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Abstract

A Maximal Order Block Trigonometrically Fitted Method (MBTFM) whose
coefficients are functions of frequency and step size specially designed for the
solution of second order Initial Value Problems (IVPs) with oscillatory solution is
proposed in this paper. The MBTFM is obtained from one discrete formulae with
two complementary formula which are provided by Continuous Trigonometrically
Fitted Block Method (CTFBM). The convergence of the MBTFM is discussed and
the performance of the method is demonstrated on some numerical examples to
show accuracy and efficiency of the method.
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1 Introduction

Consider the second order initial value problem given by

Y = fyy)y(o) =,y () =y, x<x<xy (1.1)
with oscillating solutions where f:R X R™ — R™ are smooth and satisfy Lipschitz
condition. Oscillatory initial value problems frequently arise in areas such as chemical
kinetics, classical mechanics orbital dynamics, process vessels, control theory, biological
sciences and theoretical physics (Ngwane and Jator [1], Ramos et al. [2], Martin-Vaquero
and Vigo-Aguiar [3]). The numerical integration of (1.1) has received much attention
during the past few decades and is still receiving attention because of its importance in
applied science and engineering both in theory and practice.
Quite a number of work has been done in literature to numerically approximate the
solution to (1.1). Such methods include polynomial interpolations (Lambert [4],
Akinfenwa et al, [5], Ngwane and Jator [6]), Mixed interpolation methods (Duxbury [7],
Coleman and Duxbury [8]) exponential fitting methods (Ixaru et al, [9], Vanden Berghe
et al, [10], Simos [11-12], Martin-Vaquero and Vigo-Aguiar [3], You and Chen [13],
Franco and Gomez [14], Franco [15-16], Konguetsof and Simos [17], Franco [18], Vanden
Berghe et al, [19-20]), Piecewise Linearized methods (Ramos [21]), trigonometrically
fitted methods based on Multistep collocation techniques (Ngwane and Jator [22-25],
Jator et al, [26]).
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This paper presents a three-step second derivative block trigonometrically fitted method
of order 2k + 2 based on Multistep collocation technique which integrates the IVP (1.1)
where the solutions span {1,x,x% x% x* x°, x° sin(wx), cos(wx)}. This basis function is
inspired by its simplicity to analyse (Ngwane and Jator [22]) and to provide better
approximation for initial value problems with oscillatory solutions (Coleman and
Duxbury [8]); other possible basis functions are listed in Nguyen et al., [27]. The rest of
this paper is organized as follows. In section 2 we construct the Maximal Order Block
Trigonometrically Fitted Method (MBTFM). The analyses of the method which include its
stability are discussed in section 3. Numerical experiments are presented in section 4.
Finally, section 5 concludes the paper

2 Derivation of the MBTFM

Our objective in this section is to construct a Continuous Trigonometrically Fitted Block
Method (CTFBM) which produces one main method and two discrete complementary
methods as by product. The main method has the form

3 3
Vs = Vnsr = h Y i@y + B ) 7@ @1
=0 =0

and the two complementary methods are given by
3

3
Y =0 ) B, 1Y TG, @)
j=0
3

j=0
3

Vs~ Yar = ) BpGf + 1) 76, 23)

j=0 j=0

where y . = y(x, + kh), fn+]. = y'(xn + jh), Gnyj = y”(xn +jh), u=wh, w is the
frequency, x, is a node point and ,Bj,m, m, ¥j,¥;1 and¥,,, j=0,1,2,3 are coefficients to
be uniquely obtained from multistep collocation techniques and dependent on the step
size and frequency.

To obtain equations (2.1)-(2.3), we seek initially a continuous local approximation given
by equation (2.4) below on the interval [x,, x,3] as follows

3 3
PG00 = Yua +h Y B0 fass + 1) 7,06 Wns 24)
j=0 Jj=0

which represents the CTFBM.

It is assumed that F(xn+j,u) = Yn+jr orexw))

ox

— d 62(I‘(x,u)) —
= fn+jan ez = gn+j are
+j X=Xn+j

x=xp
the numerical approximations to the exact values y(xn+j),y’(xn+j) and y”(xn+j)
respectively

Theorem 1
Let ¢, = {1, x,x2 3, x* x°, x°, sin(wx) , cos(wx)} be basis functions,

§(x) = (§o (), &%)+, &s(x) )" and Q= (Yni1, foo ') fae3 Gno " Gnes)’ be vectors, where
denotes transpose. Define the matrix IT as
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E) EGo) EGo) EG) Ed) EGo) Elo) E) G |
) L) S ) L) k) Ek) E) S
Ed) o) EGo) EGo) EGi) EGi) Ed) Sl En)
Eid) E0o) EGd) (i) Eid) Elod) Eli) Eld) )
= &y E0id) 000 £00) E0id) EGd) EGid) Sl Eim)
E) Elo) EG) EGo) Ed EGo) EGimd) Eliw) o)
Eid) E0od) EGd) (i) Ed) Elod) Eli) Eld) )
S0 S0 S0 S i) ) E(id) Elaa) El)

and II; is obtained by replacing the ith column of IT by Q. Suppose the following conditions
are satisfied

M(Xp4jott) = Ynaj » j=1 (2.5)
a(I'(x,u) .
( o ) = forj,  J=0()3 (2.6)
X=Xn+j
02(T'(x,u) .
% =0gnsj,  J=0(1)3 (2.7)
X=Xn+j
Then the continuous representation (2.4) is equivalent to
RO oL L 28)
L= . det(IT) Silx '
=
Proof
It is required that equation (2.4) be defined by the assumed basis function as follows
8
G = ) ayw§e) =1 29)
i=0
8
BB w) = ) R EC) = 0,123 2.10)
hy;Cew) = Z Wy (ow &) j=0123 (2.11)

i=0

Substituting equations (2.9)-(2.11) into equation (2.4) yield

1 8 3 8 8
Ir'(x,u) = zz a; (6 u) & () Ynaj + Zz hp; j (e, ) §(X) frsj + Z Ry (x, 1) & (X) gns )

j=0i=0 j=0i=0

8 1 2
r(xu) = Z {Z (6, U) Vs + h;ﬁi,,-(x. W) frej + h2Yi2(6 1) G }sﬂ- ) (212)

Letting
1

2
4; = Z a; ;W Ynej +h ) B furj + h2Yi2(6, WGna )
= =0
equation (2.12) becomes
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o) = ZAL- £.(x) (2.13)

=0
Imposing the conditions in equations (2.5)-(2.7) on equation (2.13), we obtain a system of
9 equations which is expressed as [14 = V where 4 = (4,44, -, )T is a vector form of 9
undetermined coefficients that are determined by applying Crammer’s rule to obtain
det(I1;) .
o 0(1)(8) (2.14)

I1; is obtained by replacing the ith column of I1 by Q.
Substitute equation (2.14) into equation (2.13) to obtain
% det(1T,)
L det(IT)
=0

I'(x,u) =

§i(x) L] (2.15)

2.1 Specification of MBTFM

It worth noting that the continuous method in equation (2.15) which is equivalent to
equation (2.4) is used to generate one main method and two discrete complementary
methods. Both the main method and the discrete complementary methods are then
applied in their power series form as MBTFM for solving equation (1.1).

Evaluating equation (2.15) at x = x,,,5 gives the discrete method Vrs = I'(x, + 3h) which
takes the form of the main method. Evaluating equation (2.15) at x = x,, and x = x,,,,
respectively, give the complementary methods y, = I'(x,) and Voso = I'(x, + 2h).

The MBTFM whose coefficients are in trigonometric form is presented in equations
(2.16)-(2.18). According to Lambert [4], to avoid heavy cancellation that may occur as
u - 0, series form of the coefficients is used. Thus, the corresponding converted series
form of the trigonometric coefficients are given by equations (2.19)-(2.21) respectively.

Voez ~ Vop1 = h(ﬁo(sin u,cos u)fn + B, (sinu, cos u)fn+1 + B, (sinu, cos u)fn+2

+ B, (sinu, cos u)fn+3)

+ h? (yo (sin u, cos u)gn +v, (sin u,cos u)gn+1 +v, (sin u, cos u)gn+2

+ y3(sinu,cos u)gn+3). (2.16)
Yy~ Vo1 = h(m(sin u, cos u)fn + E(sin u, cos u)fn+1 + @(sin u, cos u)fn+2

+ ﬁ3,1 (sinu, cos u)fn+3)

+ h? (m(sin u, cos u)gn + m(sin u, cos u)gn+1 + E(sin u, cos u)gn+2

+E(sinu,cos u)gn+3). (2.17)
Voio = Vop1 = h(m(sin u, cos u)fn + m(sin u, cos u)fn+1 + @(sin u, cos u)fn+2

+ ,83’2 (sinu, cos u)fn+3)

+ n? (ﬁ’z(sin u, cos u)gn + E(sin u, cos u)gn+1 + ﬁ’z(sin u, cos u)gn+2
+ E(Sinu,cos u)gn+3). (2.18)
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_ 20, 257 . 5039 . 6090451 . 82999919 -
Bo= 567" 357210 t 198037224 % T 8109624322800 “ T 2087250658691200
132, 107, 4211 9925753 .
Pr= 316615 ~1833678"%  75089114100“ ~ 416294048570400 “
20, 1 85 178721 31335527
2731 2646 T 7334712" T 300356456400  1665176194281600
223, 398 . 2203 . 1957451 = 22841851 -
Bs = 567 T 178605 “ * 79500306 T 2027406080700 % T 1021812664672800 219)
8 17 299 347143 51187033 :
Yo=o—o+ u? ut + u® + u8
945 " 59535 " 33006204 " ' 1351604053800 © " 7493292874267200
_19 1 ., & . 178721 31335527 .\
Y17 705 " 2646 T 7334712 T 300356456400~ " 1665176194281600
16 22, 107, 4211 9925753 .\
Y2 = 105 " 6615 1833678 © 75089114100~  416294048570400
43 83 941 852409 110741551
Y3=———— uZ_ u4_ u6_ uB
945 119070 " ~ 66012408 ~ 2703208107600~  14986585748534400
6893 4260 102479 631398127 ) 149734579
Por =~ 18142 ~ 72861240 ~ 31685055840 ~ 1038031913318400% ~ 11890183734374400
313 629 683 y, 9142333 o, 482609377 .
Bri= =672 "Ba6720“ T 1173553920 T 38445626419200" ' 53285638217011200 "
o 89 2507 , 4927 29382077 . 750368897
Par = =675+ 846720 " 106686720 ' 38445626419200" T 53285638217011200 “
. 397 1621 420599 408760943 1379320849
B3 =— - u? — ut — ub — ud 4+ -
: 18144 4572288 " ~ 31685955840~  1038031913318400 "~  130792021078118400 (2.20)
1283 877 107711, 6173317 ) 152565167 - :
Y01 = 730240 T 1524096 © ~ 10561985280 ©  31455512524800~  36890057227161600
851 2507 4927 29382077 750368897
Vg = _ uz — ut— ub — u8
173360 846720 106686720  38445626419200 53285638217011200
269 629 683 9142333 482609377
V21 = — u? — u* + u® + u
173360 846720 1173553920 © ' 38445626419200 © ' 53285638217011200
___ 163 1249 . 52831 . = 47666743 o, 1715587651 -
Y31 = 30240 T 7620480 T 10561985280~ ' 346010637772800 " ' 479570743953100800
- _ 3, 108 o o ., 3391 L 583757 oy
Boz =272+ 282240 T 23464960 " T 94927472640 T 59804307763200 *
__ 109 103 529 33911 583757
B2 =557~ u? — ut — ué — ud +
27224 282240 T 43464960 © 94927472640 "  59804307763200
__ 109 103 529 33911 583757
= — u? — u* — ub — ud +
27324 282240 T 2346960 94927472640 *  59804307763200
__ 109 103 529 33911 583757
Psr == — u? — u* + ub — ud + -
27324282240 T 23464960 © ' 94927472640  59804307763200 @2.21)
31 108 59 - 33911 ., 583757 - :
Y02 = 70080 T 846720 “ T 130394880 T 284782417920 ' 179412933289600
3 103 0 59 . 3391 o, 583757 -
Y12 = 7920 T 282240 T 43464960 © ' 94927472640 © ' 59804307763200 -
113 103, 529 3391 ) 583757 .
Y22 =— — u“ — u* — u’ — u® +
: 1120 282240 ~ 43464960 © ~ 94927472640 " _ 59804307763200
31 103, 529 3391 ) 583757 -

Y32 = 770080 ~ 846720 ~ 130394880 " 284782417920  179412923289600

In order to avoid the heavy cancellations which might occur when h is small, the use of
the power series expansion of the parameters is preferable (Lambert [4]). It is interesting
to note that as either u - 0 method based on polynomial basis is recovered.
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3  Analysis of MBTFM
3.1 Local Truncation Error of MBTFM

Theorem 2

The MBTFM has a Local Truncation Error (LTE) of Coh®(w?y(x,) +y©(x,)) +
0(h(?).

Proof:

The proof of the theorem is in the spirit of Ngwane and Jator [22].

Consider the Taylor series expansion of y, o y(x, + jh), y;L e y'(xn + jh), y;; + and
y'(xp+jh),j =0(1)3 . Also, assume that Y(xn+j) = Yn+j» y,(xn+j) = fn+j! y”(xn+j) =
9n+j- Then by substituting these into method in equation (2.16) and simplifying, we have

that

LTE = y(Xp42) — Yn+2
= Coh®(0?y P (x,) + ¥y (x)) + 0(R1Y)  m (3.1)

Consequently, the Local Truncation Error (LTE) of equations (2.16)-(2.18) are
respectively obtained as
S (500 + WPy D)) + 0(10)
25401600\ ) T @Y
103h°

LTE =| ——/—~ (,©® 24,(7) 10 3.2
25201600 () + @2y D)) + 0 () (3.2)

13h°
" (v® 2.,,(7) 10
~53500 77 Co) + 0y () + 0(h)

According to Butcher [28], a linear k —step method of order p is said to be of maximal
order if p = 2k + 2. Since the block method given by equation (2.16)-(2.18) are of order
p = (8,8,8)T with error constants

T

—313 103 13 . .

Cq = ( , , ) , we therefore remark that MBTFM is a maximal order
25401600 ~ 25401600 25401600

method.

Also, following the definition of Lambert [4] and Fatunla [29], a numerical method is
consistent if its order is greater than one. We therefore remark that MBTFM is
consistent.

3.2 Convergence of MBTFM

The convergence of the MBTFM is discussed in the following theorem.

Theorem 2
Let Y be an approximation of the solution vector Y for the system obtained from the

derived methods (2.16)-(2.18). If e, = |y(xn) - yn|, where the exact solution is several
times differentiable on [a, b] and if ||E|| = ||Y — Y||, then for sufficiently small h, MBTFM
is an 8t order convergent method. In other words, ||E|| = 0(h®).

Proof
Let the matrices obtained from the MBTFM be defined as follows:
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@, @, 0 00 0 00 a, 1 0 0
An_a,z @ O . A,=/0 0 0], A4,=00 @ , Ay =10 1.0
o a, 1 0 00 0 0 o 0 01

B B B o % Y 00 A, 00 7,
B,=h 131,2 ﬁz,z 183,2 .B,= 2 Yo K3 ,B,,=h|0 0 ﬁo,z ,B,,=h{0 0 Vin
B B B ¥ % oK 00 4 00 7

A:|:All A12:| andB:|:Bll B12:|
A21 A22 BZl BZZ
where A and B are respectively 2N X 2N matrices, P;; and Q; are NxN matrices, A;, 18

null matrices while A,, is an Identity matrix.
We further define the following vectors:
Y =00, yCe), -, yCnD" F = (fy, for s fuo b hgn) T L) = Uy, L, o )T
where L(h) is the Local truncation error.
The exact form of the system formed by equations (2.16)-(2.18) is given by

AY —BF(Y)+C+L(h) =0 (3.3)
and the approximate form of the system is given by
AY —BF(T)+C=0 (3.4)
Subtracting (3.3) from (3.4), we have
A —Y)—B (F(Y_) - F(Y)) = L(h) (3.5)
Letting E =Y —Y = (e, €, .., ey)", in equation (3.5), we can write
F(Y)=F(¥)+JE +o(IY —YI) (3.6)

Using mean value theorem, equa_tion (3.6) can bf approximated thus
F(Y) —=F) F(Y)—=F()
= = ]

Y-v E
(A= B))E = L(h) (3.7

Where the Jacobian matrix and its entries T Jip Ty 15, are defined as follows

[2 Oh] [2h Oh] [091 991] [091 99:]

0y, Oyn 9y, Yy 0y, Yy ay, Oyn
]11 = : . : ,]12 = : . : ,]21 =h : 3 : ,]22 =h : 3 :

Ofw .. 9w Ofw . On 99 . 99w 99 . 99n

0y, Oyn 9y, Yy 0y, Yy ay, Oyn

Let M = —BJ be a 2N x 2N matrix, we have (A + M)E = L(h), and for sufficiently small h,
A+ M is a monotone and lower triangular matrix and thus invertible (Jain and Aziz [30]).
Therefore,

(A+M)'=D=(dy;)=0and 32 d;; = 0(h™2) = E = D L(h). If ||E|| = max;e,]; then
|lE|l = ||D L(W]|| = 0(h2) 0(h'®) = 0(h®). This shows that MBTFM is convergent and the

global error is of order O(h®) m

3.3 Stability of MBTFM

Following Akinfenwa et al, [5], MBTFM can be represented by a block matrix finite
difference equation given by

Ay, = A9y, + hBDF,  + hBOF, + k?*DWDG,, + k*DOG,
(3.8)

T T T
where Y, ; = (yn+1'yn+2'yn+3) Y = On-2 Yn-v )5 Fysa = (fn+1'fn+2’fn+3) ’
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T T T

_ — — (0) ,a
F, = (fn—Z’fn—l'fn) ) Gyp1 = (gn+1’ gn+2'gn+3) Gy = (gn—Z'gn—l’gn) and A ’A( )'
B® BM DO p® are 3 x 3 matrices specified as follows

100 001 A B. B 00 4 ok
A"=-1 1 0|,4%=(0 0 0,B"=|B, B, B..B°=500 A |07 % %l
101 000 A B A 00 4 X % %
00 %,
D=0 0 ¥,
00 %

3.3.1 Zero Stability

According to Lambert [4] and Fatunla [29], MBTFM is zero stable if the roots of the first
characteristic polynomial have modulus less than or equal to one and those of modulus
one are simple. i.e.

p(R) = det[RA® — A®] =0 and |R;| < 1. Hence MBTFM is zero stable since from our
calculation |R| = 0,0 or 1.

3.3.2 Linear Stability and Region of Absolute Stability
of MBTFM

Applying the block method to the test equations y' = Ay and y" = A%y and letting z = Ah
A© 4 75(0)1,2p(0) .
The matrix é(z) for MBTFM has

AWz _zzpD *
15 (z11)

T3 (z,u
function. According to Ndukum et al, [31], having suitable values of u in a large interval
means that the method can cope well for problems with estimated frequencies. It is
observed that for MBTFM, the values of ue[r, 2m) are satisfactory. The Region of Absolute
Stability (RAS) of MBTFM is plotted for u = 7 using the boundary locus method and is
presented in figure 1

3.4 Definition

yields Y., = a(2)Y,,, where o(z) =

eigenvalues given by(8,,8,,8;) = (0,0,8;), where 8;(z,u) = is called the stability

A Numerical scheme is said to be A(a) stable, with a € (0,%) if its region of absolute

stability contain the wedge {z: — @ < (7 — argz) < a} and it is said to be 4, stable if it is
A(a) stable for some sufficiently small a € (O, g) From figure 1 above, we conclude

therefore that MBTFM is 4, stable.

4  Implementation of Derived methods

In this section, the MBTFM is implemented in a block by block fashion without requiring
starting values or/and predictors. The implementation was done with the aid of written
codes in Maple 2016.2 software enhanced by the feature of fso/ve for both linear and
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1
< UNSTABLE REGION
0 T T T T T T T

< 1 2 3 4 5 6 7 s °
-1

Figure 1: Region of Absolute Stability of MBTFM

nonlinear problems and executed on Windows 10 operating system. It is worth nothing
that Maple 2016.2 can symbolically compute derivatives, hence the automatic generation
of the entries of the Jacobian Matrices which involves the partial derivatives of both
f and g. In particular, the MBTFM is applied to the considered oscillatory problems on
the range of interest as follows:

1. Choose N, h = bN;a and the number of blocks A = % For n = 0and w = 0 the values

T
of (yl,yz,y3) are simultaneously obtained over the subinterval [xo, x3] as y, 1s
known from the IVP under consideration.

T
2. Forn =3andw =1, the values of (y4, Ve y6) are simultaneously obtained over

the subinterval [x3, x| as ¥, is known from the previous block.

3. The process is continued for n=6,--,N—3 and w=2,---,A to obtain the
numerical solution to the given IvP on the subinterval

[XO: x3], [x3, xe]r [xN—3' XN]-

4.1 Numerical Examples

In this section, the performance, efficiency and accuracy of the MBTFM on variety of
well-known oscillatory IVPs is discussed. For each problem, the computational frequency
is estimated by equating the local truncation error of the main methods to zero then solve
for w as described in Ramos and Vigo-Aguiar [32]. The absolute errors or maximum error
of the approximate solutions are computed and compared with results from existing
methods in the literature. We noted that the method developed in this paper can be
implemented for all values of N. However, for purpose of comparison the N values used in
the existing literature were used therein. For emphasis, except where specified, h the
step length is defined as h = %.

Example 1 Highly Oscillatory Problem

As our first test, we consider a highly oscillatory problem given by y = —100y +

99sinx,y(0) =1,y (0) =11, x € [0, 2] whose solution in closed form is given asy =
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cos 10x + sin 10x + sinx. According to Sallam and Anwar [33], the solution consists of
rapid and slow function; the slowly varying function is due to the inhomogeneous term.
This problem was solved by the 12th order Obrechkoff methods of Simos [34], Van Daele
and Vanden Berghe [35] and Archar [36] in the interval [0, 107]. The numerical results of
MBTFM at x = 10w and CPU time show that it is more accurate and efficient compared
to the aforementioned methods as contained in Table 1 and Figure 2.

h MBTFM Archar Daele Simos
Error CPU Error CPU Error CPU Error CPU
R 1.95 0.578 5.79 0.187 1.20 0.250 3.05 0.172
50 x 10714 x 10713 x 10711 x 10711
T 2.71 1.211 5.79 0.452 7.35 0.530 2.28 0.515
100 x 10717 x 10713 x 10713 x 10713
o 1.08 2.516 1.32 0.749 8.62 0.827 440 0.858
200 x 10719 x 10712 x 10713 x 10713
L 2.38 3.891 1.96 0.952 2.63 1.154 2.11 1.139
300 x 10727 x 10712 x 10712 x 10712
L 1.07 5.331 4.78 1.232 2.93 1.404 1.38 1.388
400 x 10722 x 10712 x 10712 x 10712
L 2.88 6.594 7.50 1.466 2.89 1.778 6.47 1.700
500 x 10723 x 10712 x 10712 x 10712

Table 1: Comparison of End Point Absolute Errors at x = 107

Efficiency Curve for Problem 1

-301

—40-
log(Max Emr)
-50+
- 604
1 2 3 4 5 6
CPU Time
o MTFBM © ARCHAR = DAELE
©  SIMOS

Figure 2: Efficiency curve for Problem 1

Example 2: Nonlinear Duffing Equation
Consider the nonlinear Duffing equation forced by a harmonic function given by y” +y+

y® = B cos(Qx), whose theoretical solution is unknown. A very accurate approximation of
the theoretical solution of this equation is judged by comparison with a Galerkin
approximation obtained by Van Dooren [37] and given by
y(x) = C; cos(Qx) + C, cos(3Qx) + C5 cos(5Qx) + C, cos(7Qx) and the appropriate initial
conditions are y(0) = C,,y'(0) = 0, where Q = 1.01 ,B = 0.002 ,C, = 0.200426728069, C, =
0.200179477536, C, = 0.246946143 x 1073, C; = 0.304016 x 10™%, €, = 0.374 x 107°.

P-stable Obrechkoff methods of order 12 each were used by Simos [34], Wang et al, [38]
and Van Daele and Van Berghe [35] to solve the Nonlinear Duffing Equation in the
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. 40.5T
interval [O ,
1.01

]. Similarly, Archar [36] and Shokri and Saadat [39] the problem in the

same interval with symmetric Obrechkoff method and trigonometrically fitted method

each of order 12 respectively. The absolute errors of the MBTFM at x=410'051”

comparison with the methods mentioned above are presented in the Table 2 while the
CPU time for each of the methods are listed in Table 3.

’

h Simos Wang Daele & Achar Shokri & MBTFM
et al, Berghe Saadat
M 1315x 107 | 408 x 10~° | 4.06x 105 | 4.09 x 10~ | 6.09 x 10~'2 | 2.07 x 1010
500
m 1.81x107% | 1.27 x 107 1.87 x 107° 1.27 x107% | 7.99 x 10712 | 1.64 x 10712
1000
m 1.08x 107° | 3.93x 1078 | 3.84x107% | 3.94x107% | 552x 107'? | 1.28 x 1072
2000
m 2.09x 1077 | 5.17x107° 5.13 x 107° 518 x107° | 7.27 x 10712 | 1.77 x 10712
3000
m 6.55x 1078 | 1.23x107° | 3.19x107° 1.23x107° | 6.99 x 107'? | 1.66 x 10712
4000
m 2.67x 1078 | 407 x 10719 | 9.89 x 10710 | 4.09 x 107° | 6.65 x 1072 | 1.59 x 1072
5000 -
Table 2: Comparison of the End Point Absolute error for m = 410'71"
h Simos | Wang | Daele & | Achar | Shokri & | MBTFM
et al. | Berghe Saadat
i 1.437 1.406 1.484 1.188 1.453 4.849
500
m 2.892 2.891 2.938 2.312 2.874 6.844
1000
m 6.233 6.236 6.360 4.812 6.267 8.792
2000
m 9.859 9.546 9.719 7.548 9.859 9.958
3000
m 13.548 | 13.063 13.390 9.986 13.424 13.365
4000
m 16922 | 16.499 | 16.969 | 12.860 16.857 16.917
5000

Table 3: Comparison of CPU Time

From Tables 2 and 3, and Figure 3 it is clear that MBTFM is more efficient than the
methods of Simos [34], Wang et al, [38], Van Daele and Van Berghe [35], Archar [36] and
Shokri and Saadat [39].
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Efficiency Curve for Problem 2
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Figure 3: Efficiency curve for Problem 2

Example 3: Test like Equation

Consider the test-like equation with double frequencies given by

y' (x) + w?y(x) = 12 cos(x), y(0) =1, y'(0) = 0 whose solution in closed form is given
by

y(x) _ cos(Sx)2+cos(x)
symmetric multistep method of order 8 and hence a better comparison with MBTFM of
the same order. The maximum absolute errors are compared with MBTFM in the interval
[0,5007] and are presented in Table 4.

This equation was solved by Wang [40] with P —stable linear

Method N
1000 2000 3000 4000
Error | 2.26 x 10™* | 4.90 x 107%% | 1.52 x 107!* | 1.49 x 10712
MBTFM NFE 2002 4002 6002 8002
Error | 9.00 x 1073 | 1.00 x 1075 | 3.00 x 10~7 | 3.00 x 1078
Six-step order 8 | NFE 6001 12001 18001 24001

Table 4: Comparison of Maximum Errors

It is obvious from Table 4 and Figure 4 that although MBTFM and Six-step method of
Wang [40] are of the same order, MBTFM is a more efficient integrator for this problem.
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Efficiency Curve for Problem 3
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Figure 4: Efficiency curve for Problem 3

Example 4: Linear Kramarz Problem (Kramarz, 1980)

Consider the linear non autonomous stiff problem given by
(x) _ [ 2498 4998 ] (x)
Y ~2499 —4999] Y

y(0) = [ﬂ ,y'(0) = (8) 0 <x <100. The analytical solution is given by y(x)=
[2 cos(x), —cos(x)]". Nguyen et al [27] considered an order 6 Trigonometric Implicit
Runge-Kutta (TTRK3) for the numerical integration of the problem. The newly developed
MBTFM is compared with TIRK3 and the end point global errors, Number of Functions
Evaluation and the CPU time are presented in Table 5.

Methods | N| Errors | NF | CPU N | Errors | NFE | CPU N | Errors | NFE | CPU

E Time Time Time

MBTFM 3| 3.5E- 20 0.046 6 1.7E- 38 0.063 25 9.2E- 152 0.297
28 27 28

TIRK3 3| 3.3E- | 327 | 0.29 | 142 | 9.0E- 707 | 0.501 | 170 | 3.7E- 811 | 0.591
12 12 12

Table 5: Comparison of End Point Global Errors
In Table 5, MBTFM is not just accurate method for Linear Kramarz Problem but also

efficient as the cost of implementation is very low compare to TIRK3. This is evident in
Figures 5 and 6 respectively.
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Efficiency Curve for Problem 4

it R RE o RE SO chE R SEERE SIS St
log(Err Max) .
_50-»”.: .....................................
T 1 R v BRSSP R S
100 200 300 400 500 600 700 S00
NFE
| e MTFBM = TIRK3|
Figure 5: Efficiency curve for Problem 4
Efficiency Curve for Problem 4
e FETTs EETt N R
T
log(Err Max)
_50-...:- ..................................
o T e R— b rare e e s aacs
« ; — : :
0.1 02 03 o4 05
CPU

| o MTFBM e TIRK3|

Figure 6: Efficiency curve for Problem 4

Example 5 (Franco, 2006)
We also consider the oscillatory linear system

" 13 —12] _ [9c052x—125in2x] . . .. _
y (x) + [_12 13 y(x) = 12 cos 2% + 9 sin 2x with initial conditions y(0) =

[é] and y'(0) = [_84]’ whose exact solution is y(x) = [sinx — sin5x + cos Zx]‘

sin x + sin 5x + sin 2x
This problem was solved by Franco [41] in the interval [0,100] for h = % i = 2 using order

6 Explicit Two Step Hybrid Method (ETSHMS6). Table 6 displays the maximum absolute
error of MBTFM in comparison with ETSHMS6.
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h MBTFM ETSHM6

Max Err. NFE Max Err. NFE
1 7.15 % 1077 802 1.00 x 1072 3000
4
1 2.69 x 107° 1602 3.16 x 1075 4500
8
1 1.06 x 10~ 11 3202 3.16 x 1077 6000
16
1 414 x 10714 6402 3.16 x 107° 13500
32

Table 6: Comparison of Maximum Errors and Number of Functions Evaluation

As expected, the MBTFM being a higher order method than ETSHMS of Franco [41] is
more efficient as contained in Table 6 and Figure 7.

Efficiency Curve for Problem 35

log(Err Max)
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Figure 7: Efficiency curve for Problem 5

Problem 6: Non Linear Perturbed Systems (Fang et al. 2009)

Consider the nonlinear perturbed system on the range [0,10] with e = 1073,
v, =ep,(x) =25y, —e(* +¥2) y,(0) =1, y,(0) =0

v, = €9,(x) = 25y, —e(y* +¥2)  y,(0) =€, y,(0) =5
where

¥, (x) =1+€+2¢ sin(5x + xz) + 2 cos(xz) + (25 - 4x2) sin(xz)

®, (x)=1+ € + 2 sin(5x + xz) -2 sin(xz) + (25 - 4x2) cos(xz)
The exact solution is given by y, (x) = cos(5x) + esin(x?) , Y, (x) = sin(5x) + € cos(x?)
which according for Fang et al. [42] represents a periodic motion of constant frequency
with small perturbation of variable frequency. As selected by [42] and Ngwane and Jator
[43], we choose w = 5 and the numerical results of the maximum global errors of MBTFM
were compared with Block Hybrid Trigonometrically fitted BHT of Ngwane and Jator
(2015) and Trigonometrically Fitted Adapted Runge-Kutta Nystrom TFARKN 5(3) of
Fang et al. (2009) as presented in Table 7.
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MBTFM BHT TFARKN 5(3)
N | —logio(Err) | N | —logyo(Err) | N(rejected) | —logiq(Err)
50 10.95 50 342 29(6) 2.78
100 14.71 100 4.61 88(9) 5.33
260 17.26 260 7.52 262(8) 7.85
810 22.20 810 10.43 811(4) 10.38

Table 7: Comparison of log of Maximum Errors and Number Steps
From Table 7 and Figure 8 it can be seen that MBTFM outperformed BHT which is
implemented in a corresponding fixed step size mode and TFARKN 5(3) which is
implemented in variable step size mode respectively.

Efficiency Curve for Problem 6
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Figure 8: Efficiency curve for Problem 6

5 Conclusion

We considered a maximal order trigonometrically fitted method for the solution of second
order initial value problems with oscillatory solution in this paper. The algorithm is self-
starting, has good accuracy and required only six functions evaluation at each integration
step except the first integration step that required eight functions evaluation.
Representative numerical examples that are linear and nonlinear and highly oscillatory
were presented. The numerical examples considered showed that MBTFM is an accurate
and efficient integrator as presented in tables 1-7 and Figures 2-8.
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