronger thermal radiation flux and the maximum temperature are observed for N = 0.5. As
N increases to 1.0, 2.0 and 5.0 considerable reduction is observed in the temperature values from
the highest value at the wall (Y = 0) across the boundary layer to the free stream at which the
temperature values are negligible for any value of N. All profiles decay to zero in the free stream.

The effect of Schmidt number (Sc) on the temperature profile is shown in figure 7. It is noticed
that the temperature increases due to an increase in Sc. The figure shows that temperature increases
rapidly with an increase in Sc¢, which correspond to an increase in chemical molecular diffusivity.

Figure 8 shows the effect of Dufour (Du) on dimensionless temperature profile. It is observed
that an increase in Dufour brings about a decrease in the temperature.

Figure 9 shows the effect of Pr on the dimensionless temperature profile. Pr is the ratio of
momentum diffusivity to thermal diffusivity i.e., it controls the thickness of the thermal boundary
layer and the rate of heat transfer. The numerical results show that, as Prandtl number increases,
a decrease in the thermal boundary layer thickness and in general lower average temperature is
experienced. This is because smaller value of Pr increases the thermal conductivity of the fluid
which indicates that heat is able to diffuse away from the heated surface more rapidly than higher
values of Pr. Temperatures across the boundary layer normal to the wall reduces to zero faster for
higher Pr values.

Figure 10 illustrates the effect of Soret (Sr) on the concentration profile. As Sr increases great
increase in the concentration profile is experienced. The concentration decreases asymptotically to
zero from the highest value at the wall to zero in the free stream.
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Figure 2a: Velocity profile for various G,, G, Sc and N (Present Result)
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5 Conclusion

The study is concerned with the influence of controlling thermo fluid and hydrodynamics parameters
(such as thermal Grashof number (Gr), solutal Grashof number (Gm), magnetic parameter (M),
Darcy number (Da), etc) on the dimensionless velocity(U), temperature(T) and concentration(C)
profiles of a viscous incompressible, gray, absorbing-emitting magnetohydrodynamics (MHD) fluid
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flowing past an impulsively started vertical plate in a porous medium. The Rosseland diffusion
flux model has been used to simulate the radiative heat flux. The family of governing partial
differential equations is solved by an implicit finite difference scheme of Crank Nicolson type.
A parametric study is perfrmed to illustrate the influence of thermo-physical parameters on the
velocity, temperature and concentration profiles. Validation of the present results with the published
results was carried out and good correlation was achieved.
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