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Abstract

The constant concern in commodities market, particularly in oil price, has necessitated accurate
models to aid in the generation of relatively good synthetic oil price data. Oil prices are subject
to high volatility and its impact on economic growth has continued to generate controversies
among economic researchers and policymakers. In this paper, a state space model approach was
developed to describe the dynamics of Brent crude oil prices. The dynamics were examined as a
continuous time stochastic process generalized as an Ornstein-Uhlenbeck equation. The result
revealed that the dynamic behaviour of Brent oil price is an Ornstein-Uhlenbeck equation
depicting a mean reversion process in crude oil prices. The process is stationary Gauss-
Markov process and is the only nontrivial process that satis�es the conditions of allowing
linear transformations of the space and time variables. The Ornstein-Uhlenbeck process in this
paper is considered as the continuous time analogue of the discrete-time autoregressive process
of order one (AR(1)).

Keywords: Stochastic process, Markov process, Random Walk model, Brownian motion, Di�usion
process.
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1 Introduction

Crude Oil is a non-renewable fossil fuel which is distributed randomly all over in the ground [32]. It is
arguably the most important driving forces of the global economy and changes in the price of oil have
signi�cant e�ects on economic growth and welfare around the world. Essentially, the industrialized
world depends on crude oil as a chief source of energy supply both as a major component in many
manufacturing processes and for transportation purposes. Without doubt, crude oil represents the
highest percentage of the world's energy consumption compared to other energy resources [28]. The
price of crude oil is one of the world's most in�uential global economic indicators and it is precisely
observed by policy-makers, producers, consumers and �nancial market partakers. Oil prices have
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historically exhibited greater levels of volatility than other commodities and assets prices [26]. Issues
of oil price volatility and its impact on economic growth have continued to generate controversies
among economic researchers and policy makers. Volatility is simply a characterization of price
changes over time and in future markets the changes are almost continuous as they occur both
within and between trading days. Volatility is not bad for derivative markets and indeed without
volatility there would be little interest in many derivative products.

Derivatives have become very important tools for transferring risks from one entity to another. In
advanced society, derivative markets have grown so fast in that they can be used for three di�erent
purposes such as hedging, speculations, and arbitrage. The derivatives that can be traded include
forwards, futures, swaps, options and structured products.

Crude oil has emerged as one of the biggest commodity markets in the world and has been traded
like any other commodity in pure physical terms at spot prices. Today crude oil is sold through
a variety of contract arrangements such as futures, options, forwards and in spot transactions.
Capturing the price behaviour of assets and forecasting future developments is essential in �nancial
management and international policy. [16] and [31], concluded that oil prices move akin to a random
walk without a drift term and that the best predictor of the future price of crude oil is the present
oil prices.

Random walks are processes with independent increments and processes with independent increments
are Markov processes. The essential idea underlying the random walk for real processes is the
assumption of mutually independent increments of the order of magnitude for each point of time
[15]. Random walk representation may provide another avenue of approach to the solution of the
equations characterizing certain Markov processes. Random walk models have been prominent
since the 1960 and the earliest random walk models assumed that the accumulation of information
occurred at discrete point in time and that each piece of information is either �xed or variable in
size [24, 28].

Some researchers Random walks are processes with independent increments and processes with
independent increments are Markov processes. [25] veri�ed the pattern of best market share rules'
through the use of a Markov probability model. Many researchers in economics and �nance have
severally developed numerous theories for modelling volatility and such models as autoregressive
conditionally heteroscedastic (ARCH) model was introduced by [14]. This model was extended in
di�erent directions and the most popular was the general autoregressive conditionally hetroscedastic
(GARCH) as proposed by [7]. Fong and See (2002) looked at the e�ect of volatility in daily returns
on crude oil futures using generalized autoregressive conditional heteroskedasticity (GARCH),
regime switching (RS), RSARCH-t and RSGARCH-t models. It discovered that RS models are
useful both to �nancial historians interested in studying the factors behind the evolution of volatility
and to oil futures traders interested in using the model to extract short-term forecasts of conditional
volatility.

Models de�ned by ARCH [14] and GARCH [7] models are called stochastic volatility models or
stochastic variance models and there likelihood functions are more di�cult to handle. Stochastic
volatility models are those in which the variance of a stochastic process is itself randomly distributed.
By assuming that the volatility of the underlying crude oil price is a stochastic process rather than
a constant makes it possible and accurate to model crude oil prices as a derivative using either
structural models, or �nancial models.

A structural time series model, [19] sets out to capture the salient features of a time series data
and can be written as state space model. State space models, [12, 13] and [9] are a widely used tool
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in time series analysis to deal with processes which gradually change over time. The state space
model represents a physical system as �rst order coupled di�erential equations and is a fundamental
concept in modern control theory. [23] estimated coe�cient of a non-linear di�erential equation
using an optimal sequential estimation techniques often referred to as Kalman �lter. Kalman's
derivation took place within the context of state space models whose core is the recursive least
squares estimation. Within the state space notation, the Kalman �lter derivation rests on the
assumption of normality of the initial state vector, and as well as the disturbances of the system.
The state of a system is de�ned to be a minimum set of information from the present and past
such that the future behaviour of the system can be completely described by the knowledge of the
present state and the future input. The State space representation is based on the Markov property,
which implies that given the present state, the future of a system is independent of its past.

It is clear from historical data that while commodity may rise and fall sharply in the short and
medium term, they tend to revert to an average mean over time. Understanding this underlying
stochastic process is of clear importance, particularly for crude oil due to its essential role in the
world economy [17, 21, 22]. The Mean-Reversion models developed by [8] and [30] are based on
the assumption that oil price follows a stochastic process with known mathematical properties. [11]
suggested a mean-reverting Markov switching jump di�usion model to characterize the stochastic
behaviour of the crude oil spot prices. [5] argued that the mean reversion process has been considered
the natural choice for commodities.

In recent years, the Ornstein-Uhlenbeck process has appeared in �nance as a model of the volatility
of the underlying asset prices. The Ornstein-Uhlenbeck process is a stochastic process that describes
the velocity of a massive Brownian particle under the in�uence of friction. The process is stationary
Gauss-Markov process and is the only nontrivial process that satis�es the conditions of allowing
linear transformations of the space and time variables.

2 Methods

Random walks are a formalization of a path that consists of a succession of random steps. By
letting Pt denote the crude oil spot price at time t, the simplest version of the random walk model
without a trend is

Pt+1 = Pt + εt+1 (2.1)

Where εt+1 represents a white-noise term with a mean of zero, constant variance and zero auto-
correlation. The changes Pt are independent from each other and can also be described with
deterministic trend µ as:

Pt+1 = µ+ Pt + εt+1 (2.2)

It is pertinent to note that in order to facilitate the modelling process, di�erencing of the model is
required. In this case, the change ∆Pt is

∆Pt = Pt − Pt−1 (2.3)

Furthermore, the data is often seasonally di�erenced prior to the analysis in order to eliminate
seasonal non-stationarity. To account for changing variance, the ARCH/ GARCH family of models
is often used in econometrics. [14] provides an autoregressive conditional heteroscedastic (ARCH)
model in which the mean and variance can be simultaneously modelled and forecasted. The ARCH
(q) model using an AR (p) model for Pt is

Pt = φ0 + φ1P + · · ·+ φpPt−p + εt (2.4)
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where εt ∼ N(0, σ2
t ) and σ2

t = α0 + α1ε
2
t−1 + α1ε

2
t−2 · · ·+ αqε

2
t−q + β

The GARCH (p,q) model using AR (p) model for Pt is

Pt = φ0 + φ1Pt−1 + · · ·+ φpPt−p + εt (2.5)

where εt ∼ N(0, σ2
t ) and σ2

t = α0 + α1Pt−1 + · · ·+ αqε
2
t−q + β1σ

2
t−1 + · · ·+ βpσt−p

An alternative to ARCH or GARCH models is to assume that σ2
t follows a stochastic process and

this is usually done by modelling the logarithm of σ2
t . The log (σ2

t ) follows an AR process with an
error component that is independent of the σ2

t series in equations (4) and (5). In order to handle
this process within the framework of the classical time series analysis, it can be shown that natural
ways of trying to de�ne crude oil spot price is as a Markov process . Thus in the study the crude
oil spot price P (t) is in a sense, the probabilistic analog of causality representing the �rst order
AR process in continuous time, since di�erencing in discrete time corresponds to di�erentiation in
continuous time. The �rst ? order AR process in continuous time, P (t) is such that its derivative
is de�ned as a general equation

aP (t) +
dP (t)

dt
= Z(t) (2.6)

where a is a constant, and Z(t) denotes continuous white noise. However, as {Z(t)} cannot
physically exist, it is more legitimate to write (6) as

dP (t) = −aP (t)dt+ dZ(t) (2.7)

Equation (7) in the theory of Brownian motion is a Langevin equation. In the physics literature,
[27] studied this kind of stochastic di�erential equation usually referred to as Langevin equation.
The Langevin equation of (7) is denoted as

P (t) = P (0) + c

t∫
0

P (s)ds+ σ

t∫
0

dWt t ∈ (0, T ) (2.8)

Model (8) is related to the world of time series analysis. In intuitive form (8) can be written as

dP (t) = cP (t)dt+ σWt (2.9)

and formally setting dt = 1. Then

Pt+1 − Pt = cPt + σ(Wt+1 −Wt) (2.10)

or
Pt+1 = ΦPt + Zt (2.11)

where Φ = c + 1 is a constant and the random variables Zt = σ(Wt+1 − Wt) constitute an iid
sequence of N(0, σ2). This is an autoregressive process of order. This time series model can be
considered as a discrete analogue of the solution to the Langevin equation (8) and the Langevin
equation as a linear Itô stochastic di�erential equation. The stochastic process follows a random
walk and can be represented as

Pt = c+ Pt−1 + at (2.12)

with a constant c and white noise at . If c is not zero then the variables,
Pt−Pt−1 = c+ at have a non-zero mean and is called a random walk with a drift. In contrast, the
random walk de�ned here is the boundary case for an AR(1) process and is de�ned as

Pt = Pt−1 + at (2.13)
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Through recursive substitution
Pt − Pt−1 = at (2.14)

or equation (1−B)Pt = at equation equation Pt = (1−B)1at equation

Pt = at + at−1 + · · ·+ a1 (2.15)

In order to handle this process within the framework of the classical time series analysis, the
observed claim process must be transformed by di�erencing the process in order to get a stationary
process. The transform process is then

Zt = (1−B)dPt (2.16)

Such a model is called an integrated model because the stationary model that is �tted to the
di�erence data has to be summed or integrated to provide a model for the original non-stationary
data. Describing the di�erence of is said to be an process. By following the [6] three stage model
building procedure of identi�cation, estimation, and diagnostic checking, an ARIMA (p,d,q) model
is developed. ARIMA (p,d,q) models are typically parsimonious model and the model selection
is based on the premise that ACF and the related statistics can be accurately estimated and are
stable over time.

In practice, it may turn out that there is more than one plausible model and based on the use of
Akaike information criterion (AIC), the goodness of �t of di�erent models is to be compared. The
AIC is de�ned as

The AIC is de�ned as

AIC = −2maximizedlog-likelihood + 2n

≈ T lnσ̂2 + 2n+ const (2.17)

where T is the length of the observed series after any di�erencing, n is the number of �tted
parameters and is the estimated white noise variance. The model with the smallest value of the
AIC is judged to be the most appropriate.

3 Results

The empirical data used were obtained from the o�cial website of The World Bank, http:www.
worldbank.org/en/research/commodity-markets and it consists of 102 observations. The monthly
prices of the Brent crude oil prices from January 2009 to June 2017 (US $ per Barrel) is as in Table
1,
The time plot for the crude oil prices is as shown in Figure 1 and the analysis were achieved
through the use of R software. The �rst di�erence is plotted in Figure 2. The usual identi�cation
techniques by examination of plots and autocorrelation functions leave little doubt about the need
to di�erence The strong trend in the original series indicates that the original Brent oil price
is nonstationary suggesting a need to di�erencing. The sample autocorrelation functions of the
original functions and the �rst di�erence and the partial autocorrelation functions for the �rst
di�erence is as shown in Table 2. The matching of the �rst 15 estimated sample autocorrelations
and partial autocorrelations of the �rst di�erence series suggested an autoregressive model of order
1 as in Table 2. The R software package used the Akaike information criterion to provide the best
�t for an autoregressive model to a set of data and is as shown in Table 3. The sample ACF and
partial autocorrelation function (PACF) of the di�erence series suggest an AR (1) model.
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Table 1: The monthly prices of the Brent crude oil prices from January 2009 to June 2017 (US $
per Barrel)
Month/Year 2009 2010 2011 2012 2013 2014 2015 2016 2017

Jan 43.86 77.12 92.69 107.07 105.10 102.10 47.11 29.78 53.59
Feb 41.84 74.76 97.91 112.69 107.64 104.83 54.79 31.03 54.35
Mar 46.65 79.30 108.65 117.79 102.52 104.04 52.83 37.34 50.90
Apr 50.28 84.18 116.24 113.67 99.85 104.87 57.54 40.75 52.16
May 58.15 75.62 108.07 104.09 99.37 105.71 62.51 45.94 49.89
Jun 69.15 74.73 105.85 90.73 99.74 108.37 61.31 47.69 46.17
Jul 64.67 74.58 107.92 96.75 105.26 105.23 54.34 44.13
Aug 71.63 75.83 100.49 105.27 108.16 100.05 45.69 44.87
Sep 68.35 76.12 100.82 106.28 108.76 95.85 46.28 45.04
Oct 74.08 81.72 99.85 103.41 105.43 86.08 46.96 49.29
Nov 77.55 84.53 105.41 101.17 102.63 76.99 43.11 45.26
Dec 74.88 90.01 104.23 101.19 105.48 60.70 36.57 52.62

Figure 1:
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Figure 2:

Table 2: Sample Autocorrelations for Pt and δPt and Partial autocorrelation for the Brent Oil
Prices

Lag K ACF of Pt ACF of ∆Pt PACF of δPt

1 0.962 0.297 0.297
2 0.913 0.081 0.008
3 0.863 -0.056 -0.085
4 0.818 -0.057 -0.018
5 0.780 0.064 0.104
6 0.745 -0.028 -0.086
7 0.709 -0.012 0.002
8 0.673 -0.027 -0.006
9 0.639 -0.019 -0.007
10 0.606 0.130 0.139
11 0.569 0.166 109
12 0.524 0.235 0.156
13 0.472 0.041 -0.074
14 0.416 -0.137 -0.139
15 0.366 -0.089 0.002
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Table 3: Estimated Value of ARIMA (p,d,q) Model for the Brent Oil Price
Model AIC SE Log likelihood

ARIMA (1,0,0) 636.27 27.36 -315.13
ARIMA (1,0,1) 629.47 25.06 -310.74
ARIMA (0,1,1) 617.69 25.47 -306.85
ARIMA (0,1,0) 652.54 39.16 -325.27
ARIMA (1,1,0) 616.81 25.25 -306.4
ARIMA (1,1,1) 618.8 25.24 -306.4

From Table 3, for the ARIMA ( 0,1,1) model, the AIC for the process is at AIC=617.69 which
is very close to the ARIMA (1,1,0). Based on the Akaike?s information criteria computed for the
models, it appears that ARIMA (1, 1, 0) with an AIC =616.81 is the optimal model. ARIMA (1,
1,0) is simply a random walk model. The random walk de�ned here is the boundary case for an
AR (1). The corresponding �tted autoregressive model is

δPt = 0.296Pt−1 + at

(0.095)

An overall test of model adequacy is provided by Ljung-Box chi-squared statistics. These statistics
also known as the Box-Pierce chi-square statistics contain what are known as the portmanteau
statistics with their associated p-values. In �tting the AR (1) model to the state space model, none
of the chi-square values is signi�cant at the 5% level. The ARIMA model diagnostic is as shown in
Figure 3 with various plots produced such as the standardized residuals, the ACF of the residuals,
the PACF of the residuals, and the p-values of Ljung-Box Chi-squared statistics.

Figure 3:

4 Discussion

This study described the evolution or dynamics of crude oil prices over a given time period as
a Ornstein-Uhlenbeck process. The Ornstein-Uhlenbeck process is just like the Brownian motion
and is the scaling limit of simple random walk. The study demonstrated that Ornstein-Uhlenbeck
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processes are a Gaussian process with autocovariance which can be transformed into state space
time series model. The state space model demonstrates a bridge between nonlinear stochastic
dynamical systems and nonlinear time series model indicating that there is a close relationship
between nonlinear time series models and nonlinear stochastic dynamical systems.

The state space model sets out to capture the salient features of the time series and these are
apparent from the nature of the series. The state space model can be reduced to an autoregressive
integrated moving average (ARIMA) process or an autoregressive moving average (ARMA) process.
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