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Abstract

(v, k, 2) symmetric designs(or Biplanes) are known to exist for some integer values k < 16.
This paper investigates the existence of a class of (v, k, 2) di�erence sets with 2 ≤

√
k − 2 ≤ 45

and
√
k − 2 is an integer using variance technique, representation, group and algebraic number

Theories. Our results indicate that most of these parameters do not exist.
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1 Introduction

Let G be a multiplicative group of order v and let D be a k-subset of G with k < v. The set
D is a (v, k, λ) di�erence set if every non-identity element of G can be replicated exactly λ times
by the multi-set {d1d−12 : d1, d2 ∈ D, d1 6= d2}. The natural number n := k − λ characterizes
D and is called the order of the di�erence set. Usually, we say that D is abelian (resp. non-
abelian or cyclic) di�erence set if the underlying group G is abelian (resp. non-abelian or cyclic).
Di�erence sets are useful in optical alignment, imaging astronomical events, communication sciences
like interpreting signals in the presence of noise or constructing error correcting codes and facilitating
processes in quantum informatics. Also, it is known that di�erence sets are closely related to designs
since symmetric design admitting a sharply transitive automorphism group G, is isomorphic to the
development of a di�erence set in G (Theorem 4.2 [1]). The study of di�erence sets is the epitome
of elegance of combination of techniques in geometry, combinatorics, group, representation and
number theories.

Symmetric designs with λ = 1 (symmetric 1-designs) are known as projective planes while symmetric
designs with λ = 2 (symmetric 2-designs) are known as biplanes. Projective planes are known to
exist for every prime power [2]. Hence, there are in�nite number of projective planes and many
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researchers wonder whether the same is true of biplanes. To date, biplanes exist only for (v, k, 2)
with k = 3, 4, 5, 6, 9, 11 and 13 [3]. The author assumes that the readers are familiar with Symmetric
designs, di�erence sets and the relationship between them. The readers that are not familiar with
these subjects are encouraged to read Lander [1], Beth et al [4], Ionin and Shrikhande [2], or Pott [5].

Baumert's result[6] indicated that there are no other Singer cyclic biplanes for k ≤ 100 while
Hughes and Dickey [3] showed (with the aid of computer) that there are no biplanes for k ≤ 5002.
The implication of these results(based on Lander's Theorem 4.2 [1]) is that the corresponding
di�erence set with the same parameters do not exist but our results are achieved by analytical
method. Furthermore, other authors including Gjoneski et al [7], Kopilovich [8], Lander [1], López
and Sánchez [9] and Osifodunrin [10, 11, 12], Smith and Borman[13] showed that di�erence sets
with some of these parameters do not exist in some or all groups of appropriate order. On the other
hand, it is known that 12 of the 14 groups of order 16 have (16, 6, 2) di�erence sets and there are
three biplanes(up to isomorphism) with these parameters.

In this paper, we consider (v, k, 2) parameter sets in which k−2 ≥ 4 is a perfect square and k < 2030.
We combine variance technique(a necessary condition for the existence of (v, k, λ) di�erence set)
with Sylow Theorems, representation and algebraic theories to establish non existence of some
di�erence set parameters and partial results on other parameters. G will represent a group of order
v and N , a normal subgroup of G of an appropriate order. The main results of this paper are:

Theorem 1.1. There are no (56, 11, 2), (154, 18, 2), (352, 27, 2), (704, 38, 2), (2146, 66, 2),
(3404, 83, 2), (10586, 146, 2), (14536, 171, 2), (33154, 258, 2), (42196, 291, 2),(65704, 363,
2), (97904, 443, 2), (196252, 627, 2), (463204, 963, 2), (1282402, 1602, 2), (1415404, 1683, 2),
(1558496, 1766, 2), (1712176, 1851, 2), (1876954, 1938, 2), (2053352, 2027, 2) di�erence sets.

Theorem 1.2. There are no (1276, 51, 2) di�erence sets except possibly in C11 × (C29 o C4) or
C319 o C4.

Theorem 1.3. Suppose that G is a group of order 5152 and N is a normal subgroup of G. Then
there are no (5152, 102, 2) di�erence sets except possibly in G such that G/N ∼= (C4 × (C3

2 o C7))
(with GAP location number [224, 173]).

Theorem 1.4. Suppose that G is a group of order 7504 and N is a normal subgroup of G. Then
G does not admit (7504, 123, 2) di�erence sets if G/N ∼= H, where H is any group of order 1876.

Theorem 1.5. Suppose that G is a group of order 19504 and N is a normal subgroup of G. Then
there are no (19504, 198, 2) di�erence sets except possibly in G such that G/N ∼= H, where H is a
group of order 848 with GAP location number [848, cn], cn =28, 29, 30, 31, 32, 33, 34, 49.

Theorem 1.6. Suppose that G is a group of order 52976 and N is a normal subgroup of G. Then
there are no (52976, 326, 2) di�erence sets if G/N ∼= H, where H is a group of order 172 or C43,
C86,D43, C14 × C2 × C2 or D14 × C2.

Theorem 1.7. Suppose that G is a group of order 166754. If there is a normal subgroup, N of G
such that G/N is isomorphic to C43, D43 or C86, then G does not admit (166754, 578, 2) di�erence
sets.

Theorem 1.8. Suppose that G is a group of order 229504 and N is a normal subgroup of G.
Then there are no (229504, 678, 2) di�erence sets if G/N ∼= H, where H is C1793, D1793, C3586 or
C22 × (C2)2.

Theorem 1.9. Suppose that G is a group of order 266816 and N is a normal subgroup of G. Then
there are no (266816, 731, 2) di�erence sets if G/N ∼= H, where H is C379, C758 or D379 or any
of the four groups of order 1516.
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Theorem 1.10. Suppose that G is a group of order 308506 and N is a normal subgroup of G.
Then there are no (308506, 786, 2) di�erence sets if G/N ∼= H, where H is C4179, C8338 or D4169.

Theorem 1.11. Suppose that G is a group of order 354904 and N is a normal subgroup of G.
Then there are no (354904, 843, 2) di�erence sets if G/N ∼= H, where H is C44, C22 × C2,D22,
D74 or C74 × C2 or C1488.

Theorem 1.12. Suppose that G is a group of order 594596 and N is a normal subgroup of G.
Then there are no (594596, 1091, 2) di�erence sets if G/N ∼= H, where H is C281, any group of
order 562 or 1124 except Frobenious group of order 1124.

Theorem 1.13. Suppose that G is a group of order 939136 and N is a normal subgroup of G. Then
there are no (939136, 1371, 2) di�erence sets if G/N ∼= H, where H is C92, C46 × C2, C58 × C2,
D46 or C116.

Theorem 1.14. Suppose that G is a group of order 1044736 and N is a normal subgroup of G.
Then there are no (1044736, 1446, 2) di�erence sets if G/N ∼= H, where H is C77, C154, or D77.

Theorem 1.15. Suppose that G is a group of order 1159004 and N is a normal subgroup of G.
Then there are no (1159004, 1523, 2) di�erence sets if G/N ∼= H, where H is C71, C142, D71 or
C116.

Section 2 reproduces the basic results in representation and algebraic number theories required
for this work while in sections 3 and 4, we prove the main theorems by showing that some factor
groups of G do not admit the di�erence sets. Section 5 gives an example of work in progress and
section 6 is the summary of this work.

2 Preliminary results

Let Z and C be the ring of integers and �eld of complex numbers respectively. Suppose that G is a
group of order v and D is a (v, k, λ) di�erence set in a group G. We sometimes view the elements
of D as members of the group ring Z[G], which is a subring of the group algebra C[G][5]. Thus, D
represents both subset of G and element

∑
g∈D g of Z[G]. The sum of inverses of elements of D is

D(−1) =
∑
g∈D g

(−1). Consequently, D is a di�erence set if and only if

DD(−1) = n · 1G + λG andDG = kG. (2.1)

A C-representation of G is a homomorphism, χ : G → GL(d,C), where GL(d,C) is the group of
invertible d×dmatrices over C. The positive integer d is the degree of χ. A linear representation(character)
is a representation of degree one. The set of all linear representations of G is denoted by G∗. G∗ is
an abelian group under multiplication and if G′ is the derived group of G, then G∗ is isomorphic to
G/G′ [14]. A representation is said to be non trivial if there exist x ∈ G such that χ(x) 6= Id, where
Id is the d× d identity matrix and d is the degree of the representation. The least positive integer
m′ is the exponent of the group G if gm

′
= 1 for all g ∈ G. If ζm′ := e

2π
m′ i is a primitive m′-th root

of unity, then Km′ := Q(ζm′)(known as the splitting �eld of G) is the cyclotomic extension of the
�eld of rational numbers, Q. Without loss of generality, we may replace C by the �eld Km′ . This
�eld is a Galois extension of degree φ(m′), where φ is the Euler function. If G is a cyclic group,

then a basis for Km′ over Q is S = {1, ζm′ , ζ2m′ , . . . , ζ
φ(m′)−1
m′ }. S is also the integral basis for Z[ζm′ ].

With this background and for any abelian group G, we de�ne the central primitive idempotents in
C[G] as

eχi =
χi(1)

|G|
∑
g∈G

χi(g)g−1 =
1

|G|
∑
g∈G

χi(g)g, (2.2)
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where χi is an irreducible character of G[5]. The set {eχi : χi ∈ G∗} is a basis for C[G]. Notice that∑
eχ = 1 and every element A ∈ C[G] can be expressed uniquely by its image under the character

χ ∈ G∗, where G is an abelian group. That is, A =
∑
χ∈G∗ χ(A)eχ.

Suppose that χ is a non-trivial representation of G and σ is a Galois automorphism of Km′ �xing
G. For any g ∈ G, σ acts on the entries of the matrix χ(g) in the natural way and the function
σ(χ) is also a group representation. In this case, χ and σ(χ) are algebraically conjugate. It can be
shown that algebraic conjugacy is an equivalence relation. This brings us to an instrument, called
an alias that is an interface between the values of group rings and combinatorial analysis. Aliases
are members of group ring. They enable us to transfer information from C[G] to group algebra Q[G]
and then to Z[G]. Let G be an abelian group and Ω = {χ1, χ2, · · · , χh}, be the set of characters
of G. The element β ∈ Z[G] is known as Ω-alias if for A ∈ Z[G] and all χi ∈ Ω, χi(A) = χi(β).
Since A =

∑
χ∈G∗ χ(A)eχ, we can replace the occurrence of χ(A), which is a complex number by

Ω-alias, β, an element of Z[G][5]. Furthermore, two characters of G are algebraic conjugate if and
only if they have the same kernel and we denote the set of equivalence classes of G∗ by G∗/ ∼.
Primitive idempotents give rise to rational idempotents as follows: If Km′ is the Galois �eld over
Q, then central rational idempotents in Q[G] are obtained by summing over the equivalence
classes Xi = {χi : χi ∼ χj} on the eχ's under the action of the Galois group of Km′ over Q[5].
That is,

[eχi ] =
∑

eχj∈Xi

eχj , i = 1, . . . , s.

In particular, if G is a cyclic group of the form Cpm = 〈x : xp
m

= 1〉 (p is prime) whose characters
are of the form χi(x) = ζipm , i = 0, . . . , pm − 1, then the rational idempotents are

[eχ0 ] =
1

pm
〈x〉, (2.3)

and 0 ≤ j ≤ m− 1

[eχpj ] =
1

pj+1

(
p〈xp

m−j
〉 − 〈xp

m−j−1

〉
)
. (2.4)

The following theorem is usually employed in the search of di�erence sets [15].

Theorem 2.1. Let G be an abelian group and G∗/ ∼ be the set of equivalence classes of characters.
Suppose that {χo, χ1, . . . , χs} is a system of distinct representatives for the equivalence classes of
G∗/ ∼. Then for A ∈ Z[G], we have

A =

s∑
i=o

αi[eχi ], (2.5)

where αi is any χi-alias for A.

Equation (2.5) is known as the rational idempotent decomposition of A.

Dillon [16] proved the following results which will be used to obtain di�erence set images in dihedral
group of a certain order if the di�erence images in the cyclic group of same order are known.

Theorem 2.2 (Dillon Dihedral Trick). Let H be an abelian group and let G be the generalized
dihedral extension of H. That is, G = 〈Q,H : Q2 = 1, QhQ = h−1,∀h ∈ H〉. If G contains a
di�erence set, then so does every abelian group which contains H as a subgroup of index 2.

Corollary 2.3. If the cyclic group Z2m does not contain a (nontrivial) di�erence set, then neither
does the dihedral group of order 2m.
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Suppose that ψ : G −→ G/N is a homomorphism, then we can extend ψ, by linearity, to the
corresponding group rings. Given that D is a (v, k, λ) di�erence set in G, a group of order v and
H is a homomorphic image of G with kernel N . Then the di�erence set image in H ( also called
the contraction of D with respect to the kernel N) is the multi-set D/N = ψ(D) = {dN : d ∈ D}.
Furthermore, if T ∗ = {1, t1, . . . , th} is a left transversal ofN inG, then D̂ =

∑
tj∈G djtjN , where the

integer dj = |D∩ tjN | is called the intersection number of D with respect to N [5]. In this work,

we shall always use the notation D̂ for ψ(D), and denote the number of times di equals i by mi ≥ 0.

Suppose that χ is any non-trivial representation of degree d and χ(D̂) ∈ Z[ζ], where ζ is the primitive
root of unity. Suppose that x ∈ G is a non identity element. Then, χ(xG) = χ(x)χ(G) = χ(G).
This shows that (χ(x)−1)χ(G) = 0. Since x is not an identity element, (χ(x)−1) 6= 0 and χ(G) = 0
(Z[ζ] is an integral domain). Consequently, χ(D)χ(D) = n · Id + λχ(G) = n · Id, where Id is the
d× d identity matrix[5]. The following lemma extends this property to D̂[5].

Lemma 2.4. Let D be a di�erence set in a group G and N be a normal subgroup of G. Suppose
that ψ : G −→ G/N is a natural epimorphism. Then

1. D̂D̂(−1) = n · 1G/N + |N |λ(G/N)

2.
∑
d2i = n+ |N |λ

3. χ(D̂)χ(D̂) = n · Id, where χ is a non-trivial representation of G/N of degree d and Id is the
d× d identity matrix.

The character value of χ(D̂) is given by the following lemma[5].

Lemma 2.5. Suppose that G is group of order v with normal subgroup N such that G/N is abelian.
If D̂ ∈ Z[G/N ] and χ ∈ (G/N)∗ then

|χ(D̂)| =

{
k, if χ is a principal character of G/N√
k − λ, otherwise.

The next lemma is a necessary condition (but not su�cient) for the existence of di�erence set
image in G/N .

Lemma 2.6. (The Variance Technique). Suppose that D is a (v, k, λ) di�erence set in a group G
of order v and H is a factor group of G with kernel N . Let D̂ be the di�erence set image in H and
T ∗ be a left transversal of N in G such that {di} is a sequence of intersection numbers and {mi},
where mi is the number of times di equals i. Then

|N |∑
i=0

mi = |H|;
|N |∑
i=0

imi = k and

|N |∑
i=0

i(i− 1)mi = λ(|N | − 1) (2.6)

The method used in this paper is known as representation theoretic method made popular by
Leibler ([15]). Some authors like Iiams [?] and Smith [22] have used this method in search of
di�erence sets. This approach entails the computation of ΩG/N , the set of di�erence set images
in the factor group of G of least order. We garner information about D as we gradually increase
the size of the factor group. If at a point the distribution list ΩG/N is empty, then the group G
with factor group G/N does not admit (v, k, λ) di�erence sets. We use lemmas 2.4, 2.5 and the
di�erence set equation (2.5) to obtain ΩG/N .
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2.1 Formation of aliases

In this section, we look at aliases that will be needed to generate respective di�erence set images.
Suppose that G/N is an abelian factor group of exponentm′ and D̂ is a di�erence set image in G/N .

If χ is not a principal character of G/N , then by Lemma 2.4, χ(D̂)χ(D̂) = n. The determination
of the alias requires the knowledge of how the ideal generated by χ(D̂) factors in cyclotomic ring

Z[ζm′ ], where ζm′ is the m
′-th root of unity. Thus, χ(D̂)χ(D̂) = n is an algebraic equation in Z[ζm′ ]

and χ(D̂) is an algebraic number of length
√
n. The image of Z[G/N ] is Z[ζm′ ]. If δ := χ(D̂), then

by (2.5), we seek a group ring, Z[G/N ] element say α such that χ(α) = δ. The task of solving
the algebraic equation δδ̄ = n is sometimes made easier if we consider the factorization of principal
ideals (δ)(δ̄) = (n). To achieve this,

1. we must look for all principal ideals π ∈ Z[ζm] such that ππ̄ = (n)

2. for each such ideals, we �nd a representative element, say δ with δδ̄ = n and

3. for each δ, we �nd an alias α ∈ Z[G/N ] such that χ(α) = δ.

Using algebraic number theory, we can easily construct the ideal π. The daunting task is to �nd

an appropriate element δ ∈ π. Suppose we are able to �nd δ =
∑φ(m)−1
i=0 diζ

i
m ∈ Z[ζm] such that

δδ̄ = n, where φ is the Euler φ-function. We use a theorem due to Kronecker [5, 17] that states
that any algebraic integer all whose conjugates have absolute value 1 must be a root of unity. If
there is any other solution to the algebraic equation, then it must be of the form δ′ = δu[18], where
u = ±ζjm is a unit. To construct alias from this information, we choose a group element g that is

mapped to ζm and set α :=
∑φ(m)−1
i=0 dig

i such that χ(α) = δ. Hence, the set of complete aliases is
{±αgj : j = 0, 1, . . . ,m− 1}.

We use the following result to determine the number of factors of an ideal in a ring: Suppose p
is any prime and m′ is an integer such that gcd (p,m′) = 1. Suppose that d is the order of p in
the multiplicative group Z∗m′ of the modular number ring Zm′ . Then the number of prime ideal

factors of the principal ideal (p) in the cyclotomic integer ring Z[ζm′ ] is
φ(m′)
d , where φ is the Euler

φ-function, i.e. φ(m′) = |Z∗m′ | [19]. For instance, the ideal generated by 7 has four factors in
Z[ζm′ ],m

′ = 16, 29, 58 while the ideal generated by 7 is prime in Z[ζ2s ], s = 1, 2, 3. On the other
hand, since 2s is a power of 2, then the ideal generated by 2 is said to completely rami�es as power
of (1− ζ2s) = (1− ζ2s) in Z[ζ2s ].

According to Turyn [20], an integer n is said to be semi-primitive modulo m′ if for every prime
factor p of n, there is an integer i such that pi ≡ −1 mod m′. In this case, −1 belongs to the
multiplicative group generated by p. Furthermore, n is self conjugate modulo m′ if every prime
divisor of n is semi primitive modulo m′p, m

′
p is the largest divisor of m′ relatively prime to p.

This means that every prime ideals over n in Z[ζm′ ] are �xed by complex conjugation. For instance,
a105 ≡ −1 (mod 211), a = 3, 7. Thus, 〈3〉 or 〈7〉 is �xed by conjugation in Z[ζ211]. The following
remark shows a special case of the ideal generated by m2 that has two factors in Z[ζm′ ], that is
〈m2〉 = 〈δ〉〈δ̄〉, but the algebraic equation δδ̄ = m2 has trivial solutions δ = ±mζjm′ .
Remark 2.7. Take m = 7 and m′ = 31. Let G be a group of order 496 and let N be a normal
subgroup of G. In order to �nd (496, 55, 6) di�erence sets in G/N ∼= C31, we need to solve the
equation δδ̄ = 72 in the algebraic integers of the cyclotomic �eld of 31st roots of unity to obtain
the aliases. That is, we must �nd all algebraic integers of length 7 in the ring of algebraic integers
of this cyclotomic �eld. Suppose that ζ31 is the primitive 31st root of unity and σ is the Galois
automorphism of Q(ζ31) �xing Q de�ned by σ(ζ31) = ζ731.We are interested in the factoring of ideal
〈7〉 and as 715 ≡ 1 mod 31, the order of this map is 15 and it �xes any ideal over 〈7〉. The Galois
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automorphism of Q(ζ31) �xing Q has order 30 and the number of ideals over 〈7〉 is exactly 30
15 = 2.

That is, 〈7〉 = π1π2. As −1 is not in the subgroup 〈7〉 of the group of units U(31), the conjugate
map z 7→ z̄ is not in 〈σ〉. Thus, the conjugate map must interchange π1 and π2. Consequently, there
is a prime ideal π such that 〈7〉 = ππ̄. Suppose that 〈δ〉〈δ〉 = 〈7〉2. In order to �nd all solutions to
the equation δδ̄ = 72, we need to enumerate all possibilities such that π2−iπ̄i = 72 and i = 0, 1.
Consequently, the two possible choices of 〈δ〉 are: 1) 〈δ〉 = 〈7〉 = ππ̄, 2) 〈δ〉 = π2.
Case 1:
Suppose that 〈δ〉 = 〈7〉 = ππ̄, then δ = ±7u, where u is a root of unity. Thus, δ = ±7 is the solution
to equation δδ̄ = 72.
Case 2:
Suppose that 〈δ〉 = π2, where 〈δ〉 = 〈7〉 = ππ̄. You will recall that the ideal 〈δ〉 is �xed by σ but
there is no reason to believe that same is true of δ. However, we can show that there is another
element δ′ �xed σ such that by 〈δ〉 = 〈δ′〉. Since 〈δ〉 is �xed by σ then σ(δ) ∈ 〈δ〉. Thus, σ(δ) = δu,
for some unit u. Observe that both 〈δ〉 and σ(δ) satisfy δδ̄ = 72 and their conjugates have length
7. By a theorem due to Kronecker, σ(δ) = ±ζjδ, for some j [5, 17]. For now, we ignore the
sign and take σ(δ) = ζjδ. Thus, we can solve for s in the equation σ(ζsδ) = ζsδ. It then follows
that σ(ζsδ) = ζ7s+jδ and consequently, 7s + j ≡ s mod 31 or 6s ≡ −j mod 31. Notice that the
multiplicative inverse of 6 is −5 mod 31 and so s ≡ 5j mod 31. Hence, ζ5jδ is also �xed by σ and
in the �xed �eld of σ. However, if σ(δ) = −ζjδ then σ(ζ5jδ) = −ζ5jδ and so σ2(ζ5jδ) = ζ5jδ. This
means that ζ5jδ is �xed by σ2. But (σ2)8 = σ, which implies that an element �xed by σ2 is also
�xed by σ. As a result of the above, it follows that if 〈δ〉 = π2, then there is a root of unity u such
that uδ is �xed by σ and thus, in the �xed �eld of 〈σ〉. But the Galois group 〈σ〉 has index two in
the Galois group of Q(ζ31) �xing Q, consequently, this �xed �eld is Q(

√
−31). The ring of algebraic

integers in this extension is described as
{
a+ b

(
1+
√
−31
2

)
: a, b ∈ Z

}
[21]. The norm of the element

a+b
(
1+
√
−31
2

)
= (2a+b)+b

√
−31

2 in this ring of integers is (2a+b)2+31b2

4 = 4a2+4ab+32b2

4 = a2+ab+8b2.
Since the objects of interest have length 49, the question now is what are the values of integers a
and b such that a2 + ab+ 8b2 = 49? Clearly, the possible values of b are ±2, ±1 and 0. If b = ±2,
then a2 − 2a− 17 = 0 or a2 + 2a− 17 = 0. If b = ±1, then a2 − a− 41 = 0 or a2 + a− 41 = 0 and
If b = 0, then a2 = 49. The discriminant of the �rst four of these quadratic equations is either 72
or 165. Since 72 and 165 are not perfect squares,only a2 = 49 has integer solutions ±7. This also
means that δ = ±7u, where u is a root of unity. Thus, we conclude that the only algebraic integers
of length 7 are ±7.

In this paper, we shall use the phase m factors trivially in Z[ζm′ ] if the ideal generated by m

is prime(or rami�es) in Z[ζm′ ] or m is self conjugate modulo m′. In this case if D̂ is the di�erence
set image of order n = m2 in H, where H is a group with exponent m′ and χ is a non-trivial
representation of H then χ(D̂) = mζim′ , ζm′ is the m′-th root of unity. The following remarks
generate more aliases that will be required to obtain the di�erence set images in some homomorphic
images of G/N .

Remark 2.8. The (1415404, 1683, 2) parameter set:
We show that although the ideal generated by 41 has two factors in the cyclotomic ring Z[ζm′ ],
m′ = 431, 862 but the algebraic equation δδ̄ = 412 = 1681 has trivial solution. By Remark
2.7, we need to �nd solutions to the algebraic equation δδ̄ = 1681 in the cyclotomic ring Z[ζm′ ],
m′ = 431, 862. This requires solving a2 +ab+108b2 = 1681, for a, b ∈ Z. This equation has rational
solutions only if b = 0, 1, 2, 3. When b = 0, then a = ±41. On the other hand, when b = 1, we get
a2 + a+ 108 = 1681 or a2 + a− 1573 = 0, which is a quadratic equation in a. The discriminant of
this equation is D = 6293. Since D is not a perfect square, then a2 + a− 1573 = 0 has no integer
solutions. Similarly, when b = 2, the discriminant is D = 5000 and when b = 3, the discriminant
is D = 2845. As none of these discriminants is a perfect square, the equation δδ̄ = 412 = 1681 has
only trivial solutions. The implication of this is that the aliases of the di�erence set image in factor
group of order 431 is of the form ±41xj , where x is a generator of factor group of order 431.
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Remark 2.9. For (2053352, 2027, 2) case, the order of the di�erence set parameter is n = 2025 =
452 = 3452. The prime 3 is self conjugate modulo 991 since 3165 ≡ −1 mod 991 and the ideal
generated by 5 has two factors in the cyclotomic ring Z[ζm′ ], m

′ = 991, 1982. We need to establish
that the algebraic equation δδ̄ = 2015 has trivial solutions. By Remark 2.7, �nding solutions to the
algebraic equation δδ̄ = 2025 in the cyclotomic ring Z[ζm′ ], m

′ = 991, 1982 is equivalent to solving
a2 + ab + 248b2 = 2025 in Z. This equation has rational solutions only if b = 0, 1, 2. When b = 0,
a = ±45. On the other hand, when b = 1, the discriminant of the resulting quadratic equation in
a is D = 7109 and when b = 2, the discriminant is D = 4136. As none of these discriminants is
a perfect square, the equation δδ̄ = 2025 has only trivial solutions. This means that the aliases of
the di�erence set image in factor group of order 991 is of the form ±45xj , where x is a generator
of factor group of order 991. The following result will be useful later.

Lemma 2.10. If p is a prime such that p ≡ 1 mod 4, then the ideal generated by p has at least
two factors in the cyclotomic ring Z[ζi], where i is the fourth root of unity.

Proof. Since p ≡ 1 mod 4, then p can be written as sum of squares of two integers say p = a2 + b2,
where a, b ∈ Z[21]. Take a + bi ∈ Z[ζi], then (a + bi)(a − bi) = a2 + b2 = p. On the other hand, if
b+ ai ∈ Z[ζi], then (b+ ai)(b− ai) = b2 + a2 = p.

Remark 2.11. In the case of (5152, 102, 2) di�erence sets, the ideal generated by 5 has two factors
in Z[ζm′ ],m

′ = 4, 8, 16, 32, 92. Now we use Lemma 2.10 with a = 2 and b = 1. The solutions to
δδ̄ = 52 are 5, (2 + i)2 = 3 + 4i, (2 − i)2 = 3 − 4i. Thus the aliases for generating di�erence set
images in Cm′ are 10, 2(3 + 4y), 2(3− 4y), y is an element of order 4 in Cm′ , m

′ = 4, 8, 16, 32, 92.
Also, the ideal generated by 2 has two factors in Z[ζm′ ],m

′ = 7, 14, 28. In fact 〈2〉 = 〈ζ7 +
ζ27 + ζ47 〉〈ζ37 + ζ57 + ζ67 〉. This means that the solutions to the algebraic equation δδ̄ = 100 are
δ = 10, 5(−1 + θ), 5(−1 + θ̄), θ = ζ7 + ζ27 + ζ47 . For the cases Z[ζm′ ],m

′ = 14, 28, replace ζ7 with ζ
2
14

and ζ428 respectively.

To study (7504, 198,2), we need to know how the ideal generated by 7 factors in Z[ζ16]. This ideal
has four factors in Z[ζ16]. Suppose σ ∈ Gal(Q(ζ16)/Q), where σ(ζ16) = ζ716. This automorphism
split the basis elements of Q(ζ16) into four orbits as ζ16 + ζ716, ζ

3
16 + ζ516, ζ

9
16 + ζ1516 and ζ1116 + ζ1316 . It is

easy to see that 〈7〉 = 〈1+ζ16+ζ716〉〈1+ζ316+ζ516〉〈1+ζ916+ζ1516 〉〈1+ζ1116 +ζ1316 〉. Put π1 = 〈1+ζ16+ζ716〉
and π2 = 〈1 + ζ316 + ζ516〉. Let δ1 = 1 + ζ16 + ζ716 and δ2 = 1 + ζ316 + ζ516 be a representatives of
these ideals. Then the nine solutions to δδ̄ = 72 are δ1δ2δ̄1δ̄2 = 7, δ21δ

2
2 , δ̄

2
1δ

2
2 , δ

2
1 δ̄

2
2 , δ̄

2
1 δ̄

2
2 , δ

2
1δ2δ̄2,

δ22δ1δ̄1, δ̄
2
1δ2δ̄2 or δ̄22δ1δ̄1. The Galois automorphism σ(ζ16) = ζ316 divides the solution set into

three equivalence classes: δ1δ2δ̄1δ̄2 = 7; δ21δ
2
2 , δ̄

2
1δ

2
2 , δ

2
1 δ̄

2
2 , δ̄

2
1 δ̄

2
2 ; δ

2
1δ2δ̄2, δ

2
2δ1δ̄1, δ̄

2
1δ2δ̄2 or δ̄22δ1δ̄1.

As we need solutions up to equivalence, we pick a representative from each class. Thus, δ = 7,
δ21δ

2
2 = −1+2ζ16−4ζ216−2ζ316−2ζ516+4ζ616+2ζ716 or δ

2
1δ2δ̄2 = −1+4ζ16+2ζ216+2ζ316+2ζ516−2ζ616+4ζ716.

In the study of (25652, 227, 2) di�erence sets, we need to know how the ideals generated by 3 and
5 factor in the cyclotomic ring Z[ζm′ ],m

′ = 11, 22, 44. The ideal generated by 3 has 2 factors in
Z[ζm′ ],m

′ = 11, 22, 44. The ideal generated by 5 has 2 factors in Z[ζm′ ],m
′ = 4, 11, 22, 121, 242 and

four factors in Z[ζ44]. It can be shown that 〈5〉 = 〈2+q〉〈2+q̄〉 and 〈3〉 = 〈q〉〈q̄〉 in Z[ζm′ ],m
′ = 11, 22,

q = ζ11 + ζ311 + ζ411 + ζ511 + ζ911, q + q = −1, qq = 3, q2 = −2 + q and (q)2 = −2 + q. Thus,
in rings Z[ζm′ ],m

′ = 11, 22, the equation δδ̄ = 225 has the following solutions:δ = 15, 3(1 +
3q), 3(−2− 3q), (3 + q)(1 + 3q) = −6 + 7q, (3 + q)(−2− 3q) = 3− 8q, (−2 + q)(1 + 3q) = −11− 8q,
(−2 + q)(1 + 3q) = 13 + 7q,5(−3− q) and 5(−2 + q). It should be noted that the ideal generated by
3 has 22 factors in Z[ζm′ ],m

′ = 121, 242 while the ideal generated by 5 has 4 factors in Z[ζ44]. The
above information will be used to obtain di�erence set images in the factor groups of orders 11 and
22.
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In the case of (52976, 326, 2) di�erence set parameters, the order is n = 324 = 2234. Hence we need
to know how ideals generated by 2 or 3 factors in the cyclotomic ring Z[ζm′ ],m

′ = 7, 14. The ideal
generated by 3 factors trivially in the cyclotomic ring Z[ζm′ ],m

′ = 7, 14 while 〈2〉 = 〈ζ+ζ2+ζ4〉〈ζ3+
ζ5+ζ6〉 in the cyclotomic ring Z[ζm′ ],m

′ = 7, 14, where ζ is the seventh root of unity. Consequently,
the equation δδ̄ = 324 has the following solutions: δ = 18, 9(ζ + ζ2 + ζ4)2 = 9(−1 + ζ3 + ζ5 + ζ6)
and 9(ζ3 + ζ5 + ζ6)2 = 9(−1 + ζ + ζ2 + ζ4). Furthermore, the ideal generated by 3 has two factors
in the cyclotomic ring Z[ζ28].

Finally, we look at subgroup properties of a group that can aid the construction of di�erence
set image. It has been established [7, 10, 11, 12] that if K is a subgroup of H such that

H ∼= K × 〈z〉, z2 = 1 (2.7)

then the di�erence set image in H can be written as

D̂ = A

(
〈z〉
2

)
+ gB

(
2− 〈z〉

2

)
, (2.8)

g ∈ H, B = A− αK, α = k+
√
n

|K| or α = k−
√
n

|K| is an integer and k is the size of di�erence set.

The process of obtaining (v, k, λ) di�erence set in any group G starts with the computation of
di�erence set images in G/N , where N is an appropriate normal subgroup [22]. These di�erence
set images are constructed by applying various irreducible representations of G/N to solve the
equation D̂D̂(−1) = n+ λ|N |(G/N). We start by �nding di�erence set image in factor group G/N
of least order and gradually increase the size of the factor group. In this process, we garner more
information about D. If D̂ does not exist in G/N , then D does not exist in G. The following
remark constructs the di�erence set image in a group of order p under certain conditions.

Remark 2.12. Suppose G is a group of order v with a normal subgroup N such that G/N ∼= Cp =

〈x : xp = 1〉, p is prime. Suppose also that the image of (v, k, λ) di�erence set, D̂ =
∑p−1
i=0 dix

i

exists in G/N . We view this image as a 1× p matrix with the columns indexed by the powers of x.
The characters of Cp are of the form χi = ζip, i = 0, · · · , p − 1. Using (2.3) and (2.4), the two

rational idempotents are:

[eχ0
] =

(
〈x〉
p

)
and [eχ1

] =

(
p− 〈x〉
p

)
.

Suppose that k−λ is a square and the ideal generated by
√
k − λ factors trivially in the cyclotomic

ring Z[ζp]. Then for each non trivial character, χi, i 6= 0, χi(D̂) = ±(
√
k − λ)ζjip , ji = 0, . . . , p−1[17].

Thus, the di�erence set equation is

D̂ =
∑
i=0,1

αeχi [eχi ], (2.9)

where αeχi is an alias. As αeχ0
= k and based on our hypothesis, αeχi = ±(

√
k − λ)xji Hence, the

di�erence set equation becomes D̂ = k[eχ0 ]± (
√
k − λ)xji [eχ1 ], ji = 0, . . . , p− 1.

Up to translation, the di�erence set image(s) is (are)

D̂ =
1

p

[
k ±
√
k − λ(p− 1), k ∓

√
k − λ, . . . , k ∓

√
k − λ, k ∓

√
k − λ

]
(2.10)

In fact, if gcd (
√
k − λ, p) = 1, then (2.10) has a unique solution otherwise there are two solutions.

We illustrate the non existence and partial non existence results in the next two sections by
looking at some parameter sets.
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3 The non-existence results

This section illustrates the method used to establish the non existence of each parameter listed in
Theorem 1.1. We look at two cases and assume that G is a group of order v with N, an appropriate
normal subgroup. We investigate di�erence set images in some factor groups G/N .

3.1 The (97904, 443, 2) case

In this case, the order of the group G is 97904 = 24 · 29 · 211. Suppose that N is an appropriate
normal subgroup of G. Then by Sylow Theorem, Sylow 29 and Sylow 211 subgroups of G are
normal. Thus, we look at the homomorphic images G/N of order 3376 = 24 · 211. Using GAP[23],
there are 42 groups of order 3376. Furthermore, the factor groups of order 3376 have Sylow 2
subgroup of order 4 that is normal. Hence, every group of order 3376 has at least one group
of order 844 as homomorphic image. Consequently, we investigate the existence or otherwise of
di�erence set images in factor groups of order 844 by stating the following three lemmas.

Lemma 3.1. We may assume(after translation or applying a group automorphism of G/N , if
necessary) that the di�erence set image in G/N ∼= C211 = 〈x|x211 = 1〉 is 21 + 2〈x〉.

Proof. Use Remark 2.12 and the fact that the ideal generated by 3 and 7 factor trivially in the
cyclotomic ring Z[ζ211].

Lemma 3.2. By using appropriate translation or group automorphism, the di�erence set image in
G/N ∼= C422 = 〈x, y|x211 = y2 = [x, y] = 1〉 is 21 + 〈x〉〈y〉.

Proof. Use equation (2.8) and Lemma 3.1.

Lemma 3.2 and Dillon Dihedral technique can be used to show that the di�erence set image in
G/N ∼= D211 = 〈x, y|x211 = y2 = 1, yxy = x−1〉 is 21 + 〈x〉〈y〉.

Lemma 3.3. There are no (97904, 443, 2) di�erence set images in any factor group of order 844.

Proof. Let H be a factor group of order 844. This proof uses Lemmas 2.6 and 3.2. The distribution
of (97904, 443, 2) di�erence set image in the groups of order 422 is 2211421. Since there is a normal
subgroupN ′ ofH such thatH/N ′ is isomorphic to a group of order 422, we combine this distribution
with the variance technique to �nd the distribution of di�erence set images in groups of order 844.
Using the third equation of Lemma 2.6 and the fact that the coset bound for factor groups of order
844 in G is 116, we get a simpli�ed equation

m2 + 3m3 + 6m4 + 10m5 + 15m6 + 21m7 + 28m8 + 36m9 + 45m10 + 55m11

+66m12 + 78m13 + 91m14 + 105m15 + 120m16 + 136m17 + 153m18

+171m19 + 190m20 + 210m21 + 231m22 = 115. (3.1)

However, integer solutions exist if the coe�cients of the unknown mj are not greater than the
value on the right hand side of the equal sign (in this case 115). Hence, equation (3.1) reduces to

m2 + 3m3 + 6m4 + 10m5 + 15m6 + 21m7 + 28m8 + 36m9 + 45m10 + 55m11

+66m12 + 78m13 + 91m14 + 105m15 = 115 (3.2)

But the two distinct intersection numbers in the distribution of di�erence set image of the groups
of order 422 are 22 and 1. In order to use these numbers to �nd the distribution of di�erence set
images in factor groups of order 844, we must recognize that the coset size between these factor
groups(order of N ′) is 2 and as such, each intersection number from the distribution of di�erence
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set images in the factor group of order 422 must split into two. Thus, 1 can only split as (1, 0)
while 22 will split into one of the following: (22, 0), (21, 1), (20, 2), (19, 3), (18, 4), (17, 5), (16, 6),
(15, 7), (14, 8), (13, 9), (12, 10) or (11, 11). Based on the constraint imposed by equation (3.2), 22
cannot split as (22, 0), (21, 1), (20, 2), (19, 3), (18, 4), (17, 5) and (16, 6) because, for each mj in
this equation, j lies between 2 and 15. This simply means that the intersection number "22" must
split into two numbers that lie between 2 and 15. But there is only one integer 22 in the distribution
of di�erence set image in the factor group of order 422 that is greater than 1. Consequently, this
unique integer 22 can only split as one of the following: (15, 7), (14, 8), (13, 9), (12, 10), or (11,
11). Thus, j must lie between 7 and 15 and (3.2) reduces to

21m7 + 28m8 + 36m9 + 45m10 + 55m11 + 66m12 + 78m13 + 91m14 +

105m15 = 115 (3.3)

Using the symmetric nature of (3.3) and the way "22" split, the unknown numbers mj in this
equation are paired. That is, if mj is one of the terms in the equation, so is m22−j . Consequently,
(3.3) forced the sum of the coe�cients of m22−j and mj , j = 7, . . . , 11 to be 115 while the other
coe�cients must be zero. It turns out that there is no j such that the sum of the coe�cients of
m22−j and mj equals 115, for j = 7, . . . , 11. For instance, if m7 = 1 and m15 = 1, then mj = 0 for
j = 8, . . . , 11 and 21(1)+105(1) 6= 115. This implies that there are no distribution for the di�erence
set images in groups of order 844 and consequently, there are no di�erence set images in factor
groups of order 844.

Lemma 3.3 implies that there are no di�erence set images in any of the 42 groups of order 3376.
As sylow 29 subgroup is normal in groups of order 97904, there are no (97904, 443, 2) di�erence
sets. The same approach can be used to show that there are no (1415404, 1683, 2) di�erence sets.

3.2 The (1415404, 1683, 2) case

The order of the group G, in this case, is v = 1415404 = 22 · 431 · 821. Let N be an appropriate
normal subgroup of G. By Sylow Theorem, Sylow 431 and Sylow 821 subgroups of G are normal.
We focus on the factor group of order 1724. But we know that if p ≡ 3 mod 4, then there are four
groups of order 4p. Hence, there are four groups of order 1724 and each of these groups has at least
one factor group of order 2p = 862.

Lemma 3.4. By using appropriate translation or group automorphism, there are no di�erence set
image in G/N ∼= C431 = 〈x|x431 = 1〉.

Proof. The order of this parameter set is n = k − λ = 1681 = 412. Use Remarks 2.12 and 2.8, the
set that satis�es all the conditions of being a di�erence set image in the factor group G/N ∼= C431

is 4〈x〉 − 41. But the negative intersection number indicates that this set is not admissible as a
di�erence set image. Therefore, there is no di�erence set image in G/N ∼= C431.

Consequently by Lemma 3.4, there are no di�erence set images in factor group G/N ∼= C862.
By Dillon technique, there are no di�erence set images in factor group G/N ∼= D431. Thus, no
factor group of order 1724 admit (1415404,1683, 2) di�erence set image since any group of order
1724 has least one group of 862 as factor group. Since Sylow 821 subgroups of G are normal, then
(841754, 1298, 2) di�erence set do not exist. This approach can be used to show that (10586, 146,
2),(42196, 291, 2),(65704, 363, 2),(14536, 171, 2),(33154, 258, 2),(196252, 627, 2), (463204, 963, 2),
(1282402, 1602, 2), (1558496, 1766, 2), (1712176, 1851, 2),(1876954, 1938, 2) and (2053352, 2027,
2) di�erence sets do not exist. This completes the proof of Theorem 1.1.
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4 Partial non existence results

In this section, we analyze four parameter sets which gives insight into the work done in the other
cases in this category. The proof of Theorem 1.2 can be found in [10].

4.1 The (5152, 102, 2) case

In this section, G is a group of order 5152. The order of the di�erence set is 100 = 2252. To
proceed, we must know how the ideals generated by 2 and 5 factor in the respective cyclotomic
rings. Consequently, we show that if N is a normal subgroup of G such that G/N is isomorphic to
K × C2, where K = C92, D23 × C2 or C46 × C2, then G does not admit (5152, 102, 2) di�erence
sets.

4.1.1 The C23 image

Suppose that G/N ∼= C23 = 〈x : x23 = 1〉. We know that the ideal generated by 5 or 2 factors
trivially in Z[ζ23](511 ≡ −1 mod 23 and Remark 2.8). Thus, by Remark 2.12 the di�erence set
image in G/N ∼= C23, up to equivalence, is 10 + 4〈x〉.

4.1.2 The C46 and D23 images

Suppose that G/N ∼= C46 = 〈x, y : x23 = y2 = 1 = [x, y]〉. Using (2.8) with K = C23, α = 4 and
|K| = 23 we obtain, up to equivalence, A1 = 10 + 2〈x〉〈y〉 as the only di�erence set image in G/N .
The Dillon dihedral technique can be used to show that A1 is also the only di�erence set image in
G/N ∼= D23 = 〈x, y : x23 = y2 = 1, yxy = x−1〉.

4.1.3 The C46 × C2, C92 and D46 images

We can use equation (2.8) to show that if G/N ∼= D46 = 〈x, y : x46 = y2 = 1, yxy = x−1〉, then the
di�erence set image is A2 = 10 + 〈x〉〈y〉. Also, if G/N ∼= C46 × C2 = 〈x, y, z : x23 = y2 = z2 = 1 =
[x, y] = [y, z] = [x, z]〉 then the di�erence set image is A3 = 10 + 〈x〉〈y〉〈z〉. We now work through

that of G/N ∼= C92
∼= C23×C4 = 〈x : x23 = y4 = [x, y] = 1〉. Suppose that D̂ =

∑22
i=0

∑3
j=0 dijx

iyj

is the di�erence image in G/N. The group G/N has six rational idempotents out of which four are
embedded in (G/N)/〈y2〉 ∼= C46. The remaining idempotents are

[eχ01
] =

2

92
〈x〉(1− y2) and [eχ11

] =
2

92
(23− 〈x〉)(1− y2).

Thus, the di�erence set equation is

D̂ =
46

92
(A1)(1 + y2)± αχ01

[eχ01
](xy)i ± αχ11

[eχ11
](xy)j (4.1)

where A1 is the di�erence set image in C46, i, j = 0, . . . , 91, and αχ01
, αχ11

∈ {10, 6 + 8y, 6 − 8y}.
As 46(A1)(1 + y2) ≡ 0 (mod 92), the choices of aliases are limited. Up to translation, the three
choices are αχ01

= 10 and αχ11
= 10 or αχ01

= 6 + 8y and αχ11
= 6 + 8y or αχ01

= 6 − 8y and
αχ11 = 6 − 8y. Consequently, there are many solutions to (4.1) but the only viable di�erence set
image, up to translation, is A4 = 10 + 〈x〉〈y〉.

Notice that the distribution of di�erence set images Ai, i = 2, 3, 4 is 111191. We will use this
information along with variance technique to �nd the distribution of di�erence set images in groups
of order 184 having C46 × C2, C92 or D46 as homomorphic image(s). The intersection number 11
can split in one of the following ways: (11, 0), (10, 1), (9, 2), (8, 3), (7, 4) or (6,5). If we only look
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at the third equation of Lemma 2.6 and the fact that the coset bound for groups of order 184 in G
is 28, we get

m2 + 3m3 + 6m4 + 10m5 + 15m6 + 21m7 + 28m8 + 36m9 + 45m10 + 55m11 = 27. (4.2)

In this case, the sum of coe�cients of mj and m11−j must be 27. The only pair that satis�es this
constraint is m4 and m7. Thus, Lemma 2.6 becomes

m0 +m1 +m4 +m7 = 184 (4.3)

m1 + 4m4 + 7m7 = 102 (4.4)

6m4 + 21m7 = 27. (4.5)

Equation (4.5) implies that m4 = m7 = 1. Substituting m4 = m7 = 1 in equation (4.4), we get
m1 = 91. Finally, equation (4.3) shows that m0 = 91. Hence, the unique distribution of di�erence
set image in factor groups of order 184 is 0911914171. By combining this distribution with (2.8), it
can be shown that if G/N ∼= K×C2, where K = C92, D23×C2 or C46×C2, then G does not admit
(5152, 102, 2) di�erence sets. Next, we show that some groups of order 28 and 32 do not admit
(5152, 102, 2) di�erence sets.

4.1.4 Groups of order 28

4.1.5 The C7 Image

Suppose that G/N ∼= C7 = 〈x : x7 = 1〉 and D̂ =
∑7
i=0 dix

i is the di�erence image in G/N . We
know that the ideal generated by 2 has two factors in Z[ζ7] while the ideal generated by 5 is prime in
the same cyclotomic ring. Thus, from Remark 2.11, the solutions to the algebraic equation δδ̄ = 100
are δ = 10, 5(−1 + θ), 5(−1 + θ̄), θ = ζ7 + ζ27 + ζ47 .

Now, the rational idempotents of C7 are

[eχ0
] =

1

7
〈x〉 and [eχ1

] =
1

7
(7− 〈x〉)

and the di�erence set equation is

D̂ = αχ0
[eχ0

]± αχ1
[eχ1

] (4.6)

with αχ0
= 102, αχ1

∈ {a1, a2, a3}, a1 = ±10xs,a2 = ±5(−1 + x3 + x5 + x6)xs
′
and a3 = ±5(−1 +

x+ x2 + x4)xs
′′
, s, s′, s′′ = 0, . . . , 6. Thus, the di�erence set equation becomes

D̂ =
102

7
〈x〉 ± ai

7
(7− 〈x〉), i = 1, 2, 3. (4.7)

Thus, the solutions to (4.7) are:

1. A1 = −10 + 16〈x〉 ,

2. A2 = 21 + 16x+ 16x2 + 11x3 + 16x4 + 11x5 + 11x6

3. A3 = 21 + 11x+ 11x2 + 16x3 + 11x4 + 16x5 + 16x6.
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4.1.6 Images of factor groups of order 14

Let N be an appropriate normal subgroup of G such that G/N ∼= C14 = 〈x, y : x7 = y2 = 1 =

[x, y]〉 ∼= C7 × 〈y〉. We view the di�erence set image in G/N as D̂ =
∑6
i=0

∑1
j=0 dijx

iyj . This
group is of the form (2.7) and we take K = C7, α = 16 and k = 102. Then (2.8) becomes
D̂ = Ai

(
1+y
2

)
+ Bjg

(
1−y
2

)
, i = 1, 2, 3 where g ∈ G/N , Ai is a di�erence set image in C7 and

Bj = Aj − 16K, j = 1, 2, 3. Up to translation, the di�erence set images are:

1. B1 = 8〈x〉〈y〉 − 5− 5x− 5y + 5xy ,

2. B2 = 8〈x〉〈y〉+ 5− 5x3 − 5x5 − 5x6

3. B3 = 8〈x〉〈y〉+ 5− 5x− 5x2 − 5x4.

The Dillon dihedral technique shows that the only di�erence set images in D7 = 〈x, y : x7 = y2 =
1, yxy = x−1〉 are B2 and B3.

4.1.7 Images of some groups of order 28

Consider G/N ∼= C28 = 〈x, y : x7 = y4 = 1 = [x, y]〉 and let D̂ =
∑3
t=0

∑7
s=0 x

syt be the

di�erence set image in this group. We view D̂ as a 4 × 7 matrix with the columns indexed by
the powers of x and rows indexed by powers of y. In section, we are only interested in how ideals
generated by 2 and 5 factor in cyclotomic ring Z[ζm′ ],m

′ = 4, 28 because of our strategy. By
Remark 2.11,the solutions to the algebraic equation δδ̄ = 100 in Z[ζ4] are δ = 10, 2(3−4i), 2(3 + 4i)
while the solutions in Z[ζ28] are 5(−1 + θ), 5(−1 + θ̄), θ = ζ7 + ζ27 + ζ47 . This group has 6 rational
idempotents out of which four have 〈y2〉 in their kernel. The linear combination of these four rational
idempotents is

∑
j=0,1

∑
k=0,2 αχ(j,k)

[eχ(j,k)
] = 14Bs

28 〈y
2〉, where Bs, s = 1, 2, 3 is the di�erence set

image in C14 and αχ(j,k)
is an alias. The remaining two rational idempotents are: [eχ(0,1)

] =
1
14 〈x〉(1− y

2) and [eχ(1,1)
] = 1

14 (7− 〈x〉)(1− y2). Thus, the di�erence set image in C28 is

D̂ =
14Bs

28
〈y2〉+ αχ(0,1)

[eχ(0,1)
] + αχ(1,1)

[eχ(1,1)
], (4.8)

where αχ(1,1)
∈ {±10(xy)p1 ,±2(3−4y)(xy)p2 ,±2(3+4y)(xy)p3 ,±(3−4y)(−1+x+x2+x4)(xy)p4 ,±(3+

4y)(−1 + x + x2 + x4)(xy)p5 ,±(3 − 4y)(−1 + x3 + x5 + x6)(xy)p6 ,±(3 + 4y)(−1 + x3 + x5 +
x6)(xy)p7 ,±5(−1+x3+x5+x6)(xy)p8 ,±5(−1+x+x2+x4)(xy)p9 , } and αχ(0,1)

∈ {±10(xy)p10 ,±2(3−
4y)(xy)p11 ,±2(3 + 4y)(xy)p12}, p1, . . . , p12 = 0, . . . , 27.

The fact that only four entries of 14Bs〈y2〉 are congruent to 0 mod 28 reduces the search space
severely. Hence, up to equivalence, the di�erence set images are

1. E1 = 5 + 4x+ 4x2 + 3x3 + 4x4 + 3x5 + 3x6 + (6 + 4x+ 4x2 + 2x3 + 4x4 + 2x5 + 2x6)y + (8 +
4x+ 4x2 + 4x4)y2 + (2 + 4x+ 4x2 + 6x3 + 4x4 + 6x5 + 6x6)y3,

2. E2 = 4 + 2x+ 2x2 + 3x3 + 2x4 + 3x5 + 3x6 + (7 + 3x+ 3x2 + 5x3 + 3x4 + 5x5 + 5x6)y + (9 +
x+ x2 + 5x3 + x4 + 5x5 + 5x6)y2 + (1 + 5x+ 5x2 + 3x3 + 5x4 + 3x5 + 3x6)y3,

3. E3 = 4 + 3x+ 3x2 + 2x3 + 3x4 + 2x5 + 2x6 + (1 + 3x+ 3x2 + 5x3 + 3x4 + 5x5 + 5x6)y + (9 +
5x+ 5x2 + x3 + 5x4 + x5 + x6)y2 + (7 + 5x+ 5x2 + 3x3 + 5x4 + 3x5 + 3x6)y3.

The Dillon dihedral technique shows that there no di�erence set images in D14 = 〈x, y : x14 = y2 =
1, yxy = x−1〉.

The case of G/N ∼= (C14×C2) = 〈x, y, z : x7 = y2 = z2 = 1 = [x, y] = [y, z] = [x, z]〉 = C14×〈z〉.
will be decided by (2.8) since this group is of the form (2.7). Take K = C14, α = 8 and k = 102.
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By considering all possible choices, it turns out that this group does not admit (5152, 102, 2)
di�erence sets. The same argument can be used to con�rm the Dillon technique result for D14 since
D14
∼= D7 × C2.

Remark 4.1. The Sylow 23 is normal in any group of order 5152 and we look at all homomorphic
images of order 224. There are 197 groups of order 224[23]. The fact that there are no (5152, 102,
2) di�erence set images in G/N ∼= (C14 × C2) or D14 eliminates all these groups except for those
with the following GAP location number [224, j], j = 1, 2, 173. The groups [224, j], j = 1, 2 have
factor groups that are isomorphic to C32. In the next subsection, we will show that G/N ∼= C32

does not admit (5152, 102, 2) di�erence sets.

4.1.8 There are no C32 and D16images

4.1.9 The C2 image

Suppose that G/N ∼= C2 = 〈x : x2 = 1〉. Then the di�erence set image is 10 + 46〈x〉.

4.1.10 The C4 image

By using Remark 2.11 and the rational idempotent of G/N ∼= C4 = 〈x : x4 = 1〉, it can be shown
that the di�erence set images, up to translation, are:

1. A1 = 10 + 23〈x〉 , A2 = −10 + 28〈x〉

2. A3 = 31 + 19x+ 25x2 + 27x3

3. A4 = 32 + 26x+ 24x2 + 20x3.

4.1.11 The C8 image

Given that G/N ∼= C8 = 〈x : x8 = 1〉. Using the rational idempotents of C8 along with Remark
2.11, the di�erence sets images in C8 are:

1. B1 = −10 + 14〈x〉 , B2 = 9 + 9x+ 14x2 + 14x3 + 9x4 + 19x5 + 14x6 + 14x7

2. B3 = 11 + 13x+ 12x2 + 5x3 + 21x4 + 13x5 + 12x6 + 10x7

3. B4 = 16 + 8x+ 12x2 + 10x3 + 16x4 + 18x5 + 12x6 + 10x7

4. B5 = 16 + 13x+ 7x2 + 10x3 + 16x4 + 13x5 + 17x6 + 10x7

5. B6 = 16 + 13x+ 12x2 + 5x3 + 16x4 + 13x5 + 12x6 + 15x7

6. B7 = 12 + 14x+ 10x2 + 14x3 + 6x4 + 14x5 + 18x6 + 14x7

7. B8 = 9 + 17x+ 14x2 + 10x3 + 9x4 + 11x5 + 14x6 + 18x7

8. B9 = 13 + 14x+ 17x2 + 14x3 + 5x4 + 14x5 + 11x6 + 14x7

9. B10 = 19 + 13x+ 8x2 + 10x3 + 13x4 + 13x5 + 16x6 + 10x7

10. B11 = 16 + 16x+ 12x2 + 6x3 + 16x4 + 10x5 + 12x6 + 14x7

11. B12 = 20 + 13x+ 15x2 + 10x3 + 12x4 + 13x5 + 9x6 + 10x7

12. B13 = 16 + 17x+ 12x2 + 13x3 + 16x4 + 9x5 + 12x6 + 7x7
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4.1.12 The C16 image

Consider G/N ∼= C16 = 〈x : x16 = 1〉. By combining the rational idempotents of C16 along with
Remark 2.11, the di�erence sets images in C16 are:

1. E1 = 2+12x+7x2+7x3+7x4+7x5+7x6+7x7+2x8+2x9+7x10+7x11+7x12+7x13+7x14+7x15

2. E2 = 13+4x+6x2+5x3+8x4+9x5+6x6+5x7+3x8+4x9+6x10+5x11+8x12+9x13+6x14+5x15

3. E3 = 8+4x+11x2+5x3+8x4+9x5+6x6+5x7+8x8+4x9+x10+5x11+8x12+9x13+6x14+5x15

4. E4 = 8+4x+6x2 +10x3 +8x4 +9x5 +6x6 +5x7 +8x8 +4x9 +6x10 +8x12 +9x13 +6x14 +5x15

5. E5 = 8+4x+6x2+5x3+13x4+9x5+6x6+5x7+8x8+4x9+6x10+5x11+3x12+9x13+6x14+5x15

6. E6 = 8+4x+6x2+5x3+8x4+14x5+6x6+5x7+8x8+4x9+6x10+5x11+8x12+4x13+6x14+5x15

7. E7 = 8+4x+6x2+5x3+8x4+9x5+11x6+5x7+8x8+4x9+6x10+5x11+8x12+9x13+x14+5x15

8. E8 = 8+4x+6x2 +5x3 +8x4 +9x5 +6x6 +10x7 +8x8 +4x9 +6x10 +5x11 +8x12 +9x13 +6x14

9. E9 = 11+7x+5x2+7x3+3x4+7x5+9x6+7x7+x8+7x9+5x10+7x11+3x12+7x13+9x14+7x15

10. E10 = 6+12x+5x2+7x3+3x4+7x5+9x6+7x7+6x8+2x9+5x10+7x11+3x12+7x13+9x14+7x15

11. E11 = 6+7x+10x2+7x3+3x4+7x5+9x6+7x7+6x8+7x9+3x10+7x11+3x12+7x13+9x14+7x15

12. E12 = 6+7x+5x2+12x3+3x4+7x5+9x6+7x7+6x8+7x9+6x10+2x11+3x12+7x13+9x14+7x15

13. E13 = 6+7x+5x2+7x3+3x4+12x5+9x6+7x7+6x8+7x9+5x10+7x11+3x12+2x13+9x14+7x15

14. E14 = 6+7x+5x2+7x3+3x4+7x5+14x6+7x7+6x8+7x9+5x10+7x11+3x12+7x13+4x14+7x15

15. E15 = 6+7x+5x2+7x3+3x4+7x5+9x6+12x7+6x8+7x9+5x10+7x11+3x12+7x13+9x14+2x15

16. E16 = 6 + 10x+ 5x2 + 7x3 + 3x4 + 4x5 + 9x6 + 7x7 + 6x8 + 4x9 + 5x10 + 7x11 + 3x12 + 11x13 +
9x14 + 7x15

17. E17 = 6+7x+8x2+7x3+3x4+7x5+5x6+7x7+6x8+7x9+2x10+7x11+3x12+7x13+13x14+7x15

18. E18 = 6 + 7x+ 5x2 + 10x3 + 3x4 + 7x5 + 9x6 + 3x7 + 6x8 + 7x9 + 5x10 + 4x11 + 3x12 + 7x13 +
9x14 + 11x15

19. E19 = 10+7x+5x2+7x3+6x4+7x5+9x6+7x7+2x8+7x9+5x10+7x11+7x13+9x14+7x15

20. E20 = 6 + 11x+ 5x2 + 7x3 + 3x4 + 10x5 + 9x6 + 7x7 + 6x8 + 3x9 + 5x10 + 7x11 + 3x12 + 4x13 +
9x14 + 7x15

21. E21 = 6+7x+9x2+7x3+3x4+7x5+12x6+7x7+6x8+7x9+x10+7x11+3x12+7x13+6x14+7x15

22. E22 = 6 + 7x+ 5x2 + 11x3 + 3x4 + 7x5 + 9x6 + 10x7 + 6x8 + 7x9 + 5x10 + 3x11 + 3x12 + 7x13 +
9x14 + 4x15

23. E23 = 13+8x+6x2+3x3+8x4+5x5+6x6+7x7+3x8+8x9+6x10+3x11+8x12+5x13+6x14+7x15

24. E24 = 8+13x+6x2+3x3+8x4+5x5+6x6+7x7+8x8+3x9+6x10+3x11+8x12+5x13+6x14+7x15

25. E25 = 8+8x+11x2+3x3+8x4+5x5+6x6+7x7+8x8+8x9+x10+3x11+8x12+5x13+6x14+7x15

26. E26 = 8+8x+6x2+3x3+13x4+5x5+6x6+7x7+8x8+8x9+6x10+3x11+3x12+5x13+6x14+7x15
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27. E27 = 8+8x+6x2+3x3+8x4+10x5+6x6+7x7+8x8+8x9+6x10+3x11+8x12+6x14+7x15

28. E28 = 8+8x+6x2+3x3+8x4+5x5+11x6+7x7+8x8+8x9+6x10+3x11+8x12+5x13+x14+7x15

29. E29 = 8+8x+6x2+3x3+8x4+5x5+6x6+12x7+8x8+8x9+6x10+3x11+8x12+5x13+6x14+2x15

30. E30 = 11 + 8x+ 6x2 + 3x3 + 4x4 + 5x5 + 6x6 + 7x7 + 5x8 + 8x9 + 6x10 + 3x11 + 12x12 + 5x13 +
8x14 + 7x15

31. E31 = 8+11x+6x2+3x3+8x4+x5+6x6+7x7+8x8+5x9+6x10+3x11+8x12+9x13+6x14+7x15

32. E32 = 8+8x+9x2 +3x3 +8x4 +5x5 +2x6 +7x7 +8x8 +8x9 +3x10 +3x11 +8x12 +5x13 +4x14

33. E33 = 8+8x+6x2+6x3+8x4+5x5+6x6+3x7+8x8+8x9+6x10+8x12+5x13+6x14+11x15

34. E34 = 12 + 8x+ 6x2 + 3x3 + 11x4 + 5x5 + 6x6 + 7x7 + 4x8 + 8x9 + 6x10 + 3x11 + 5x12 + 5x13 +
6x14 + 7x15

35. E35 = 8+12x+6x2+3x3+8x4+8x5+6x6+7x7+8x8+4x9+6x10+3x11+8x12+2x13+6x14+7x15

36. E36 = 8+8x+10x2+3x3+8x4+5x5+9x6+7x7+8x8+8x9+2x10+3x11+8x12+5x13+3x14+7x15

4.1.13 There are no C32 and D16 images

Suppose that G/N ∼= C32 = 〈x : x32 = 1〉 and (5152, 102, 2) di�erence set image D̂ =
∑31
i=0 dix

i

exists in G/N . Using (2.3) and (2.4), C32 has six rational idempotents and only one of them,

[eχ1
] = 2−〈x16〉

2 does not have 〈x16〉 in its kernel. The linear combination of the remaining �ve
rational idempotents which have 〈x16〉 in their kernel is

Yk =
∑

j=0,2,4,8,16

αeχj [eeχj ] = Ek

(
〈x16〉

2

)
,

where Ek is a di�erence set image in C16. Thus, the di�erence set equation is

D̂ = Ek

(
〈x16〉

2

)
+ αeχ1

[eeχ1
], (4.9)

where αeχ1
∈ {±10xr,±2(3 − 4x8)xs,±2(3 − 4x8)xt}, r, s, t = 0, . . . , 31. De�ne Z1 = 10 · [eχ1 ] =

5(1−x16), Z2 = 2(3−4x8)[eχ1 ] = 3−4x8−3x16+4x24 andZ3 = 2(3+4x8)[eχ1 ] = 3+4x8−3x16−4x24.
So (4.9) becomes

D̂ = Yk + xsZl, l = 1, 2, 3; s = 0, . . . , 15; k = 1, . . . , 36 (4.10)

As Zl ≡ 0 (mod 32), we would expect Yk to possess the same property. However, none of the Yk
does. This means that (4.10) has no solution. Thus,C32 does not admit (5152, 102, 2) di�erence
set. Consequently, by Dillon dihedral trick, so does D16.

Remark 4.2. In addition to Remark 4.1 and the fact that G/N ∼= C32 does not possess (5152, 102,
2) di�erence sets, we can now conclude that if (5152, 102, 2) di�erence sets exist, it must be in
groups of order 5152 that have group [224,173] as homomorphic image. This proves Theorem 1.3.
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4.2 The (7504, 123,2) case

Let D̂ =
∑66
i=0 dix

i be the di�erence set image in G/N ∼= C67 = 〈x : x67 = 1〉. The ideal generated
by 11 is prime in the cyclotomic ring Z[ζ67]. By Remark 2.12, D̂ = −11 + 2〈x〉. Since one of
the intersection numbers is negative, there is no di�erence set image in G/N ∼= C67. This means
that G/N ∼= C134 does not admit (7504, 123,2) di�erence sets and the same goes for G/N ∼= D67

by Dillon dihedral technique. Furthermore, all the nine groups of order 1876 have factor group
that is isomorphic to either C134 or D67. Hence, all groups of order 1876 do not admit (7504,
123,2) di�erence sets. Consequently, no group of order 7504 having any one of these groups as
homomorphic image admit (7504, 123,2) di�erence sets. This proves Theorem 1.4.

4.3 The (19504, 198,2) case

In this case, Sylow 23 and Sylow 53 are normal. So, we will look at the factor groups of order 848.
The di�erence set order is 142 = 2272 and the ideals generated by 2 and 7 factor trivially in the
cyclotomic ring Z[ζm′ ],m

′ = 53, 106. Thus, by Remark 2.12, there are no di�erence set images in
G/N ∼= C53 = 〈x : x53 = 1〉(the only solution is −14 + 4〈x〉, which is not viable). This implies
that there are no di�erence set images in G/N ∼= C106 and consequently, in G/N ∼= D53 by Dillon
dihedral technique. But observe that 106 divides 848 and in groups of order 848, Sylow subgroup of
order 8 is normal. This implies that groups of order 848 with homomorphic image of order 106 do
not admit this di�erence set. Consequently, all groups of order 848 except those with Gap location
number [848, j], j = 3, 28, 29, 30, 31, 32, 33, 34, 49 do not admit (19504, 198,2) di�erence sets.

4.3.1 There are no C16 and D8 images

4.3.2 The C2 image

If G/N ∼= C2 = 〈x : x2 = 1〉, then the di�erence set image is 14 + 92〈x〉.

4.3.3 The C4 and C2 × C2 images

Using Remark 2.11 and the rational idempotent of G/N ∼= C4 = 〈x : x4 = 1〉, the di�erence set
images, up to translation, are: A1 = 14 + 46〈x〉 and A2 = −14 + 53〈x〉. Similarly, the di�erence
set images in G/N ∼= C2 × C2 = 〈x, y : x2 = y2 = [x, y] = 1〉 are A3 = 14 + 46〈x〉〈y〉 and
A4 = −14 + 53〈x〉〈y〉.

4.3.4 The C8 image

Suppose that G/N ∼= C8 = 〈x : x8 = 1〉. Using the rational idempotents of C8 along with Remark
2.11, the di�erence sets images in C8 are:

1. B1 = 14 + 23〈x〉 , B2 = 30 + 30x+ 23x2 + 23x3 + 30x4 + 16x5 + 23x6 + 23x7

2. B3 = 30 + 23x+ 30x2 + 23x3 + 30x4 + 23x5 + 16x6 + 23x7

3. B4 = 30 + 23x+ 23x2 + 30x3 + 30x4 + 23x5 + 23x6 + 16x7.

By Dillon dihedral technique, the di�erence set in D4 = 〈x, y : x4 = y2 = 1, yxy = x−1〉 are

1. B5 = 14 + 23〈x〉〈y〉 , B6 = 30 + 23x+ 30x2 + 23x3 + (30 + 23x+ 16x2 + 23x3)y

2. B7 = 30 + 23x+ 30x2 + 23x3 + (23 + 30x+ 23x2 + 16x3)y

3. B8 = 16 + 30x+ 30x2 + 30x3 + (23 + 23x+ 23x2 + 23x3)y.
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Using (2.8) with K = C4, α = 53 or 46 and |K| = 4, the di�erence set in G/N ∼= C4 × C2 = 〈x, y :
x4 = y2 = [x, y] = 1〉 are

1. B9 = 14 + 23〈x〉〈y〉 , B10 = 30 + 23x+ 30x2 + 23x3 + (30 + 23x+ 16x2 + 23x3)y

2. B11 = 30 + 30x+ 23x2 + 23x3 + (30 + 16x+ 23x2 + 23x3)y

3. B12 = 16 + 30x+ 30x2 + 30x3 + (23 + 23x+ 23x2 + 23x3)y

4. B13 = 23 + 23x+ 30x2 + 30x3 + (16 + 30x+ 23x2 + 23x3)y

5. B14 = 23 + 30x+ 23x2 + 30x3 + (16 + 23x+ 30x2 + 23x3)y.

The di�erence set images in G/N ∼= (C2)3 = 〈x, y, z : x2 = y2 = z2 = [x, y] = [y, z] = [x, z] = 1〉 are
similar to those of C4 × C2.

4.3.5 The C16 image

Consider the group G/N ∼= C16 = 〈x : x16 = 1〉. Suppose that the di�erence image in this group

is D̂ =
∑15
s=0 dsx

s. We view this element as 1× 16 matrix. Using (2.3) and (2.4), the �ve rational
idempotents of C16 are:

[eχ0 ] = 〈x〉
16 , [eχ8 ] = 2〈x2〉−〈x〉

16 , [eχ4 ] = 2〈x4〉−〈x2〉
8 , [eχ1 ] = 2−〈x8〉

2 , and [eχ2 ] = 2〈x8〉−〈x4〉
4 . Four of

these rational idempotents have 〈x8〉 in their kernel and we write their linear combination as

Yj =
∑

j=0,2,4,8

αχj [eχj ] = Bj

(
〈x8〉

2

)
, j = 1, 2, 3, 4

where Bj is a di�erence set image in C8 and αχj is an alias. Hence, the di�erence set equation is

D̂ = Yj + αχ1
[eχ1

], (4.11)

where αχ1
∈ {±14xs,±2a1x

u,±2a2x
t}, a1 = −1 + 2x − 4x2 − 2x3 − 2x5 + 4x6 + 2x7, a2 =

−1 + 4x + 2x2 + 2x3 + 2x5 − 2x6 + 4x7, s, t = 0, . . . , 15. De�ne Z1 = 14 · [eχ1
] = 7(2 − 〈x8〉),

Z2 = 2a1[eχ1
] = (−1 + 2x− 4x2 − 2x3 − 2x5 + 4x6 + 2x7)(1− x8) and Z3 = 2a2[eχ1

] = (−1 + 4x+
2x2 + 2x3 + 2x5 − 2x6 + 4x7)(1− x8). Rewrite (4.11) as

D̂ = Yj ± xlZk, k = 1, 2, 3; l = 0, . . . , 15 (4.12)

There are fractions in Yj , j = 1, 2, 3, 4 while Zl ≡ 0 (mod 16). The incompatibility implies
(4.12) has no solution. Thus,C16 does not admit (19504, 198, 2) di�erence set. Consequently, by
Dillon dihedral trick, so does D8. This information eliminates [848, 3]. Thus if (19504, 198, 2)
di�erence set exist, it must be in the groups of order 7504 with factor groups that are isomorphic
to [848, j], j = 28, 29, 30, 31, 32, 33, 34, 49. This proves Theorem 1.5.

4.4 The (52976, 326,2) case

Let G be a group of order 52978 and N an appropriate normal subgroup of G.The order of this
di�erence set parameter is 324 = 2234. The ideals generated by 2 and 3 factor trivially in the
cyclotomic ring Z[ζ43] since 27 ≡ −1 mod 43 and 27 ≡ −1 mod 43. Let D̂ =

∑42
s=0 dsx

s be
the di�erence set image in the factor group G/N ∼= C43 = 〈x : x43 = 1〉. Using Remark 2.11
and the rational idempotent of G/N , it can be shown that up to translation, the only solution
is D̂ = −18 + 8〈x〉. However, the negative number in the distribution implies that there is no
admissible di�erence set image in G/N ∼= C43. Consequently, there are no di�erence set images in
factor groups G/N ∼= C86 and G/N ∼= D43. This also means that there are no di�erence set images
in each of the four factor groups of order 172. Now, we look at di�erence set images in some factor
groups of order 56.
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4.4.1 Factor group of order 7

Suppose that G/N ∼= C7 = 〈x : x7 = 1〉 and D̂ =
∑7
i=0 dix

i is the di�erence image in G/N . By
using the same method as subsection 4.1.5, we can show that the (52976, 326,2) di�erence set image
in the factor group G/N are

1. A1 = 18 + 44〈x〉

2. A2 = 35 + 44x+ 44x2 + 53x3 + 44x4 + 53x5 + 53x6

3. A3 = 35 + 53x+ 53x2 + 44x3 + 53x4 + 44x5 + 44x6.

4.4.2 Factor groups of order 14

Suppose that G/N ∼= C14 = 〈x, y : x7 = y2 = 1 = [x, y]〉 = C7 × 〈y〉. Let D̂ =
∑6
i=0

∑1
j=0 dijx

iyj

be the di�erence set image in G/N . Then by (2.8), the di�erence set images in G/N ∼= C14 are

1. B1 = 18 + 22〈x〉〈y〉

2. B2 = 31+31x+22x2+22x3+22x4+22x5+22x6+(31+13x+22x2+22x3+22x4+22x5+22x6)y

3. B3 = 13 + 22x+ 22x2 + 31x3 + 22x4 + 31x5 + 31x6 + 22〈x〉y

4. B4 = 13 + 31x+ 31x2 + 22x3 + 31x4 + 22x5 + 22x6 + 22〈x〉y

On the other hand, using Dillon trick, only B1, B3 and B4 are di�erence set images in the factor
group G/N ∼= D7 = 〈x, y : x7 = y2 = 1, yxy = x−1〉.

4.4.3 The C14 × C2 images

Using (2.8), the di�erence set images in G/N ∼= C14 × C2 = 〈x, y, z : x7 = y2 = z2 = 1 = [x, y] =
[x, z] = [z, y]〉 are

1. D1 = 18 + 11〈x〉〈y〉〈z〉

2. D2 = 20 + 20x+ 11x2 + 11x3 + 11x4 + 11x5 + 11x6 + (20 + 2x+ 11x2 + 11x3 + 11x4 + 11x5 +
11x6)y + 11〈x〉z + 11〈x〉yz

3. D3 = 2 + 11x+ 11x2 + 20x3 + 11x4 + 20x5 + 20x6 + 11〈x〉y + 11〈x〉z + 11〈x〉yz

4. D4 = 2 + 20x+ 20x2 + 11x3 + 20x4 + 11x5 + 11x6 + 11〈x〉y + 11〈x〉z + 11〈x〉yz

5. D5 = 20 + 20x+ 11x2 + 11x3 + 11x4 + 11x5 + 11x6 + (11 + 11x+ 11x2 + 11x3 + 11x4 + 11x5 +
11x6)y + (20 + 2x+ 11x2 + 11x3 + 11x4 + 11x5 + 11x6)z + 11〈x〉yz.

Furthermore, only D1, D3, D4 and D5 are the di�erence set images in factor group D7 × C2 =
〈x, y, z : x7 = y2 = z2 = [x, z] = [z, y] = 1, yxy = x−1〉.

4.4.4 There are no di�erence set images in some factor groups of order 56

Using (2.8), we can show that there are no di�erence set images in factor groupsG/N ∼= C14×C2×C2

and G/N ∼= D14 × C2. This proves Theorem 1.6.

An approach similar to the one in this section can be used to establish Theorems 1.7, 1.8 , 1.9 ,
1.10 , 1.11 , 1.12 , 1.13, 1.14 and 1.15
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5 Work in progress

5.1 The (25652, 227,2) case

This section generates the di�erence set images in factor groups of order 11 and 22 that will be
used to �nd the corresponding di�erence sets images in factor groups of order 44.

5.1.1 The C11 image

Suppose that G/N ∼= C11 = 〈x : x11 = 1〉. One can combine the rational idempotents of C11 with
Remark 2.11 to obtain the following di�erence sets images in C11:

1. A1 = 7 + 22〈x〉

2. A2 = 22 + 16x+ 25x2 + 16x3 + 16x4 + 16x5 + 25x6 + 25x7 + 25x8 + 16x9 + 25x10

3. A3 = 22 + 25x+ 16x2 + 25x3 + 25x4 + 25x5 + 16x6 + 16x7 + 16x8 + 25x9 + 16x10

4. A4 = 12 + 25x+ 18x2 + 25x3 + 25x4 + 25x5 + 18x6 + 18x7 + 18x8 + 25x9 + 18x10

5. A5 = 27 + 16x+ 24x2 + 16x3 + 16x4 + 16x5 + 24x6 + 24x7 + 24x8 + 16x9 + 24x10

6. A6 = 27 + 24x+ 16x2 + 24x3 + 24x4 + 24x5 + 16x6 + 16x7 + 16x8 + 24x9 + 16x10

7. A7 = 12 + 18x+ 25x2 + 18x3 + 18x4 + 18x5 + 25x6 + 25x7 + 25x8 + 18x9 + 25x10

8. A8 = 32 + 22x+ 17x2 + 22x3 + 22x4 + 22x5 + 17x6 + 17x7 + 17x8 + 22x9 + 17x10

9. A9 = 32 + 17x+ 22x2 + 17x3 + 17x4 + 17x5 + 22x6 + 22x7 + 22x8 + 17x9 + 22x10

5.1.2 The C22 and D11 images

Given that G/N ∼= C22 = 〈x, y : x11 = y2 = 1 = [x, y]〉. By using (2.8) with K = C11, α = 22 and
|K| = 11 we obtain, up to equivalence, the following di�erence sets images:

1. B1 = 11 + 5x+ 14x2 + 5x3 + 5x4 + 5x5 + 14x6 + 14x7 + 14x8 + 5x9 + 14x10 + 11〈x〉y

2. B2 = 6 + 6x+ 14x2 + 6x3 + 6x4 + 6x5 + 14x6 + 14x7 + 14x8 + 6x9 + 14x10 + (16 + 10x+ 11x2 +
10x3 + 10x4 + 10x5 + 11x6 + 11x7 + 11x8 + 10x9 + 11x10)y

3. B3 = 16 + 8x+ 10x2 + 8x3 + 8x4 + 8x5 + 10x6 + 10x7 + 10x8 + 8x9 + 10x10 + (6 + 8x+ 15x2 +
8x3 + 8x4 + 8x5 + 15x6 + 15x7 + 15x8 + 8x9 + 15x10)y

4. B4 = 6 + 8x+ 12x2 + 8x3 + 8x4 + 8x5 + 12x6 + 12x7 + 12x8 + 8x9 + 12x10 + (1 + 14x+ 10x2 +
14x3 + 14x4 + 14x5 + 10x6 + 10x7 + 10x8 + 14x9 + 10x10)y

5. B5 = 1 + 14x+ 7x2 + 14x3 + 14x4 + 14x5 + 7x6 + 7x7 + 7x8 + 14x9 + 7x10 + 11〈x〉y

6. B6 = 6 + 14x+ 6x2 + 14x3 + 14x4 + 14x5 + 6x6 + 6x7 + 6x8 + 14x9 + 6x10 + (6 + 11x+ 12x2 +
11x3 + 11x4 + 11x5 + 12x6 + 12x7 + 12x8 + 11x9 + 12x10)y

7. B7 = 11 + 10x+ 9x2 + 10x3 + 10x4 + 10x5 + 9x6 + 9x7 + 9x8 + 10x9 + 9x10 + (1 + 15x+ 9x2 +
15x3 + 15x4 + 15x5 + 9x6 + 9x7 + 9x8 + 15x9 + 9x10)y

8. B8 = 16 + 5x+ 13x2 + 5x3 + 5x4 + 5x5 + 13x6 + 13x7 + 13x8 + 5x9 + 13x10 + 11〈x〉y

9. B9 = 7 + 9〈x〉+ (11 + 7x+ 15x2 + 7x3 + 7x4 + 7x5 + 15x6 + 15x7 + 15x8 + 7x9 + 15x10)y
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10. B10 = 6 + 8x+ 12x2 + 8x3 + 8x4 + 8x5 + 12x6 + 12x7 + 12x8 + 8x9 + 12x10 + (21 + 8x+ 12x2 +
8x3 + 8x4 + 8x5 + 12x6 + 12x7 + 12x8 + 8x9 + 12x10)y

11. B11 = 16 + 8x+ 10x2 + 8x3 + 8x4 + 8x5 + 10x6 + 10x7 + 10x8 + 8x9 + 10x10 + (16 + 14x+
7x2 + 14x3 + 14x4 + 14x5 + 7x6 + 7x7 + 7x8 + 14x9 + 7x10)y

12. B12 = 11 + 9x+ 10x2 + 9x3 + 9x4 + 9x5 + 10x6 + 10x7 + 10x8 + 9x9 + 10x10 + (21 + 13x+
7x2 + 13x3 + 13x4 + 13x5 + 7x6 + 7x7 + 7x8 + 13x9 + 7x10)y

13. B13 = 21 + 11x+ 6x2 + 11x3 + 11x4 + 11x5 + 6x6 + 6x7 + 6x8 + 11x9 + 6x10 + 11〈x〉y

By Dillon dihedral technique, only B1, B5, B11 and B13 are di�erence set images in G/N ∼= D11 =
〈x, y : x11 = y2 = 1, yxy = x−1〉.

6 CONCLUDING REMARKS

The variance technique is a necessary condition for the existence of di�erence set. However, if
combined with the di�erence set images in some factor groups, it is su�cient to determine the
non-existence of di�erence sets. Finally, Table 1 summarizes this paper.
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Table 1: Status of (v, k, 2) parameter sets with n = m2 and m ≤ 45

No. Parameter m Reason
1 (16, 6, 2) 2 exists
2 (56, 11, 2) 3 does not exist, [1]
3 (154, 18, 2) 4 does not exist,[1]
4 (352, 27, 2) 5 does not exist, [13]
5 (704, 38, 2) 6 does not exist,[7]
6 (1276, 51, 2) 7 Thm. 1.2, [10],
7 (2146, 66, 2) 8 does not exist, [11]
8 (3404, 83, 2) 9 does not exist, [11]
9 (5152, 102, 2) 10 Thm. 1.3
10 (7504, 123, 2) 11 Thm. 1.4
11 (10586, 146, 2) 12 does not exist, Thm.1.1
12 (14536, 171, 2) 13 does not exist, Thm.1.1
13 (19504, 198, 2) 14 Thm. 1.5
14 (25652, 227, 2) 15 work in progress
15 (33154, 258, 2) 16 does not exist, Thm.1.1
16 (42196, 291, 2) 17 does not exist, Thm.1.1
17 (52976, 326, 2) 18 Thm. 1.6
18 (65704, 363, 2) 19 does not exist, Thm.1.1
19 (80602, 402, 2) 20 work in progress
20 (97904, 443, 2) 21 does not exist, Thm.1.1
21 (117856, 486, 2) 22 work in progress
22 (140716, 531, 2) 23 work in progress
23 (166754, 578, 2) 24 Thm. 1.7
24 (196252, 627, 2) 25 does not exist, Thm.1.1
25 (229504, 678, 2) 26 Thm. 1.8
26 (266816, 731, 2) 27 Thm. 1.9
27 (308506, 786, 2) 28 Thm. 1.10
28 (354904, 843, 2) 29 Thm. 1.11
29 (406352, 902, 2) 30 work in progress
30 (463204, 963, 2) 31 does not exist, Thm.1.1
31 (525826, 1026, 2) 32 work in progress
32 (594596, 1091, 2) 33 Thm. 1.12
33 (669904, 1158, 2) 34 work in progress
34 (752152, 1227, 2) 35 work in progress
35 (841754, 1298, 2) 36 work in progress
36 (939136, 1371, 2) 37 Thm. 1.13
37 (1044736, 1446, 2) 38 Thm. 1.14
38 (1159004, 1523, 2) 39 Thm. 1.15
39 (1282402, 1602, 2) 40 does not exist, Thm.1.1
40 (1415404, 1683, 2) 41 does not exist, Thm.1.1
41 (1558496, 1766, 2) 42 does not exist, Thm.1.1
42 (1712176, 1851, 2) 43 does not exist, Thm.1.1
43 (1876954, 1938, 2) 44 does not exist, Thm.1.1
44 (2053352, 2027, 2) 45 does not exist, Thm.1.1
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