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Abstract
Flexible parametric models are useful for modeling survival data and this has become an im-
portant field in statistics; and concern of statisticians in data analysis. Therefore, this paper
presents a univariate model called Beta modified weighted Rayleigh distribution constructed
from modified weighted Rayleigh distribution. The new distribution is achieved by introducing
two shape parameters to the existing modified Weighted Rayleigh distribution using logit of
beta function. The idea is to verify if the Beta modified Weighted Rayleigh distribution would
perform better than modified Weighted Rayleigh distribution in modeling survival data. The
statistical properties such as; survival rate, hazard rate, moment generating functions, skewness
and kurtosis are determined for the new distribution. We also performed the expected estima-
tion of model parameters by maximum likelihood. The Akaike Information Criterion (AIC),
Bayesian Information Criterion (BIC) and Consistent Akaike Information Criterion (CAIC)
are employed to select the best model. The superiority and flexibility of the proposed distribu-
tion is illustrated and applied to survival times of guinea pigs with virulent tubercle data sets.
The results with the baseline distribution are also compared. Likewise, results from the model
selection criteria: the AIC, BIC and CAIC favoured BMWR; indicating that the proposed
distribution performs and has better representation of the data than the MWR distribution.

Keywords: Akaike Information Criterion, Beta function, Beta modified Weighted Rayleigh, shape
parameters, survival data.
MSC2010: 60E05

1 Introduction
Rayleigh distribution is a special case of Weibull distribution which has been widely used for mod-
eling lifetime data in a wide variety of areas including reliability, engineering, and survival analysis
to mention but a few; while weighted distributions are used to adjust the probabilities of the events
as observed and recorded [27]. In this paper, we introduce and study the properties of the Beta-
modified weighted Rayleigh distribution. This class of distributions is flexible in accommodating
skewed data and contains new sub-models such as Lehmann Type II modified weighted Rayleigh,
Exponentiated modified weighted Rayleigh distribution.

http://ijmao.unilag.edu.ng/article/view/6
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Beta generated (Beta-G) family [20] have been studied by numerous authors such as [24], [25]
Beta Frechet distribution, [24], [1], [30], Beta generalized exponential [8] the Beta extended-G family
[11], Beta generalized Weibull distribution [29], Beta weighted weibull distribution [4], Beta gener-
alized Rayleigh distribution [13], Beta extended half normal distribution [12], [18], Beta log-logistic
distribution [22]. Life length of components estimates with Beta weighted Weibull distribution [5],
Beta Marshall-Olkin family of distribution [3], the Beta weighted exponential distribution [6], Beta
exponential Frechet distribution [23], Beta-Dagum distribution and Beta-Singh-Maddala distribu-
tion [15] among others.

Therefore, this paper is arranged as follows. In section 2, we present the generalized distribution
including the corresponding probability density function (pdf), cumulative distribution function
(cdf), reliability, hazard rate and reverse hazard functions and various sub-models. Section 3
contains the derivation of the moments and moment generating functions, skewness and kurtosis.
Estimation of model parameters using method of maximum likelihood estimation is presented in
section 4. Applications of the proposed model to real data are given in section 5, followed by
conclusion in section 6.

2 Material and Method

2.1 The Beta-modified Weighted Rayleigh (BMWR) Distribution
2.1.1 The Density Function of BMWR Distribution

We introduce two shape parameters into the work of [2], to generate more skewed distribution called
BMWR distribution (where they mentioned and gave only the pdf of modified Weighted Rayleigh
distribution). The pdf of the MWR is given as

fMWR(g) = 2α(βγ2 + 1)ge−α(βγ
2+1)g2 (2.1)

where, α is a scale parameter while, β and γ are shape parameters; and the corresponding cdf
is

FMWR(g) = 1− e−α(βγ
2+1)g2 (2.2)

But we explore a new Beta-modified weighted Rayleigh distribution using generalized Beta
function by [20] which of course several authors have used in literature. Some more recent extensions
on generalizations are: exponentiated Weibull (EW) [17], the modified Weibull (MW) [21], and
the Beta exponential (BE) [26], the generalized modified Weibull (GMW) [9], the Beta modified
Weibull (BMW) [28], Beta generalized exponential ([8], [10]), Beta generalized Weibull distribution
[29], Beta generalized Rayleigh distribution [13], Beta generalized inverse Weibull distribution [7].

The Beta link function is given as:

f(g) =
(f(g)[F (g)](m−1)[1− F (g)](n−1))

B(m,n)
,m, n > 0 (2.3)

where, g > 0, f(g) =
d

dg
F (g) and m > 0, n > 0 are two shape parameters added to the existing

parent (MWR) distribution. The primary motivations for developing this model are the advantages
presented by this generalized distribution due to its flexibility. It has bathtub and a unimodal shape
hazard function, as well as the versatility and flexibility of the Beta-modified weighted Rayleigh

distributions in modeling lifetime data. B(m,n) =
Γ(m)Γ(n)

Γ(m+ n)
is the Beta function and f(g), F (g)

are pdf and cdf respectively of base distribution (MWR).
Substituting equations in (1) and (2) into (3) to obtain the density function of BMWR, we have

the following:
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f(BMWR)(g) =
(fMWR(g)[FMWR(g)](m−1)[1− FMWR(g)](n−1))

B(m,n)
,

α, β, γ,m, n ' BMWR(α, β, γ,m, n, g > 0) (2.4)

f(BMWR|α,β,γ,m,n)(g) =
1

B(m,n)
[1−e−α(βγ

2+1)g2 ](m−1)[e−α(βγ
2+1)g2 ](n−1)2α(βγ2+1)ge(−α(βγ

2+1)g2

(2.5)
where, fMWR(g) and FMWR(g) are the pdf and cdf of base distribution; and expression (4)

becomes the pdf of the new BMWR distribution with five parameters.
The plots (a - d) below are the pdf plots of the BMWR, LMWR, EMWR and MWR distributions

at different values of m = (100, 1, 50, 2.5, 1.5) and n = (3.5, 1, 2.5, 5, 1.5) when c = α, d = β and
e = γ are fixed at (0.3,5,0.3). These are initial values given to each parameter in the distribution (R
code) to achieve different shapes from each distribution. For instance, if m = 1, the distribution
becomes Lehmann Type II modified weighted Rayleigh (LMWR) (the broken line closed to the
left side in each plot below), when n = 1, then the distribution yields Exponentiatated modified
weighted Rayleigh (EMWR) (the fainted line in each graph below) (the two distributions mentioned
are sub-model of BMWR). Also the distribution can accomodates the four risk functions, e. g
(increasing, decreasing, bathtub and unimodal shape hazard function). Therefore, as the values of
m and n increases, the skewness of the BMWR (the bold line in each graph below) decreases and
as values reduces the graphs of the BMWR skewed to the right and so on.
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m=100,n=3.5,c=0.3,d=5,e=0.3 (BMWRD)

m=1,n=3.5,c=0.3,d=5,e=0.3 (LMWRD)

m=100,n=1,c=0.3,d=5,e=0.3 (EMWRD)

m=1,n=1,c=0.3,d=5,e=0.3 (MWRD)

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●

●●
●●
●●
●●
●●
●
●
●
●
●
●
●
●●
●●
●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.0

0
.5

1
.0

1
.5

(b)

g

p
d

f

m=50,n=2.5,c=0.3,d=5,e=0.3 (BMWRD)

m=1,n=2.5,c=0.3,d=5,e=0.3 (LMWRD)

m=50,n=1,c=0.3,d=5,e=0.3 (EMWRD)

m=1,n=1,c=0.3,d=5,e=0.3 (MWRD)
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m=2.5,n=5,c=0.3,d=5,e=0.3 (BMWRD)

m=1,n=5,c=0.3,d=5,e=0.3 (LMWRD)

m=2.5,n=1,c=0.3,d=5,e=0.3 (EMWRD)

m=1,n=1,c=0.3,d=5,e=0.3 (MWRD)
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m=1.5,n=1.5,c=0.3,d=5,e=0.3 (BMWRD)

m=1,n=1.5,c=0.3,d=5,e=0.3 (LMWRD)

m=1.5,n=1,c=0.3,d=5,e=0.3 (EMWRD)

m=1,n=1,c=0.3,d=5,e=0.3 (MWRD)

Figure 1: The pdf plots of the BMWR, LMWR, EMWR and MWR distributions.

Letting

T (g) = FMWR(g) = 1− e−α(βγ
2+1)g2

where, T (g) is the cdf of the baseline gives
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dT

dg
= [fMWR(g)][FMWR(g)] (2.6)

and expression (4) becomes

fBMWR(g) =
1

B(m,n)
[T (g)](m−1)[1− T (g)](n−1)d(g) (2.7)

2.1.2 Cumulative Distribution Function (CDF)

Here, we used equation (7) to obtain cumulative distribution function of BMWR where variable G
is given by

FBMWR(g) =

∫ g

0

fBMWR(g) =
(
∫ g
0

[T (g)](m−1)[1− T (g)](n−1)d(g)])

B(m,n)
(2.8)

FBMWR(g) =
B(g;m,n)

B(m,n)
(2.9)

where, lg = (m.n) = Bg(m,n)/B(m,n) is called incomplete Beta function ratio and Bg(m,n) =∫ g
0
Wm−1[1−W ]n−1d(g) is the Beta function.

2.1.3 The Reliability Function

The reliability function R(BMWR|α,β,γ,m,n) of a random BMWRα, β, γ,m, n variable G with cdf
F (g) is defined as

R(BMWR)[α, β, γ,m, n](g) = 1− FBMWR(g) (2.10)

R(BMWR)[α, β, γ,m, n](g) =
B(m,nb)−B(g;m,n)

B(m,n)
(2.11)

2.1.4 The Hazard Rate Function

The hazard rate function H(BMWR|α,β,γ,m,n) of a random BMWR(α, β, γ,m, n) variable G with
cdf F (g) is given as

hBMWR|(α,β,γ,m,n)(g) =
(fBMWR(α,β,γ,m,n)(g))

(1− FBMWR(α,β,γ,m,n)(g))
(2.12)

Substituting equations (7) and (11) yields
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hBMWR(α,β,γ,m,n)(g) =
([T (g)](m−1)[1− T (g)](n−1)d(g))

B(m,n)−B(g;m,n)
(2.13)

Technically, the hazard function is a probability of failure in a very small time interval.
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m=0.3,n=0.3,c=0.15,d=0.01,e=0.28, (BMWRD)

m=1,m=0.3,c=0.15,d=0.01,e=0.28, (LMWRD)

m=0.3,n=1,c=0.15,d=0.01,e=0.28, (EMWRD)

m=1,n=1,c=0.15,d=0.01,e=0.28, (MWRD)

Figure 2: The graph of hazard rates of the BMWR = (m,n, α, β, γ),
LMWR = (1, n, α, β, γ), EMWR = (m, 1, α, β, γ) and MWR = (1, 1, α, β, γ) at
((0.3, 0.3, 0.15, 0.01, 0.28), (1, 0.3, 0.15, 0.01, 0.28), (0.3, 1, 0.15, 0.01, 0.28), (1, 1, 0.15, 0.01, 0.28)),
respectively.

2.1.5 The Reversed Hazard Function

The reserved hazard function r(BMWR|α,β,γ,m,n)of a random BMWR(α, β, γ,m, n)variable G with
cdf F (g) is given by

rBMWR(α,β,γ,m,n(g) =
(fBMWR(α,β,γ,m,n)(g))

(FBMWR(α,β,γ,m,n)(g))
(2.14)

Also, putting equations (7) and (9) in expression (14), we obtain

rBMWR(α,β,γ,m,n)(g) =
([T (g)](m−1)[1− T (g)](n−1)d(g))

B(g;m,n)
(2.15)

2.2 Some Special Cases of the BMWR Distribution
2.2.1 Some new distributions emanate from the BMWR distribution depending on

the values of the parameter. These include:

(a) If m=1 in (3) we get Lehmann Type II Modified Weighted Rayleigh (LMWR) distribution
(New)

f(LMWR|α,β,γ,1,n)(g) = n[e(−α(βγ
2+1)g2)](n−1)2α(βγ2 + 1)ge(−α(βγ

2+1)g2) (2.16)
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(b) Also, by letting n=1 in (3) we obtain Exponentiated Modified Weighted Rayleigh (EMWR)
distribution (New)

f(EMWR|(α,β,γ,m,1)(g) = m[e(−α(βγ
2+1))g2](m−1)2α(βγ2 + 1)ge(−α(βγ

2+1))g2 (2.17)

Table 1: Summary of Some New Distributions Emanating from BMWR Distribution

Distribution/Parameter m n α β γ
LMWR 1 – – – –
EMWR – 1 – – –

3 Moments and Generating Function

3.1 Generating Function
The moment generating function (MGF) of the BMWR distribution is obtained following the idea
of [19] and used in [6].

The MGF M(g) = E(etg)is given as

M(g) =
1

B(m,n)

∞∑
i=0

(−1)i
(
n− 1

i

)∫ ∞
−∞

etgfMWR(g)[FMWR(g)](m(i+1)−1)dg. (3.1)

Putting the pdf fMWR(g) and cdf FMWR, (g) as defined in equations (1) and (2) above, into
MGF M(g) in equation (18) gives

MBMWR(t) =
1

B(m,n)

∞∑
i=0

(−1)i
(
n− 1

i

)∫ ∞
−∞

etg[e(−α(βγ
2+1)g2)](m(i+1)−1)2α(βγ2 + 1)ge(−α(βγ

2+1)g2)]dg

(3.2)

3.2 Moments
Following [2]; the rth non-central moment of the class of Modified Weighted Rayleigh distribution
MWR(α, β, γ) is given as:

µ
′

MWRr = E(Gr) = 2(βγ2 + 1)α
−
r

2 Γ(
r

2
+ 1)(βγ2 + 1)

−
r

2
−1

(3.3)

The rth non-central moment of the Beta Modified Weighted Rayleigh distribution would be
given as

µ
′

(BMWR(r)) =

∫ ∞
0

grfBMWR(g)dg

that is
µ

′

BMWR(r) =

∫ ∞
0

gr(
1

B(m,n)
[T (g)](m−1)[1− T (g)](n−1)dT (g))
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where

T (g) = e−α(βγ
2+1)g2 , k(g) = e−αg

2

, θ = (βγ2 + 1)

Then,

µ′BMWW (r) = [
(2(θ)α

−
r

2 Γ(
r

2
+ 1)(θ)

(−
r

2
−1)

)

B(m,n)
]

∞∑
i=0

(−1)i
(
n− 1

i

)
×
∫ ∞
0

[k(g)(θ)](m(i+1)−1)dg

µ′BMWW (r) = Q{2(θ)α
(−
r

2
)
Γ(
r

2
+ 1)(θ)

−
r

2
+1
} (3.4)

where

Q =

∞∑
i=0

(
n− 1

i

)∫∞
0

[k(g)(θ)](m(i+1)−1)dg

B(m,n)

see [27] and [6].
We obtained the first four non-central moments µ

′

r,by letting r=1,2,3 and 4 respectively in
equation (21); i.e.µ

′

1is given as

µ
′

1 = EBMWR(g) = [
(2(θ)α

−(
1

2
)
Γ(

3

2
)(θ)

−(
3

2
)
)

B(m,n)
][

∞∑
i=0

(−1)i
(
n− 1

i

)
].

Also, central moments µr, r = 1, 2, 3, 4, . . . are related to non-central moments µ′r as

µr =

r∑
w=0

(
r

w

)
µ′r−wµ

′w
w (3.5)

where µ′1 = µ and µ′0 = 1.
Conversely, the mean and variance, 3rd and 4th moments of the BMWR distribution are given

by

µ = µ
′

1

µ2 = µ
′

2 − µ2

µ3 = µ
′

3 − 3µµ
′

2 + 2µ3

and

µ4 = µ
′

4 − 4µµ
′

3 + 6µ2µ
′

2 − 3µ4
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where,

µ
′

1 = Q[2(θ)α
−(

1

2
)
Γ(

3

3
)(θ)

−(
3

2
)
] (3.6)

µ
′

2 = Q[2(θ)α
−(

2

2
)
Γ(

(2 + 2)

2
)(θ)

−(
(2 + 2)

2
)
] = 2Q[2(θ)α−1(θ)−2] (3.7)

µ
′

3 = Q[2(θ)α
−(

3

2
)
Γ

(3 + 2)

2
(θ)
−(

(3 + 2)

2
)
] = 6Q[2(θ)α

−(
3

2
)
Γ(

5

2
)(θ)

−(
5

2
)
] (3.8)

µ
′

4 = Q[2(θ)α
−(

4

2
)
Γ

(4 + 2)

2
)(θ)

−(
(4 + 2)

2
)
] = 24Q[2(θ)α−22(θ)−3]. (3.9)

Moments measures of Skewness, ϑ1 and of excess kurtosis, ϑ2, are respectively given as

ϑ1 =
µ3

2&
√
µ3
2

(3.10)

ϑ2 =
µ4

µ2
2

− 3. (3.11)

We compute the the third and fourth noncentral moments of the BMWR distribution using
equations (27 and 28) above. The first-four ordinary moments, variance, skewness and kurtosis are
listed in Table 2 for selected parameter values of the BMWR distribution (m,n, β, γ, α); (β, γ, α)
fixed at (0.3, 5, 0.3).

Table 2: Moments of the BMWR distribution for some parameter values; β = 0.3, γ = 5 and α = 0.3

µ′r m = n = 0.5 m = 1.5, n = 0.5 m = 1, n = 0.5
µ′1 0.35331 0.70662 0.55498
µ′2 0.24965 0.49931 0.39216
µ′3 0.24965 0.41566 0.32646
µ′4 0.58742 1.17485 0.92272
Variance 0.12482 0.00000 0.08416
Skewness 0.71259 0.00000 0.63108
Kurtosis 3.96253 -1.87e-05 1.14935

4 Parameter Estimation
In this section, we employ the method used in ([6] and [10]) to derive the maximum likelihood
estimation (MLEs) of the parameter of the BMWR(α, β, γ,m, n) distribution and from [6]; setting
τ = (m,n, ρ, ω),

where ω = (β, γ, θ) and is a vector of parameters. We had the likelihood

LBMWR(τ) = vlogρ− nlog[B(m,n)] +

v∑
(i=1)

log[f(g; τ)] + (m− 1)

v∑
(i=1)

log[F (g; τ)]
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(n− 1)

v∑
(i=1)

log[1− F (g; τ)] (4.1)

LBMWR(τ) = Const− vlog[B(m,n)] +

v∑
(i=1)

log[f(g; τ)]

+(m− 1)

v∑
(i=1)

log[F (g; τ)](n− 1)

v∑
(i=1)

log[1− F (g; τ)] (4.2)

Taking partial derivative of (30) with respect to (m,n, α, β, γ), we obtain

δLBMWR(τ)

δm
= −vlog(m,n) + (m− 1)

v∑
(g=1)

log[F (g; τ ] (4.3)

δLBMWR(τ)

δn
= −vlog(m,n) + (n− 1)

v∑
(g=1)

log[1− F (g;ω] (4.4)

δLBMWR(τ)

δα
=

v∑
(g=1)

log[

δ

δα
[f(g; τ)]

[f(g; τ)]
] + (m− 1)

v∑
(g=1)

log[

δ

δα
[F (g; τ)]

[F (g; τ)]
]

+(n− 1)

v∑
(g=1)

log[

δ

δα
[1− F (g; τ)]

[1− F (g; τ)]
] (4.5)

δLBMWR(τ)

δβ
=

v∑
(g=1)

log[

δ

δβ
[f(g; τ)]

[f(g; τ)]
] + (m− 1)

v∑
(g=1)

log[

δ

δβ
[F (g; τ)]

[F (g; τ)]
]

+(n− 1)

v∑
(g=1)

log[

δ

δβ
[1− F (g; τ)]

[1− F (g; τ)]
] (4.6)

δLBMWR(τ)

δγ
=

v∑
(g=1)

log[

δ

δγ
[f(g; τ)]

[f(g; τ)]
] + (m− 1)

v∑
(g=1)

log[

δ

δγ
[F (g; τ)]

[F (g; τ)]
]

+(n− 1)

v∑
(g=1)

log[

δ

δγ
[1− F (g; τ)]

[1− F (g; τ)]
] (4.7)

Equations (29) to (33) can be solved using iteration method (Newton Raphson i.e an iterative
algorithm for solving equations or an approach for finding the roots of nonlinear equations and is
one of the most common root-finding algorithms due to its simplicity and speed. We therefore wrote
R codes for the likelihood function and assigned initial value to each parameter in the distribution)
to obtain m̂, n̂, α̂, β̂, γ̂ the MLE of (m,n, α, β, γ) respectively. This is done due to complexity,
rigorous and tedious mathematics involved. The result of equation (29 - 33) are in Table 4 below.
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5 Application to Real-life Data

5.1 Guinea Pig Data (Virulent Tubercle Disease)
We fit BMWR and MWR distribution and compare the results. The data consists of 72 guinea pigs
data and is given below:
10, 33, 44, 56, 72, 74, 77, 92, 93, 96, 100, 100, 102, 105, 107, 107, 108, 108, 109, 112, 113, 115,116,
120, 121, 122, 124, 130, 134, 136, 139, 144, 146, 153, 159, 160, 163, 163, 168, 171, 172, 176, 183,
195, 196, 197, 202, 213, 215, 216, 222, 230, 231, 240, 251, 253, 254, 255, 278, 293, 327,342, 347, 361,
402, 432, 458, 555.

The Exploratory Data Analysis (EDA) is presented as follows:

Table 3: Summary: Descriptive Statistics

Min 1st Qut Median Mean 3rd Qut Max Skewness Kurtosis
10.0 108.0 156.0 179.4 224.0 555.0 1.325493 4.896094.

Now, according to [16] and [14] in a symmetric distribution, as in the case of normal distribution,
the coefficient of skewness of a normal distribution is 0, while the kurtosis value quantifies the weight
of tails in comparison to the normal distribution for which the kurtosis equals 3 (i.e. in a normal
distribution, the coefficient of kurtosis is 3). From table 3 above, the skewness is non-zero and
kurtosis is greater than 3. This implies that the data is non-normal data (skewed data); and it
requires flexible distribution.
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Figure 3: Contains guinea pig data line plot, normal QQ plot, box-plot, Empirical density and
cumulative distribution.

5.2 Discussion and Results

Table 4: MLEs of the parameters from the baseline and proposed distributions (see equations 1, 2
and 5) fitted to the virulent tubercle disease data set, the corresponding SEs (given in parenthe-
ses)and p-value also [given in brace].

Distr/Para m n α β γ AIC BIC CAIC
BMWR 6.550 3.317 0.020 0.566 1.666

(0.188) (0.036) (0.001) (0.010) (0.032) 26084.96 26096.24 26097.24
MWR – – 3.012 -0.032 2.912

– – (0.036) (0.004) (0.201) 1658057 16558064 1658065

Table 3 contains the descriptive statistics of the data including the skewness and kurtosis. Unfortu-
nately, the skewness and excess kurtosis are not normal as stated above. This is one of the reasons
the data required skewed and flexible distribution to accommodate both skewness and excess kur-
tosis. We estimated the moments of the BMWR given some values to the parameters (m and n)
in Table 2; and can be seen that the variance, skewness and kurtosis are reduced. Therefore, it
implies that the proposed distribution has capability of accommodating the data.

Furthermore, Table 4 above shows the maximum likelihood estimates, standard error (in paren-
thesis), AIC, BIC and CAIC of both the BMWR andMWR. The log-likelihood of BMWR l̂BMWR =

−13037.43 and log-likelihood of MWR l̂MWR = −829025.70. The likelihood ratio statistic for test-
ing the hypothesis H0 : m = n = 1 versus H1 : H0 is not true i.e., to compare the MWR and
BMWR model is w = 2(−l̂BMWR − (−l̂MWR)) = 815988.30.Then, (p − value(< 2e − 16???) all
through while, the p-value of the baseline distribution are (< 2e− 16???) and (< 6.89e− 14???);

164



International Journal of Mathematical Analysis and
Optimization: Theory and Applications

Vol. 2017 , pp. 165 - 167

therefore, this gives favorable indications towards the BMWR model and MWR distribution should
be rejected. Moreover, the BMWR distribution performed more than MWR distribution in fitting
the data.

6 Conclusion
The Beta-modified Weighted Rayleigh distribution, having Lehmann Type II modified weighted
Rayleigh and exponentiated modified weighted Rayleigh as special cases, is very useful for mod-
eling survival data. Hence, we are able to introduce Beta-modified weighted Rayleigh (BMWR)
distribution due to the wide usage of Rayleigh distribution and as a special case of Weibull distribu-
tion. In the study, we properly obtained various properties of the BMWR distributions, including
reliability function, hazard rate function, reversed hazard function, moment generating function and
the rth moment of the proposed distribution. We also estimated the parameters of the distribution
using the method of maximum likelihood Estimation (MLEs). The variance, skewness and kurtosis
were also estimated by giving different initial values to additional shape parameters (m and n) and
fixed the existing shape parameters at some values (Table 2). Fortunately, the proposed distri-
bution produced better fit than the baseline distribution and it can also provide a rather flexible
mechanism for fitting a wide spectrum of real data sets. Finally, application of proposed model
and baseline distribution is carried out using guinea pig data set. The superiority of the BMWR is
reveals in Table 4 through information criteria results: the AIC, BIC and CAIC with lowest values.
Therefore, the BMWR has better representation of the data than the MWR distribution.
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