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Abstract

This paper discusses a new collocation method based on Boubakar approximating polynomial

for the solution of �rst order linear integral and integro-di�erential equations with initial

condition. The integro-di�erential equations is converted into integral equations and later

transformed to system of linear equations using standard collocation method. The linear

equation is then solved using matrix inversion method. Three examples are given, numerical

solutions show that the method is e�cient in handling problems under consideration.
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1 Introduction

Recently, attention has been focused on the development of e�cient methods for the solution of
integral and integro-di�erential equations, which have wider application in the model of heat and
mass di�usion processes, electromagnetic theory and ocean circulating among others [1]. Some
of the numerical methods for the solutions of integral and integro-di�erential equations developed
in literature include: hybrid linear multistep method [2], Daftardar-Gejji and Jafari method [3],
collocation method [1, 4, 5, 6], block by block method [7], shifted Chebyshev polynomial of the
third kind [8], Chebyshev-Gelarkin method [9], di�erential transform [10], Adomian decomposition
method [11], Chebyshev collocation method [12], Bernoulli matrix method [13], Berstein operational
matrix [14], pseudospectral method using Legendre polynomial [15], to mention but few.
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The aim of this paper is to develop a new collocation method for the solution of linear Fredholm
Volterra integral equations

y (x) = f (x) + λ1

∫ x

0

k (x, t) y (t) dt+ λ2

∫ 1

0

w (x, t) y (t) dt (1.1)

and integro-di�erential equations

y′ (x) = f (x) + λ1

∫ x

0

k (x, t) y (t) dt+ λ2

∫ 1

0

w (x, t) y (t) dt, y (0) = y0 (1.2)

a ≤ x ≤ b, y(x) is the unknown function, f (x) and k (x, t) , w (x, t) are given continuous real valued
functions, using the approximate solution

yn (x) = B (x)A (1.3)

where B (x) is the Boubakar interpolating polynomial with the recursive formula

Bn+1 (x) = xBn (x)−Bn−1 (x) , n ≥ 2 (1.4)

where B (x) =
[
B0 (x) B1 (x) · · · BN (x)

]
1×(N+1)

, B0 (x) = 1, B1 (x) = x, B2 (x) = x2 + 2

and A =
[
a0 a1 · · · aN

]T
(N+1)×1 are constants to be determined

2 Methodology

In this section, we discuss the steps in developing the new collocation method. We �rst convert the
integro-di�erential equation to integral equation, hence, (1.2) can be written in the form

y (x) = y0 +

∫ x

0

f (t) dt+ λ1

∫ x

0

[∫ x

0

k (x, t) y (t) dt

]
dx+ λ2

∫ x

0

[∫ 1

0

w (x, t) y (t) dt

]
dx (2.1)

we substitute (1.3) into (2.1) to give
w (x)A = g (x) (2.2)

where

w (x) =

[
B (x)− λ1

∫ x

0

[∫ x

0

k (x, t)B (t) dt

]
dx− λ2

∫ x

0

[∫ 1

0

w (x, t)B (t) dt

]
dx

]
1×(N+1)

g (x) = y0 +

∫ x

0

f (t) dt

We then collocate (2.2) at

xi = a+
(b− a) i
N

(2.3)

to give
w (xi)A = g (xi) (2.4)

with the dimension w (xi) = (N+1)×(N+1), g (xi) = (N+1)×1.We then solve for the constants
in (2.4) using matrix inversion method and substitute the result into the approximate solution (1.3)
to get the numerical solution
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3 Convergence Analysis

In this section, we establish the convergence of the new method. We substitute the approximate
solution into (1.2)

yN (x) = y0+

∫ x

0

f (t) dt+λ1

∫ x

0

[∫ x

0

k (x, t) yN (t) dt

]
dx+λ2

∫ x

0

[∫ 1

0

w (x, t) yN (t) dt

]
dx (3.1)

Substract (1.2) from (3.1) and using

EN (x) = yN (x)− y (x) (3.2)

then

|EN (x)| ≤ |λ1|
∣∣∣∣∫ x

0

[∫ x

0

k (x, t)EN (t) dt

]
dx

∣∣∣∣+ |λ2| ∣∣∣∣∫ x

0

[∫ 1

0

w (x, t)EN (t) dt

]
dx

∣∣∣∣
hence

‖EN (xi)‖∞
‖EN (t)‖∞

≤ |λ1|
∣∣∣∣∫ xi

0

[∫ xi

0

k (x, t) dt

]
dxi

∣∣∣∣+ |λ2| ∣∣∣∣∫ xi

0

[∫ 1

0

w (xi, t) dt

]
dxi

∣∣∣∣
hence, the method converges

4 Numerical Examples

In this section, we solve three examples to test the e�ciency of the new method. All the results
are presented in tables, all computations are done with the aid of program written in MATLAB
(2015a) and run on a PC. abs-eN = |yN (x)− y (x)| use in the tables refers to the absolute error
for N, yN (x) is the numerical solution and y (x) is the exact solution

Example 4.1. [5] Consider the linear Volterra Fredholm integro-di�erential equation

y′ (x) = −f (x)−
[∫ x

0

x2ty (t) dt+

∫ 1

0

x (x− t) y (t) dt
]
, y (0) = 1, 0 ≤ x ≤ 1 (4.1)

f (x) = sinx− x2 cosx− x3 sinx+ x2 − x2 sin (1) + x cos (1) + x sin (1)− x

Integrating (4.1) from 0 to x gives

y (x) = y (0)−
∫ x

0

f (t) dt−
∫ x

0

(∫ x

0

x2ty (t) dt

)
dx−

∫ x

0

(∫ 1

0

x (x− t) y (t) dt
)
dt (4.2)

We solve this problem using N=5 and 10 but we use N =5 for illustration. Let the approximate
solution (1.3) reduces to the form B (x) =

[
B0 (x) B1 (x) B2 (x) B3 (x) B4 (x) B5 (x)

]
and A =

[
a0 a1 a2 a3 a4 a5

]T
. Substituting into (4.2) , (2.2) reduces to

w (x) = B (x) +

∫ x

0

(∫ x

0

x2tB (t) dt

)
dx+

∫ x

0

(∫ 1

0

x (x− t)B (t) dt

)
dt

and

g (x) = 1−
∫ x

0

f (t) dt

We then collocate at
xi =

[
0 1

5
2
5

3
5

4
5 1

]
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then, the parameters in (2.4) give

w (xi) =



1 0 −2
3 0 8

15 0

186131
187500

54751
281250

−14221861
23625000

−12133487
337500000

593103319
1687500000

251288807
585937500

46048
46875

54032
140625

−2419331
5906250

−6125971
10546875

−39323803
421875000

728904659
1757812500

61861
62500

18081
31250

−244609
2625000

−6628041
12500000

−93557237
187500000

−5622906
48828125

48911
46875

111548
140625

1018852
2953125

−812251
10546875

−38755979
105468750

−145726559
292968750

71
60

19
18

6911
7560

793
861

21667
21600

931
900


and

g (xi) =
[
1.0 0.974707 0.909465 0.824486 0.747276 0.712805

]T
Solving for the unknown constants A in (2.4) using matrix inversion gives

A =

[
0.812324 −0.0035197 −0.274497 −0.00236426 0.00877066 −0.000411614

]T
We then substitute A into the approximate solution to give the numerical solution

y5 (x) = −
(
3. 961 8× 10−3

)
x5 +

(
4. 604 6× 10−2

)
x4 −

(
2. 285 7× 10−3

)
x3

−0.499 45x2 −
(
4. 810 4× 10−5

)
x+ 1

Following the steps discussed earlier, we solve for N=10 to obtain

y10 (x) = −
(
2. 408 3× 10−7

)
x10 −

(
1. 104 1× 10−7

)
x9 +

(
2. 497 1× 10−5

)
x8

−
(
1. 568 3× 10−7

)
x7 −

(
1. 388 8× 10−3

)
x6 −

(
3. 610 3× 10−8

)
x5

+
(
4. 166 7× 10−2

)
x4 −

(
1. 390 7× 10−9

)
x3 − 0.5x2 −

(
3. 971 2× 10−12

)
x+ 1

Evaluation of the numerical solution at some selected points is given is Table 1 with the comparison
with the exact solution. Table 1 shows that as N is increasing, the error is decreasing, hence the
accuracy is increasing. This shows that the method converges

Table 1: Comparison of exact and numerical solutions for (4.1)

Exact Present method

xi cos(xi) N = 5 abs-e5 N = 10 abs-e10

0.2 0.980066577841 0.980066576138695 1.7025e-09 0.980066577840337 9.0503e-13

0.4 0.921060994002 0.921060989870354 4.1325e-09 0.921060994002161 7.2389e-13

0.6 0.825335614909 0.825335611967181 2.9425e-09 0.825335614909179 4.9911e-13

0.8 0.696706709347 0.696706714328259 4.9811e-09 0.696706709346956 2.0923e-13

1.0 0.540302305868 0.540302337522625 3.1654e-08 0.540302305868027 1.1295e-13
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Example 4.2. [5], Consider linear Volterra Fredholm integro-di�erential equation

y′ (x) = 2ex − 2 +

∫ x

0

y (t) dt+

∫ 1

0

y (t) dt, y (0) = 0, 0 ≤ x ≤ 1 (4.3)

Writing in the integral form gives

y (x) =

∫ x

0

(
2et − 2

)
dt+

∫ x

0

(∫ x

0

y (t) dt

)
dx+

∫ x

0

(∫ 1

0

y (t) dt

)
dx (4.4)

We the solve (4.4) for N=5 and 10, the numerical solutions are:

y5 (x) = 0.076 43x5 + 0.123 31x4 + 0.524x3 + 0.994 01x2 + 1. 000 5x+ 1. 387 8× 10−17

y10 (x) =
(
4. 794 3× 10−6

)
x10 +

(
1. 945 3× 10−5

)
x9 +

(
2. 060 9× 10−4

)
x8

+
(
1. 382× 10−3

)
x7 +

(
8. 337 3× 10−3

)
x6 +

(
4. 166 5× 10−2

)
x5

+0.166 67x4 + 0.5x3 + x2 + x+ 2. 273 7× 10−13

Comparison of the exact solution and the numerical solution is given in Table 2. It is equally shown
that the method is e�cient and convergent

Table 2: Comparison of exact and numerical solutions for (4.3)

exact Present method

xi xie
xi N=5 abs-e5 N=10 abs-e10

0.2 0.24428055163203 0.2442824737318 1.9221e-06 0.244280551632 7.8606e-13

0.4 0.59672987905650 0.5967338938959 4.0148e-06 0.596729879057 1.3940e-12

0.6 1.09327128023431 1.0932775362937 6.2561e-06 1.093271280236 2.0199e-12

0.8 1.78043274279397 1.7804414752188 8.7324e-06 1.780432742796 2.5655e-12

1.0 2.71828182845905 2.7182934980576 1.1670e-05 2.718281828462 2.9569e-12

Example 4.3. [17] Consider the integral equation

y (x) = ex − 1− x+

∫ x

0

y (t) dt+

∫ 1

0

xy (t) dt, 0 ≤ x ≤ 1 (4.5)

We solve this problem using N=5 and 10, the numerical solutions give

y5 (x) =
(
7. 673 1× 10−2

)
x5 + 0.122 56x4 + 0.524 68x3 + 0.993 76x2 + 1. 000 6x

+6. 938 9× 10−18

y10 (x) =
(
4. 798 7× 10−6

)
x10 +

(
1. 943 1× 10−5

)
x9 +

(
2. 061 4× 10−4

)
x8

+
(
1. 382 0× 10−3

)
x7 +

(
8. 337 4× 10−3

)
x6 +

(
4. 166 5× 10−2

)
x5

+0.166 67x4 + 0.5x3 + 1.0x2 + x− 5. 684 3× 10−14

Evaluation of numerical solution at some selected points is given in Table 3. It is shown clearly
that the method is convergent and e�cient in handling the problem
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Table 3: Comparison of the exact and numerical solution for (4.5)

exact present method

xi xie
xi N=5 abs-e5 N=10 abs-e10

0.2 0.24428055163203 0.2442872626330 6.7110e-06 0.24428055163263 5.9857e-13

0.4 0.59672987905650 0.5967418857557 1.2007e-05 0.59672987905751 1.0064e-12

0.6 1.09327128023431 1.0932909320262 1.9652e-05 1.09327128023544 1.1332e-12

0.8 1.78043274279397 1.7804605583613 2.7816e-05 1.78043274279503 1.0507e-12

1.0 2.71828182845905 2.7183224860943 4.0658e-05 2.71828182845989 8.3978e-13

5 Conclusion

We have developed a new collocation method for the solution of �rst order Fredholm Volterra
integral and integro-di�erential equations. The method used in this study has lesser computational
burden and easier to code when compared with the existing methods. Numerical solutions as
shown in the tables con�rm that the method is e�cient in handling problems under consideration.
Moreover, the method shows good stability, which is measured by the di�erence between the
maximum and the minimum errors.
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