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Abstract 
In this paper, we developed a three-step block Method for numerical solution of second order differential 
equations using Legendre polynomials as the basic function. Interpolation and collocation procedures are 
used by choosing interpolation points at     steps points using power series, while collocation points at 

    step points, using a combination of power series and perturbation term gotten from the Legendre 

polynomials, giving rise to a polynomial of degree       and       equations. All the analysis on the 
scheme derived shows that it is stable, convergent and has region of Absolute Stability.  Numerical 
examples were provided to test the performance of the method. Results obtained when compared with 
existing methods in the literature, shows that the method is accurate and efficient. 
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1. Introduction 
 

Numerous problems in many field of application, notably in physics, chemistry, biology, engineering and 
social sciences are modeled mathematically by ordinary differential equation (ODEs) e.g. series circuits, 
mechanical systems with several springs attached in series lead to a system of differential equation. 
Abualnaja [1]  and also in diverse fields like economics, medicine, psychology, operation research and 
even in anthropology are modeled mathematically. Anake [2] . 
Interestingly, some differential equations arising from the modeling of physical phenomena, often do not 
have analytic solutions, hence the development of numerical method to obtain approximate solutions 
become necessary. Ehigie et al.  [3] . To that extent several numerical methods such as one step method, 
linear multi-step methods, hybrid methods and block method have been developed based on the nature 
and type of the differential equation to be solved. Some researchers have attempted the solution of  
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using linear multistep methods (LMMs), without reduction to system of first order ODEs. Adeniyi and 
Adeyefa [4] . Ehigie et al.  [3] proposed a generalized 2 – step continuous linear multistep method of 
hybrid type for the integration of second order ordinary differential equations.  
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Kayode and Adebeye [5] used Chebyshev polynomials without perturbation terms as the basic function 
for the development of the methods. The collocation and interpolation equations are generated at both 
grid and off – grid points for the development of continuous hybrid linear multistep method (CHLMM) for 
the solution of linear and non linear ODEs 
Ademiluyi [6] , Anake [2]  and Bolarinwa [7]   have proposed single step hybrid methods for the direct 
numerical solution of initial value problem of second order and third orders ordinary differential equations. 
In these cases, their methods of implementation was in block mode with the proposed methods being 
efficient, adequate and suitable towards catering for the class of problem of higher order ordinary 
differential equations for which they were designed Osilagun et al.  [8] , used four steps implicit method 
for the solution of general second order ODEs.  Abdulganiy et al.  [9]  used a maximal order block 
trigonometrically fitted scheme for the numerical treatment of second order ODEs with ossillating solution. 
Peter and Ibrahim [10] , used defferential transform method in solving a typhoid fever model. However, 
Authors like. Zarina et al. .  [11] , used block method for generalized multistep Adamas method and 
backward differentiation formula in solving first – order ODEs. Yahaya and Mohammed [12] used full 
implicit three points backward differentiation formulae for solving of first order initial value problems. 
Odekunle et al.  [13] used a new block integrator for the solving of initial value problems of first order 
ODESs. Sunday et al.  [14] used a computational approach to verhulst – pearl model of first order ODEs 
etc  
Many of these methods have their own advantages and disadvantages over the other. Eg; One step 
method have low order of accuracy, time consuming for large scale problems. Awoyemi [15] . Linear 
Multistep Methods give high order system of accuracy and are suitable for the direct solution of (1.1) 
without necessarily reducing it to an equivalent of first order IVPs of ODEs. Adeniyi and Adeyefa [4] . 
Block method preserves the traditional advantages of one step methods of being self starting and 
permitting easy change of step length. Lambert [16] . Also the method generates simultaneous solution at 
all grids points. 
In the light of this, Abualnaja [1] worked on “A block procedure with linear multi-step methods using 
Legendre polynomials for solving ODEs”. Here they derived a block for some k-step linear multi-step 
methods (for k = 1,2 and 3) using power series as the interpolation equation and power series with 
Legendre polynomial as the perturbation term as the collocation equation. Also Abhulimen and 
Aigbiremhon [17] did a similar work by taking K as 4 and 5. In their work, they considered the first order 
initial value problem.  
These different methods have their very desirable qualities. However, in order to create a new line of 
research and to also improve on some of the existing methods, this  paper device a mean for the direct 
solution of (1.1) without reduction to first order ODEs. In the next section, the methodology of the work is 
presented and the derived methods are specified. 
The plan of the paper is as follows; section I, introduction, section 2, the derivation of the proposed 
methods is presented. In section 3, the stability and convergence analysis of the block schemes is given. 
In section 4, numerical examples are considered. The paper ends with conclusion in section 5. 
 

2. Derivation of the methods    

In this section, we derive discrete methods to solve (1.1) at a sequence of nodal points nhxxn  0  

where h > 0 is the step – length or grid size defined by nn xxh  1  and  xy  denotes the true solution 

to (1.1) while the approximate solution is denoted by the power series  
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The proposed method depends on the perturbed collocation method with respect to the power series with 
the Legendre polynomials as the perturbation term. Interpolation and collocation procedures are used by 
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choosing interpolation point at     grid points and collocation points at     step points. We have a 

polynomial of degree      –    and       equations.  
 
In the first place, we consider the approximation solution of (1.1) in the power series.  

 

  , 0,1,...,i

ip x x i k 
 

Hence (2.1) becomes  
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With the second derivatives as  
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Combining equation (1.1) and (2.3), with the perturbation term, we have  
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Where  xLk  is the Legendre polynomial of degree k, valid in knn xxx   and  is a perturbed 

parameter. In particular, we shall be dealing with case k = 3 in (2.2) and (2.4), where (2.2) is the 
interpolation equations and (2.4) is the collocation equations. The well – known Legendre polynomials 

can be generated using the Rodrigues’ formula     n
nnn x

dxn
xp 1
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1 2   where

   0 11, ,L x L x x  . The rest are computed using the recurrence formula. 

       ,...2,1,
11

12
11 







  ixL

i

i
xxL

i

i
xL iii

giving

 

    2

2

1
3 1

2
L x x  , 

        3 4 2

3 4

1 1
5 3 , 35 30 3

2 8
L x x x L x x x      

    xxxxL 157063
8

1 35

5  etc.        (2.5) 

In order to use these polynomials in the interval  knn xx , we define the shifted Legendre polynomials by 

introducing the change of variable.  
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,  Abualnaja [1]        (2.6) 

 
Interpolating (2.2) at s grid points and collocating (2.4) at k grid points respectively leads to the following 
systems of equations; (2.7) and (2.8) 
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and  
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Three step method’, (k = 3).  

In this case, we take the polynomial    xxxL 35
2

1 3

3  from (2.5) and use (2.6) i.e. 
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In addition, from (2.3)       2

"

22

"

1

"

00 2,0,0 cxpcxpcxpc i   and   nxcxpc 3

"

33 6 .Then (2.8) will 

reduced to the form. 
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We now collocate Equation (2.9) at 3,2,1,  ix in

 and interpolate (2.1) at 1,0,  ix in
. We get a system 

of 5 equations with 3,2,1,0ici  and λ, which in matrix form is: 
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Equation (2.10) is solved by Gaussian elimination method to obtain the value of the unknown parameters. 
 
  32,1,0, ici  

and λ,  

 
Which is substituted into (2.1) yields a continuous implicit three step method in the form of a continuous 
linear multistep method describe by the formula 
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Where  
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Where  

 
h

xx
t nn 2
 . Evaluating (2.12) at t = 0 and t = 1 and substituting into (2.11) gives  
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Evaluating the first derivative of (2.12) at 0,1,2 t and 1 and substituting into (2.11) gives  
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Now we obtained the modified block formulae from (2.13) and (2.14) as  
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And taking the normalized version of (2.15), we obtain the block Solution    
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to simultaneously obtain values for
'
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132,1 ,,,  nnnnn yyyyy and
'

3ny . 

Equation (2.16) can be written explicitly as  
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3. Analysis of the method 
 

Basic properties of the block method and their associated main method are analyzed to establish their 
validity. These properties help to show the nature of convergence of the methods. These properties 
includes; order and error constant, consistency and zero stability. All these put together reveal the nature 
of convergence of the method. Also the regions of absolute stability of the methods have also been 
established in this section. However a brief introduction of these properties are made for a better 
understanding of the section. 
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Order and Error Constant 
Order of the method  
Let the linear difference operator L associated with the continuous multi-step method  
(2.11) be defined as  
 

      2

0

'' ; 0,1,2,..,k
k

j n j nj
j

L y x h y x jh h y x jh j 


     
  

Lambert [16]           (3.1)      

Where  xy  is an arbitrary test function that is continuously differentiable in the interval  ba, . Expanding 

 jhxy n   and  '' , 0,1,2,3,...,kny x jh j   in Taylor series about nx  and collecting like terms in h 

and y gives  

                 ......;. 22

2
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Definition 1 
The difference operator L and the associated implicit multi step method (2.11) are said to be of order p if 

in (3.2) 0,0... 21210   pPp CCCCCC  

 
Definition 2 

The term 
2pC  is called the error constant and it implies that the local truncation error is given by  

 
     22 3
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Order of the Block    
The order of the block will be defined following the method of Chollon et al.  [18] , however, with some 
modification to accommodate general higher order ordinary differential equations and step points, 
 
Definition 3 

The term 
2PC  is called the error constant and implies that the local truncation error for the implicit block 

formular is given by  
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Order and Error constant of the new method (k=3)  
 
From eqn (2.13) 

 3

2

2

2

1

2

13
60

11

30

41

60

109
23   nnnnnn fhfhfhyyy  

Can be rewritten in the form  

 0
60

11

30

41

60

109
2,3 321

2

13 







  nnnnnn fffhyyy     (3.4) 

 
Expanding (3.4) in Taylor series form, we have  
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             
2

2

0 0 0

13 109 41 11
3 2 1 2 3 0

! ! ! 60 30 60

j jj j j
j j jj j j

n n n n

j j j

hh h
y y y y

j j j

  


  

   
        

  
  

  
And collecting terms in powers of h and y, leads to  
 

 02310 c  

 0331 c  

 0
60

11

30

41

60

109

2

3

2

9
2 








c  

      3

27 3 109 41 11
1 2 3 0

6 6 60 30 60
c

 
      

 
 

      
2 2 2

4

81 3 1 109 41 11 13
1 2 3

24 24 2! 60 30 60 30
c

 
      

 
 

 

Hence, the method (2.13) is of order P = 2, with error constant 2

13

30
pc  

   (3.5) 
 

Order and error constant of the new block method (k=3) 
Rewrite the block form of Eqn (2.16), in this form:  
 

2 2 2

2 2 2

1

2 2 2

3

' '

1

'

2

'

3

223 17 77

360 180 360

37 5 11
0 0 0 0 0 0 1

18 9 18
0 1 0 0 0 0 1 2 147 33

0 0 1 0 0 0 1 3 40 20

0 0 0 1 0 0 0 1

0 0 0 0 1 0 0 1

0 0 0 0 0 1 0 1

n

n

n n

n n

n

n

h h h

h h hy h

y h
h h

y yh

y y

y

y















    
    
    


      

       
     

    
    
     

2
1

2

3

33

40
0

17 7 11

15 30 30

49 11 11

30 15 30

3 3
0

2 2

n

n

n

fh

f

h h h f

h h h

h h







 
 
 
 
 
 
   
   


   

    
 
 

 
 
 
  

  

            (3.6) 
And writing (3.6) in explicit form, we have  
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' 2

1 1 2 3

' 2

2 1 2 3

' 2

3 1 2 3

' '

1 1 2 3

2

223 17 77
0

360 180 360

37 5 11
2 0

18 9 18

147 33 33
3 0

40 20 40

17 7 11
0

15 30 30

n n n n n n

n n n n n n

n n n n n n

n n n n n

n

y y hy h f f f

y y hy h f f f

y y hy h f f f

y y h f f f

y

   

   

   

   



 
      

 

 
      

 

 
      

 

 
     

 

' '

1 2 3

' '

3 1 2

49 11 11
0

30 15 30

3 3
0 0

2 2

n n n n

n n n n

y h f f f

y y h f f

  

  

 
     

 

 
     

 

    (3.7) 

Using Taylor’s series expansion on (3.7)  
We have;  

 
              






















0

2

0

2
1 3

360

77
2

180

17
1

360

223

!!

1

j

jjjj

n

j

j

nn

j

n

jj

y
j

h
hyyy

j

h
 

 
              






















0

2

0

2
1 3

18

11
2

9

5
1

18

37

!
2

!

2

j

jjjj

n

j

j

nn

j

n

jj

y
j

h
hyyy

j

h

 

 

              





















0

2

0

2
1 3

40

33
2

20
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1

40

147

!
3

!

3

j

jjjj

n

j

j

nn

j

n

jj

y
j

h
hyyy

j

h

 

 

              






















0

2

0

1
11 3

30

11
2

30

7
1

15

17

!!

1

j

jjjj

n

j

j

n

j

n

jj

y
j

h
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j

h

 

              






















0

2

0

1
11 3

30

11
2
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1

30
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!!

2

j

jjjj

n

j

j

n

j

n
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y
j

h
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j
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            






















0

2

0

1
11 2

2

3
1

2

3

!!

3

j

jjj

n

j

j

n

j

n
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y
j

h
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j
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And collecting terms in h and y leads to the following; 
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 
     

 
     

 
     

 
     

 
     

 

4

2 2 2

4

4

2 2 2

4

4

2 2 2

4

4 3

2 2 2

4

3

2 2 2

4

3

4

1 1 223 17 77
1 2 3

4! 2! 360 180 360

2 1 37 5 11
1 2 3

4! 2! 18 9 18

3 1 147 33 33
1 2 3

4! 2! 40 20 40

1 1 17 7 11
1 2 3

3! 2! 15 30 30

2 1 49 11 11
1 2 3

3! 2! 30 15 30

3 1

3! 2

c

c

c

C

c

c

c

 
    

 

 
    

 

 
    

 


 
    

 

 
    

 

     

4

4

4

4

4

4
2 2

91

180

22

18

39

20

49

60

7

10

3

43 3
1 2

! 2 2

c

c

c

c

c

c

 
 

     
  
   
  
  
  
   
  

  
  
  

  
  
        

  
  

 

 

Hence the block method (2.16) is of order  Tp 2,2,2,2,2,2
    

(3.8) 

 
 
 
With error constant : Cp+2 = (91/180,22/18,39/20,49/60,7/10,3/4) 

 
Consistency  
 
Definition 4 
 Given a continuous implicit multi step method (2.11) the first and second characteristics polynomials are 
defined as; 

  
0

k
J

j

j

z Z 


         (3.9)  

  
0

k
j

j

j

z z 


         (3.10) 

Where z is the principle root, 0k  and 02

0

2

0    

 
Definition 5 
The continuous implicit multi step method (2.11) is said to be consistent if it satisfies the following 
conditions;  

i. The order 1p  

ii. 



k

j

j

0

0  

iii.     01'1    and  
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iv.    " 1 2! 1   

 
Remark 

Condition (i) is sufficient for the associated block method to be consistent i.e 1p   Jator [19] . 

 

Recall the main method; (2.13) 

  
2

3 1 3 2 13 2 11 82 109
60

n n n n n n

h
y y y f f f           

The first and second characteristics polynomials of the method are given by  

 
3( ) 3 2z z z   

 

And  

3 211 82 109
( )

60

z z z
z

  
  

And by definition 5, the method (2.13) is consistent since it satisfies the following; 

i. The order of the method is 2 1P    

ii. 
0 1 32, 3, 1       

Thus, 

3 3

0 0

, 0,1,3, 2 3 1 0j j

j j

j 
 

     
 

iii. 

3

3

' 2

' 2

( ) 3 2

(1) (1) 3(1) 2 0

( ) 3 3

(1) 3(1) 3 0

z z z

z z









  

   

 

  

 

   1 ' 1 0p p    

iv. 

''

''

( ) 6

(1) 6(1) 6

z z





 
 

3 2

3 2

''

11 82 109
( )

60

11(1) 82(1) 109(1) 180
(1) 3

60 60

2! (1) 2 3 6

( ) 2! ( ) 6

z z z
z

p z z









  


  
  

  

 

 

 



 
 

INTERNATIONAL JOURNAL OF MATHEMATICAL ANALYSIS AND 
                                    OPTIMIZATION: THEORY AND APPLICATIONS 

                       VOL. 2018 , PP. 364 - 381 

 

 
375 

 

The conditions (i-iv) are satisfied, hence the method is consistence 

Similarly, the block method (2.16) is consistent since the order of each method in the block method is 
greater than 1 as shown in Equation (3.8) 

 
Zero Stability  
 
Definition 6 
The continuous implicit multi step method (2.11) is said to be zero – stable if no root of the first 

characteristics polynomial  z  has modulus greater than one, and if every root of modulus one has 

multiplicity not greater than two Lambert [20] . 
 
Definition 7 

The implicit block method (2.16) is said to be zero stable if the roots nsZs ,...,1,   of the first 

characteristics polynomial  z , defined by  

 

    EAZz  det          (3.11) 

 

Satisfies 1sZ  and every root with 1sZ  has multiplicity not exceeding two in the limit as 0h  

 

Zero stability of the block method (2.16)  
 
From (2.16) using the definition in (7) as 0h  

 

1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0
det det

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

z

z

z
p z z z

z

z

z

       
      

      
      

         
      
      
      
       

  51 z

     

   51 zz 
          (3.12)

 

Solving for Z in (3.12) i.e.   51 0z z  gives 1,0 15432  zzzzz  

Hence the block method is stable  

 
Zero stability of new main method (2.13)  
The first characteristics polynomial of (2.13) i.e.  









  331

2

13
60

11

30

41

60

109
23 nnnnnn fffhyyy  is given by  
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  3 3 2p z z z            (3.13).  

Equating (3.13) to zero and solving for z, gives 1,1,2  zzz  

The root of z of (3.13) for which 1z  is simple, hence the method is zero stable as 0h as defined by 

6,and by the stability of the block method (2.16). 
 

Convergence   
The convergence of the continuous implicit multi step method (2.11) is considered in the light of the basic 
properties, in conjunction with the fundamental theorem of Dahlquist , Henrici  [21]  for linear multistep 
methods] . In what follows, we state Dahlquist’s theorem without proof.  
 
Theorem 3.1: Dahlquist theorem. Lambert [16]  
The necessary and sufficient condition for a linear multistep method to be convergent is for it to be 
consistent and zero stable.  
Remark 

The numerical methods derived here are considered to be convergent by theorem 3.1 as 0h  
Following theorem 3.1, the method (2.13) is convergence since it satisfies the necessary and sufficient 
conditions of consistency and zero stability 

Region of Absolute Stability of the block method  
Definition 8 
If the first and second characteristics polynomials of Linear Multistep Method (LMM) are  and

respectively, then the polynomial equation can be written as  

      ,h 0r r h r            (3.14) 

Where   
2

h h  

Then  ,r h is called the stability polynomial of the method defined by  and  , and  
2

h h  is the 

test equation. 
To get the region of absolute stability, we use the Routh –Hurwitz criterion by substituting into 4.10 

 
1

1

z
r

z





         (3.15) 

On evaluating the coefficient of the resulted polynomials, gives the region of absolute stability.  

To get the graph of the stability region, we make h  the subject of the formular from (3.14) to  get 

 
 
 

r
h r

r




          (3.16) 

Which is then plotted in MATLAB environment to produce the required absolute stability region of the 
method that will be plotted in a graph. 

Using definition (8), and expressing the first and second characteristics polynomial of Equation 

(2.13) as   3 3 2r r r     and    3 21
11 82 109

60
r r r r     and substituting into Equation 

(3.14) gives  

 
 

 
2

3 3 23 2 11 82 109 0
60

h
r r r r r


        
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 

   
2

23 282 109
1 11 3 2 0

60 60 60

h
r h r h r


 

   
          

   (3.17) 

Therefore,(3.17) is the  stability polynomial. 

To get the region of absolute stability, we use the Routh-Hurwitz criterion by substituting 
1

1

z
r

z





 into 

(3.17) to get  

    
3 2

2 211 1 82 1 109 1
1 3 2 0
60 1 60 1 60 1

z z z
h h h

z z z
  

         
            

         
 

Simplifying and collecting like terms, we have 

        
2 2 2 234 56

4 12 3 0
15 15

h z h h z h   
   
         
   

 

Using the coefficients of 
3 2 1, ,z z z and 

0z we have  

  
24

4 0.
15

h          

  
256

12 0
12

h      

  
2
0h           (3.18) 

and  
2

3 0h       

and simplifying (3.18) gives an interval of  15,0  

To get the graph of the absolute stability region, using Equation (3.16) to get  

  
 
 

 3

3 2

60 3 2

11 82 109

r rr
h r

r r r r





 
 

  
      (3.19)

 

Which is then plotted in MATLAB environment to produce the required absolute stability region of the 
method that will be plotted in a graph as shown below   

Figure: 3.1 Region of absolute stability of the three step Method (k = 3)
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Table: 3.1 Summary of the Analysis of the Methods          

Method Order Error 
constant 

Zero Stability Consistency  Interval of absolute 
stability  

3SM 2 4.33x10-1 Zero stable Consistent -15, 0 

 

 
4. Numerical Examples 

 
In order to study the efficiency of the developed method, we present some numerical examples with the 
following three problems. The continuous implicit multi step method 3SM  was   applied to solve the 
following test problems.  

1. 
    1.0,10',0,'" 0  hyyyy  

exact solution:    xxy exp1 ;  

Source: Ehige et al.  [3]  
 

Table: 4.1 
SHOWING THE EXACT SOLUTION AND THE COMPUTED RESULTS FROM THE PROPOSED 
METHODS FOR PROBLEM ONE AND IT COMPARISM WITH Ehigie et al.  [3]  

X 
values 

cxy  3SM  [8]  Error in 3SM Error in  [8]  

0.1 -0.1051709180756 -0.1051708452556 -0.1048333333 7.281999e-08 3.38e-04 

0.2 -0.2214027581601 -0.2214024359613 -0.2206078733 3.221988e-07 7.95e-04 

0.3 -0.3498588075760 -0.3498580230810 -0.3484633860 7.844950e-07 1.40e-03 

0.4 -0.4918246976412 -0.491823195479 -0.4896604103 1.502293e-06 2.16e-03 

0.5 -0.6487212707001 -0.6487187471265 -0.6455911064 2.523574e-06 3.13e-03 

0.6 -0.8221188003905 -0.8221148961235 -0.8177929079 3.904267e-06 4.33e-03 

0.7 -1.0137527074704 -1.0137469980411 -1.0079636772 5.709429e-06 5.79e-03 

0.8 -1.2255409284924 -1.2255329162964 -1.2179784459 8.012196e-06 7.56e-03 

0.9 -1.4596031111569 -1.4595922138418 -1.4499079018 1.089732e-05 9.70e-03 

1.0 -1.7182818284590 -1.7182673656339 -1.7060388057 1.446283e-05 1.22e-02 

 
Note: The new method perform better than Ehigie et al.  [3]  
 

 

2.      
40

1.0
,
2

1
0',10,0'"

2
 hyyyxy  

Exact solution:   













x

x
Inxy

2

2

2

1
1 .  

Source: Osilagun et al.  [8]  
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Table 4.2 
 
SHOWING THE EXACT SOLUTION AND THE COMPUTED RESULTS FROM THE PROPOSED 
METHODS FOR PROBLEM TWO AND ITS COMPARISM WITH Osilegun et al.  [8]  
  

X 
values 

cxy  3SM  [14]  Error in 3SM Error in  [14]  

0.0025 1.00125000065104 1.00125000065098 1.001250000186 5.440093e-14 4.650e-10 

0.0050 1.00250000520835 1.00250000520821 1.002500003997 1.416645e-13 1.211e-09 

0.0075 1.00375001757828 1.00375001757805 1.003750013174 2.142730e-13 4.030e-09 

0.0100 1.00500004166729 1.00500004166666 1.005000047982 6.268319e-13 6.314e-09 

0.0125 1.00625008138211 1.00625008138098 1.006250080358 1.131317e-12 8.462e-09 

0.0150 1.00750014062974 1.00750014062814 1.007500025790 1.598943e-12 1.148e-09 

0.0175 1.00875022331755 1.00875022331474 1.008750239662 2.809530e-12 1.993e-09 

0.0200 1.01000033335334 1.01000033334916 1.010000078382 4.170220e-12 2.550e-09 

0.0225 1.01125047464541 1.01125047463994 1.011250489037 5.472733e-12 4.256e-09 

0.0250 1.01250065110271 1.01250065109478 1.012500610101 7.921441e-12 4.100e-08 

 
Note: The new method perform better than Osilagun et al.  [8]  
 

3.     1.0,
32

5
0',

32

3
0," 3 





 hyyxeyy x

 

Exact solution:  
xe

x
xy

332

34



 .  

Source: Osilagun et al.  [8]  
Table: 4.3 
 
SHOWING THE EXACT SOLUTION AND THE COMPUTED RESULTS FROM THE PROPOSED 
METHODS FOR PROBLEM THREE AND ITS COMPARISM WITH Osilegun et al.  [8]  

X values 
cxy  3SM  [14]  Error in 3SM Error in  [14]  

0.0025 -0.094140915761848 -0.094140915880459 -0.0941409131568 1.186113e-10 2.61e-09 

0.0050 -0.094532404142338 -0.094532404442303 -0.0945324074753 2.999645e-10 3.33e-09 

0.0075 -0.094924451608388 -0.094924452066225 -0.0949244224215 4.578383e-10 2.92e-08 

0.0100 -0.095317044390700 -0.095317045147706 -0.0953170247449 7.570066e-10 2.02e-08 

0.0125 -0.095710168480980 -0.095710169602148 -0.0957101793552 1.121167e-09 1.08e-08 

0.0150 -0.096103809629113 -0.096103811090129 -0.0961039982252 1.461016e-09 1.88e-07 

0.0175 -0.09649533403163 -0.096497955287523 -0.0964952920355 1.947207e-09 4.23e-08 

0.0200 -0.096892584872264 -0.096892587372978 -0.0968923659413 2.500714e-09 2.18e-07 

0.0225 -0.097289689232184 -0.097287692261238 0.0972874625827 3.029054e-09 2.22e-06 

0.0250 -0.097683251173919 -0.09683254882864 -0.0976830958236 3.708945e-09 1.55e-07 

 
Note: The new method perform better than Osilagun et al.  [8]  
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Discussion of the Results 
 
The computer programs written for the implementation of the  continuous implicit multi step method 3SM, 
was tested  on numerical examples which are respectively, nonlinear, linear and stiff initial value 
problems of general second order ordinary differential equations in the least section.  
Generally, the performance of our method as notice in table 4.1 are superior to those from methods 
implemented by Ehigie et al.  [3] , that used a 2 – step continuous linear multistep method of hybrid type 
on moderately stiff problem one. It is observed that our method 3SM, in table 4.2, performed far better 
than Osilegun et al.  [8] , method of four steps implicit method on non – linear problem two. Also, our 
method 3SM, perform better than Osilegun et al.  [8] , method of four steps implicit method on linear 
problem three in table 4.3  
Finally, our scheme have been demonstrated to be more efficient in stiff problems as shown in table 4.1 
of problem one.  
   

5. Conclusion     

  
This paper illustrates the derivation, analysis and implementation of block method for solving second 
order initial value problem of ordinary differential equations directly.  
Numerical experiments have been carried out using appropriate step size as required by each problem. 
Such problem which are stiff, non-linear and linear. In general, the results from numerical experiment so 
presented in this paper show that the new method performed effectively well when compared with other 
methods in the literature.   
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