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AbstractAbstractAbstractAbstract    
A Maximal Order Block Trigonometrically Fitted Method (MBTFM) whose 
coefficients are functions of frequency and step size specially designed for the 
solution of second order Initial Value Problems (IVPs) with oscillatory solution is 
proposed in this paper. The MBTFM is obtained from one discrete formulae with 
two complementary formula which are provided by Continuous Trigonometrically 
Fitted Block Method (CTFBM). The convergence of the MBTFM is discussed and 
the performance of the method is demonstrated on some numerical examples to 
show accuracy and efficiency of the method. 
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1111 IntroductionIntroductionIntroductionIntroduction    
Consider the second order initial value problem given by  �′′ � ���, �, �′�, ���0� � �0, �′��0� � �0′ 						�0 � � � �� 																�1.1� 
with oscillating solutions where �: � � �� ⟶ ��  are smooth and satisfy Lipschitz 
condition. Oscillatory initial value problems frequently arise in areas such as chemical 
kinetics, classical mechanics orbital dynamics, process vessels, control theory, biological 
sciences and theoretical physics (Ngwane and Jator [1], Ramos et al. [2], Martin-Vaquero 
and Vigo-Aguiar [3]). The numerical integration of (1.1) has received much attention 
during the past few decades and is still receiving attention because of its importance in 
applied science and engineering both in theory and practice. 
Quite a number of work has been done in literature to numerically approximate the 
solution to (1.1). Such methods include polynomial interpolations (Lambert [4], 
Akinfenwa et al., [5], Ngwane and Jator [6]), Mixed interpolation methods (Duxbury [7], 
Coleman and Duxbury [8]) exponential fitting methods (Ixaru et al., [9], Vanden Berghe 
et al., [10], Simos [11-12], Martin-Vaquero and Vigo-Aguiar [3], You and Chen [13], 
Franco and Gomez [14], Franco [15-16], Konguetsof and Simos [17], Franco [18], Vanden 
Berghe et al., [19-20]), Piecewise Linearized methods (Ramos [21]), trigonometrically 
fitted methods based on Multistep collocation techniques (Ngwane and Jator [22-25], 
Jator et al., [26]).  
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This paper presents a three-step second derivative block trigonometrically fitted method 
of order 2� � 2 based on Multistep collocation technique which integrates the IVP (1.1) 

where the solutions span �1, �, �2, �3, �4, �5, �6, sin���� , cos����" . This basis function is 
inspired by its simplicity to analyse (Ngwane and Jator [22]) and to provide better 
approximation for initial value problems with oscillatory solutions (Coleman and 
Duxbury [8]); other possible basis functions are listed in Nguyen et al., [27]. The rest of 
this paper is organized as follows. In section 2 we construct the Maximal Order Block 
Trigonometrically Fitted Method (MBTFM). The analyses of the method which include its 
stability are discussed in section 3. Numerical experiments are presented in section 4. 
Finally, section 5 concludes the paper  

    
2222    Derivation of the MBTFMDerivation of the MBTFMDerivation of the MBTFMDerivation of the MBTFM    
Our objective in this section is to construct a Continuous Trigonometrically Fitted Block 
Method (CTFBM) which produces one main method and two discrete complementary 
methods as by product. The main method has the form 

		�#$% & �#$' � ()*+�,��#$+
%

+-. � (/ )0+�,�1#$+
%

+-. 																																																�2.1� 
and the two complementary methods are given by  

�2 & �2�1 � () *3,14444�,��2�3
3

3�0
� (2 ) 03,14444�,�12�3

3
3�0

																											�2.2� 
�2�2 & �2�1 � () *3,24444�,��2�3

3
3�0

� (2 ) 03,24444�,�12�3
3

3�0
																							 �2.3� 

where   �2�� � ���2 � �(�	, �2�3 � �′��2 � 3(�	, 12�3 � �′′��2 � 3(�,  , � �( ,  �  is the 

frequency, �2 is a node point and 	*+ , *5,'4444, *5,/4444, 0+ , 05,'4444	 and	05,/4444, 3 � 0,1, 2, 3 are coefficients to 

be uniquely obtained from multistep collocation techniques and dependent on the step 
size and frequency. 
To obtain equations (2.1)-(2.3), we seek initially a continuous local approximation given 

by equation (2.4) below on the interval 6�2, �2�37 as follows 

Γ��, ,� � �#$' � ()*+��, ,��#$+
%

+-. � (/ )0+��, ,�1#$+
%

+-. 																				�2.4� 
which represents the CTFBM.  

It is assumed that Γ9�#$+ , ,: � �#$+, ;9<�=,>�:;= ?=-=@AB � �#$+ 	C2D		 ;E9<�=,>�:;=E ?=-=@AB � 1#$+  are 

the numerical approximations to the exact values �9�#$+:, �F9�#$+:  and �′′9�2�3: 

respectively 

    
Theorem 1Theorem 1Theorem 1Theorem 1    
Let GH � �1, �, �2, �3, �4, �5, �6, sin���� , cos����" be basis functions,  G��� � �G.���, G'���,⋯ , GJ���			�K	 and Ω � �	�#$', �#,⋯ , �#$%, 1#, ⋯ 1#$%�K  be vectors, where 
denotes transpose. Define the matrix Π as 
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 
 
 
 
 
 
 
 
 
 
 
 
 

 

and ΠH is obtained by replacing the HN( column of Π by Ω. Suppose the following conditions 
are satisfied 																																	Γ9�#$+ , ,: � �#$+ 			,			3 � 1																																																											�2.5� 
																																																														O9Γ��, ,�:O� P=-=@AB

� �#$+ 	, 3 � 0�1�3																																					�2.6� 
																																																													O/9Γ��, ,�:O�/ P=-=@AB

� 1#$+ 	, 3 � 0�1�3																																				�2.7� 
 Then the continuous representation (2.4) is equivalent to 

Γ��, ,� � )det�ΠU�det�Π�
J

U-. GU���																																																																																				�2.8� 
ProofProofProofProof    
It is required that equation (2.4) be defined by the assumed basis function as follows 

																																																							W+��, ,� � )WU,+��, ,�J
U-. GU���						3 � 1																																																		�2.9� 

																																																				(*+��, ,� � )(*U,+��, ,�J
U-. GU���						3 � 0,1,2,3																																				�2.10� 

																																																				(/0+��, ,� � )(/0U,+��, ,�J
U-. GU���									3 � 0,1,2,3																													�2.11� 

 
Substituting equations (2.9)-(2.11) into equation (2.4) yield 
 

Y��, ,� � ))WU,+��, ,�J
U-. GU���'

+-. �#$+ � ))(*U,+��, ,�J
U-. GU���%

+-. �#$+ �)(/0U,/��, ,�J
U-. GU���1#$+ 

Y��, ,� � )Z)WU,+��, ,�'
+-. �#$+ � ()*U,+��, ,�/

+-. �#$+ � (/0U,/��, ,�1#$+ 	[J
U-. GU���																					�2.12� 

Letting 

\U � )WU,+��, ,�'
+-. �#$+ � ()*U,+��, ,�/

+-. �#$+ � (/0U,/��, ,�1#$+ , 
equation (2.12) becomes 
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																																								Y��, ,� � 	)\U
J

U-. GU���																																																																																										�2.13� 
Imposing the conditions in equations (2.5)-(2.7) on equation (2.13), we obtain a system of 
9 equations which is expressed as ]\ � ^ where \ � �\., \', ⋯ , \J�K is a vector form of 9 
undetermined coefficients that are determined by applying Crammer’s rule to obtain 		∆`� det�Π`�det�Π� , i � 0�1��8�																																																	�2.14� 
Πi is obtained by replacing the ith column of Π by Ω. 
Substitute equation (2.14) into equation (2.13) to obtain 

				Y��, ,� � )DbN�]U�DbN�]�
J

U-. GU���																								∎																																																																																				�2.15� 
    
2.1 2.1 2.1 2.1     Specification of MBTFMSpecification of MBTFMSpecification of MBTFMSpecification of MBTFM    
It worth noting that the continuous method in equation (2.15) which is equivalent to 
equation (2.4) is used to generate one main method and two discrete complementary 
methods. Both the main method and the discrete complementary methods are then 
applied in their power series form as MBTFM for solving equation (1.1). 

Evaluating equation (2.15) at � � �#$% gives the discrete method �2�3 � Γ��2 � 3(� which 

takes the form of the main method. Evaluating equation (2.15) at � � �# and � � �#$/ 

respectively, give the complementary methods �2 � Γ��2� and �2�2 � Γ��2 � 2(�. 
The MBTFM whose coefficients are in trigonometric form is presented in equations 
(2.16)-(2.18). According to Lambert [4], to avoid heavy cancellation that may occur as , → 0, series form of the coefficients is used. Thus, the corresponding converted series 
form of the trigonometric coefficients are given by equations (2.19)-(2.21) respectively.  �2�3 & �2�1 � (9*0�sin , , cos ,��2 � *1�sin , , cos ,��2�1 � *2�sin , , cos ,��2�2� *3�sin , , cos ,��2�3:� (2900�sin , , cos ,�12 � 01�sin , , cos ,�12�1 � 02�sin , , cos ,�12�2� 03�sin , , cos ,�12�3:	.																																																																																											�2.16�	�2 & �2�1 � (9*0,14444�sin , , cos ,��2 � *1,14444�sin , , cos ,��2�1 � *2,14444�sin , , cos ,��2�2� *3,14444�sin , , cos ,��2�3:� (2900,14444�sin , , cos ,�12 � 01,14444�sin , , cos ,�12�1 � 02,14444�sin , , cos ,�12�2� 03,14444�sin , , cos ,�12�3:	.																																																																																										�2.17�	�2�2 & �2�1 � (9*0,24444�sin , , cos ,��2 � *1,24444�sin , , cos ,��2�1 � *2,24444�sin , , cos ,��2�2� *3,24444�sin , , cos ,��2�3:� (2900,24444�sin , , cos ,�12 � 01,24444�sin , , cos ,�12�1 � 02,24444�sin , , cos ,�12�2� 03,24444�sin , , cos ,�12�3:.																																																																																												�2.18�	
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*. � 20567 � 257357210 ,/ � 5039198037224 ,e � 60904518109624322800 ,f � 829999194087250658691200 ,J � ⋯
*' � 1321 & 226615 ,/ & 1071833678 ,e & 8421175089114100 ,f & 9925753416294048570400 ,J � ⋯

*/ � 2021 � 12646 ,/ & 857334712 ,e & 178721300356456400,f & 313355271665176194281600,J �⋯
*% � 223567 � 398178605 ,/ � 220349509306,e � 19574512027406080700 ,f � 228418511021812664672800 ,J � ⋯
0. � 8945 � 1759535 ,/ � 29933006204 ,e � 3471431351604053800,f � 511870337493292874267200 ,J �⋯
0' � 19105 & 12646 ,/ � 857334712 ,e � 178721300356456400 ,f � 313355271665176194281600,J �⋯
0/ � 16105 & 226615 ,/ & 1071833678,e & 8421175089114100 ,f & 9925753416294048570400 ,J �⋯

0% � & 43945 & 83119070 ,/ & 94166012408 ,e & 8524092703208107600,f & 11074155114986585748534400 ,J � ⋯gh
hh
hh
hh
i
hh
hh
hh
hj

								�2.19� 

 *.,'44444 � & 689318144 & 426022861440 ,/ & 10247931685955840,e & 6313981271038031913318400,f & 14973457911890183734374400 ,J �⋯
*','44444 � &313672 & 629846720 ,/ & 6831173553920 ,e � 914233338445626419200,f � 48260937753285638217011200 ,J � ⋯
*/,'44444 � & 89672 � 2507846720 ,/ & 4927106686720,e � 2938207738445626419200,f � 75036889753285638217011200,J � ⋯

*%,'44444 � & 39718144 & 16214572288 ,/ & 42059931685955840 ,e & 4087609431038031913318400 ,f & 1379320849130792021078118400 ,J �⋯
0.,'44444 � & 128330240 & 8771524096,/ & 10771110561985280 ,e & 617331731455512524800,f & 15256516736890057227161600 ,J � ⋯

0','44444 � 8513360 & 2507846720 ,/ & 4927106686720,e & 2938207738445626419200,f & 75036889753285638217011200 ,J � ⋯
0/,'44444 � 2693360 & 629846720 ,/ & 6831173553920 ,e � 914233338445626419200 ,f � 48260937753285638217011200 ,J � ⋯

0%,'44444 � 16330240 � 12497620480 ,/ � 5283110561985280 ,e � 47666743346010637772800,f � 1715587651479570743953100800 ,J �⋯ gh
hh
hh
hh
i
hh
hh
hh
hj

	�2.20� 

																			

*.,/44444 � 3224 � 103282240 ,/ � 52943464960 ,e � 3391194927472640 ,f � 58375759804307763200,J � ⋯
*',/44444 � 109224 & 103282240 ,/ & 52943464960 ,e & 3391194927472640 ,f & 58375759804307763200,J � ⋯
*/,/44444 � 109224 & 103282240 ,/ & 5294346960 ,e & 3391194927472640 ,f & 58375759804307763200,J � ⋯
*%,/44444 � 109224 & 103282240 ,/ & 52943464960 ,e � 3391194927472640 ,f & 58375759804307763200,J � ⋯

0.,/44444 � 3110080 � 103846720 ,/ � 529130394880 ,e � 33911284782417920 ,f � 583757179412933289600 ,J �⋯
0',/44444 � 1131120 � 103282240 ,/ � 52943464960 ,e � 339194927472640,f � 58375759804307763200,J �⋯

0/,/44444 � & 1131120 & 103282240 ,/ & 52943464960 ,e & 339194927472640,f & 58375759804307763200,J �⋯
0%,/44444 � & 3110080 & 103846720 ,/ & 529130394880 ,e & 3391284782417920 ,f & 583757179412923289600 ,J �⋯gh

hh
hh
hh
i
hh
hh
hh
hj

								�2.21� 

 
In order to avoid the heavy cancellations which might occur when ( is small, the use of 
the power series expansion of the parameters is preferable (Lambert [4]). It is interesting 
to note that as either , → 0 method based on polynomial basis is recovered. 
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3333    Analysis of Analysis of Analysis of Analysis of MBTFMMBTFMMBTFMMBTFM    
3.13.13.13.1    Local Truncation Error of MBTFMLocal Truncation Error of MBTFMLocal Truncation Error of MBTFMLocal Truncation Error of MBTFM    
    
Theorem 2Theorem 2Theorem 2Theorem 2    
The MBTFMMBTFMMBTFMMBTFM has a Local Truncation Error (LTE) of 		kl(l9�/��m���#� � ��l���#�: �n9(�'.�:. 
Proof:Proof:Proof:Proof:    
The proof of the theorem is in the spirit of Ngwane and Jator [22]. 

Consider the Taylor series expansion of �2�3, ���2 � 3(�, �2�3′ 	, �′��2 � 3(�, �2�3′′ 	  and 	�FF��# � 3(�	, 3 � 0�1�3 . Also, assume that �9�#$+: � �#$+ , �F9�#$+: � 	 �#$+ , �FF9�#$+: �1#$+.  Then by substituting these into method in equation (2.16) and simplifying, we have 

that 
 opq � ���#$/� & �#$/ 																																																																															� 	kl(l9�/��m���#� � ��l���#�: � n9(�'.�:						∎			�3.1� 
 
Consequently, the Local Truncation Error (LTE) of equations (2.16)-(2.18) are 
respectively obtained as	
																											LTE	 � 	

uv
vvv
vw& 313(l25401600 x��l���#� � �/��m���#�y � n�('.�103(l25401600 x��l���#� � �/��m���#�y � n�('.�13(l793800 x��l���#� � �/��m���#�y � n�('.� z{

{{{
{| 																																						�3.2� 

 
 
According to Butcher [28], a linear � &step method of order } is said to be of maximal 
order if } � 2� � 2. Since the block method given by equation (2.16)-(2.18) are of order } � �8, 8, 8�K with error constants  

~9 � x &31325401600 	 , 10325401600 , 1325401600yp
, we therefore remark that MBTFMMBTFMMBTFMMBTFM is a maximal order 

method.  
Also, following the definition of Lambert [4] and Fatunla [29], a numerical method is 
consistent if its order is greater than one. We therefore remark that MBTFM is 
consistent. 

    
3.2 3.2 3.2 3.2     Convergence of Convergence of Convergence of Convergence of MBTFMMBTFMMBTFMMBTFM    
The convergence of the MBTFM is discussed in the following theorem. 

    
Theorem 2Theorem 2Theorem 2Theorem 2    
Let	Y� be an approximation of the solution vector Y for the system obtained from the 

derived methods (2.16)-(2.18). If b2 � ����2� & �2�, where the exact solution is several 

times differentiable on 6C, �7 and if ‖E‖ � ‖Y4 & Y‖, then for sufficiently small (, MBTFM 

is an 8th  order convergent method. In other words, ‖E‖ � n�(8�. 
ProofProofProofProof    
Let the matrices obtained from the MBTFM be defined as follows: 
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1,1 2,1

11 1,2 2,2

1 2

0

0

1

A

α α

α α

α α

 
 

=  
 
  

, 12

0 0 0

0 0 0

0 0 0

A

 
 =  
  

,

0,1

21 0,2

0

0 0

0 0

0 0

A

α

α

α

 
 

=  
 
  

, 22

1 0 0

0 1 0

0 0 1

A

 
 =  
  

1,1 2,1 3,1

11 1,2 2,2 3,2

1 2 3

B h

β β β

β β β

β β β

 
 

=  
 
  

,

1,1 2,1 3,1

12 1,2 2,2 2,3

1 2 3

B h

γ γ γ

γ γ γ

γ γ γ

 
 

=  
 
  

,

0,1

21 0,2

0

0 0

0 0

0 0

B h

β

β

β

 
 

=  
 
  

,

3,1

22 3,2

3

0 0

0 0

0 0

B h

γ

γ

γ

 
 

=  
 
  

 

In compact form, we write 

11 12

21 22

A A
A

A A

 
=  
 

 and 11 12

21 22

B B
B

B B

 
=  
 

 

 

where A and B are respectively 2N � 2N matrices, PH3  and QH3  are N � N matrices, A12  is 

null matrices while A22 is an Identity matrix. 
We further define the following vectors: Y � ����'�, ���/�,⋯ , ������K , F � ��', �/, ⋯ , �� , (1', ⋯ , (1��K , o�(� � ��', �/, … , ���K 
where o�(� is the Local truncation error. 
The exact form of the system formed by equations (2.16)-(2.18) is given by �� & ����� � k � o�(� � 0																																																																								�3.3� 
and the approximate form of the system is given by ��4 & ����4� � k � 0																																																																																						�3.4� 
Subtracting �3.3� from �3.4�, we have  ���4 & �� & � x�9��444 & ���:y � o�(�                                      (3.5) 

Letting q � �4 & � � �b', b/, … , b��K, in equation (3.5), we can write �9��444 � ���: � �q � ��‖�4 & �‖�                          (3.6) 

Using mean value theorem, equation (3.6) can be approximated thus ����� & �����4 & � � ����� & ����q � � 
     �� & ���q � o�(�                              (3.7) 

Where the Jacobian matrix and its entries �11, �12, �21 , �22		are defined as follows  

�'' �
uv
vv
wO�'O�' … O�'O��⋮ ⋱ ⋮O��O�' ⋯ O��O��z{

{{
| , �'/ �

uv
vv
wO�'O�' … O�'O��⋮ ⋱ ⋮O��O�' ⋯ O��O��z{

{{
| , �/' � (

uv
vv
wO1'O�' … O1'O��⋮ ⋱ ⋮O1�O�' ⋯ O1�O��z{

{{
|	 , �// � (

uv
vv
wO1'O�' … O1'O��⋮ ⋱ ⋮O1�O�' ⋯ O1�O��z{

{{
|
 

Let � � &�� be a 2� � 2� matrix,  we have �� � ��q � o�(�, and for sufficiently small (, � � � is a monotone and lower triangular matrix and thus invertible (Jain and Aziz [30]). 
Therefore,  �� � ��&1 � � � 9DH,3: � 0 and 	∑ DU,+/�+-' � n�(�/� 	⟹ q � �	o�(�. If ‖q‖ � maxH|bH|; then  ‖q‖ � ‖�	o�(�‖ � n�(�/�	n�('.� � n�(J�. This shows that MBTFM is convergent and the 
global error is of order n�(J� ∎ 

3.33.33.33.3    Stability of Stability of Stability of Stability of MBTFM    
Following Akinfenwa et al., [5], MBTFM can be represented by a block matrix finite 
difference equation given by  ��1����1 � ��0�Y� � (��1����1 � (��0��� � (2��1����1 � (2��0���             
(3.8) 

where ���1 � 9�2�1, �2�2, �2�3:p
,	�  � ��#�/, �#�', �#�K, ���1 � 9�2�1, �2�2, �2�3:p, 
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�� � 9�2&2, �2&1, �2:p, ���1 � 912�1, 12�2, 12�3:p, �� � 912&2, 12&1, 12:p
and ��0�, ��1�, ��0�, ��1�,	��.�, ��'� are 3 � 3 matrices specified as follows 

(1)

1 0 0

1 1 0

1 0 1

A

− 
 = − 
 − 

,
(0)

0 0 1

0 0 0

0 0 0

A

 
 = 
  

,

1,1 2,1 3,1

(1)

1,2 2,2 3,2

1 2 3

B

β β β

β β β

β β β

 
 

= 
 
  

,

0,1

(0)

0,2

0

0 0

0 0

0 0

B

β

β

β

 
 

= 
 
  

,

1,1 2,1 3,1

(1)

1,2 2,2 2,3

1 2 3

D

γ γ γ

γ γ γ

γ γ γ

 
 

= 
 
  

,

0,1

(0)

0,2

0

0 0

0 0

0 0

D

γ

γ

γ

 
 

= 
 
  

 

    
    
3.3.13.3.13.3.13.3.1        Zero StabilityZero StabilityZero StabilityZero Stability    
According to Lambert [4] and Fatunla [29], MBTFM is zero stable if the roots of the first 
characteristic polynomial have modulus less than or equal to one and those of modulus 
one are simple. i.e.  
 ¡��� � det¢���'� & ��.�£ � 0 	and		|�U| � 1. Hence MBTFM is zero stable since from our 

calculation	|�| � 0,0	�¤	1.  

    
3.3.2 Linear Stability and Region of Absolute Stability 3.3.2 Linear Stability and Region of Absolute Stability 3.3.2 Linear Stability and Region of Absolute Stability 3.3.2 Linear Stability and Region of Absolute Stability 
of of of of MBTFM    
 

Applying the block method to the test equations �′ � ¥� and �" � ¥/� and letting § � ¥( 

yields ���1 � ¨�§��� , where ¨�§� � ©�ª�$«¬�ª�$«E­�ª�
©�®��«¬�ª��«E­�®� . The matrix G�§�  for MBTFM has 

eigenvalues given by�¯1, ¯2, ¯3� � �0, 0, ¯3�, where  ¯3�§, ,� � °3�§,,�±3�§,,�   is called the stability 

function.  According to Ndukum et al., [31], having suitable values of , in a large interval 
means that the method can cope well for problems with estimated frequencies. It is 
observed that for MBTFM, the values of ,²6³, 2³� are satisfactory. The Region of Absolute 
Stability (RAS) of MBTFM is plotted for , � ³ using the boundary locus method and is 
presented in figure 1 
 

3.4 3.4 3.4 3.4     DefinitionDefinitionDefinitionDefinition    
    
A Numerical scheme is said to be A�W� stable, with W ∈ x0, µ/y if its region of absolute 

stability contain the wedge �§:	 & W ¶ �³ & arg §� ¶ W" and it is said to be �0 stable if it is 

A�W�	stable for some sufficiently small W ∈ x0, µ/y . From figure 1 above, we conclude 

therefore that MBTFM is �0 stable. 
 

4444    Implementation of Derived methodsImplementation of Derived methodsImplementation of Derived methodsImplementation of Derived methods    
    
In this section, the MBTFM is implemented in a block by block fashion without requiring 
starting values or/and predictors. The implementation was done with the aid of written 
codes in Maple 2016.2 software enhanced by the feature of fsolve for both linear and  
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Figure 1: Region of Absolute Stability of Figure 1: Region of Absolute Stability of Figure 1: Region of Absolute Stability of Figure 1: Region of Absolute Stability of MBTFM 

 
    

nonlinear problems and executed on Windows 10 operating system. It is worth nothing 
that Maple 2016.2 can symbolically compute derivatives, hence the automatic generation 
of the entries of the Jacobian Matrices which involves the partial derivatives of both �	and 1. In particular, the MBTFM is applied to the considered oscillatory problems on 
the range of interest as follows:    

1. Choose N, ( � ¹�º�  and the number of blocks Λ � �¼. For 2 � 0	C2D	� � 0	 the values 

of 9�1, �2, �3:p
are simultaneously obtained over the subinterval 6�0, �37 as �0  is 

known from the IVP under consideration. 

2. For 2 � 3	and	� � 1, the values of 9�4 , �5, �6:p
are simultaneously obtained over 

the subinterval 6�3, �67 as �3 is known from the previous block. 

3. The process is continued for 2 � 6,⋯ , � & 3  and � � 2,⋯ , Λ	 to obtain the 
numerical solution to the given IVP on the subinterval 6�0, �37, 6�3, �67, ⋯ 6��&3, ��7. 

    
4.14.14.14.1    Numerical ExamplesNumerical ExamplesNumerical ExamplesNumerical Examples    
In this section, the performance, efficiency and accuracy of the MBTFM on variety of 
well-known oscillatory IVPs is discussed. For each problem, the computational frequency 
is estimated by equating the local truncation error of the main methods to zero then solve 
for � as described in Ramos and Vigo-Aguiar [32]. The absolute errors or maximum error 
of the approximate solutions are computed and compared with results from existing 
methods in the literature. We noted that the method developed in this paper can be 
implemented for all values of N. However, for purpose of comparison the N values used in 
the existing literature were used therein. For emphasis, except where specified, ( the 

step length is defined as ( � ¹�º� . 

Example 1 Highly Oscillatory Problem Example 1 Highly Oscillatory Problem Example 1 Highly Oscillatory Problem Example 1 Highly Oscillatory Problem     
As our first test, we consider a highly oscillatory problem given by �′′ � &100� �99 sin � , ��0� � 1	, �′�0� � 11, � ∈ 60, 2³7 whose solution in closed form is given as	� �
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cos 10� � sin 10� � sin �. According to Sallam and Anwar [33], the solution consists of 
rapid and slow function; the slowly varying function is due to the inhomogeneous term. 
This problem was solved by the 12th order Obrechkoff methods of Simos [34], Van Daele 

and Vanden Berghe [35] and Archar [36] in the interval 60, 10³7. The numerical results of 
MBTFMMBTFMMBTFMMBTFM at � � 10³ and CPU time show that it is more accurate and efficient compared 
to the aforementioned methods as contained in Table 1 and Figure 2.  ( MBMBMBMBTFMTFMTFMTFM Archar Daele Simos 

Error CPU Error CPU Error CPU Error CPU ³50 1.95� 10�'e 
0.578 5.79� 10�'% 

0.187 1.20� 10�'' 
0.250 3.05� 10�'' 

0.172 

³100 2.71� 10�'m 
1.211 5.79� 10�'% 

0.452 7.35� 10�'% 
0.530 2.28� 10�'% 

0.515 

³200 1.08� 10�'l 2.516 1.32� 10�'/ 
0.749 8.62� 10�'% 

0.827 4.40� 10�'% 
0.858 

³300 2.38� 10�/m 
3.891 1.96� 10�'/ 

0.952 2.63� 10�'/ 
1.154 2.11� 10�'/ 

1.139 

³400 1.07� 10�// 
5.331 4.78� 10�'/ 

1.232 2.93� 10�'/ 
1.404 1.38� 10�'/ 

1.388 

³500 2.88� 10�/% 
6.594 7.50� 10�'/ 

1.466 2.89� 10�'/ 
1.778 6.47� 10�'/ 

1.700 

Table 1: Table 1: Table 1: Table 1: Comparison of End Point Absolute Errors Comparison of End Point Absolute Errors Comparison of End Point Absolute Errors Comparison of End Point Absolute Errors at at at at ½ � ¾¿À    
    

    
Figure 2: Efficiency curve for Problem 1Figure 2: Efficiency curve for Problem 1Figure 2: Efficiency curve for Problem 1Figure 2: Efficiency curve for Problem 1    

    

Example 2:  Nonlinear Duffing EquationExample 2:  Nonlinear Duffing EquationExample 2:  Nonlinear Duffing EquationExample 2:  Nonlinear Duffing Equation    
Consider the nonlinear Duffing equation forced by a harmonic function given by �′′ � � ��3 � � cos�Ω��, whose theoretical solution is unknown. A very accurate approximation of 
the theoretical solution of this equation is judged by comparison with a Galerkin 
approximation obtained by Van Dooren [37] and given by  ���� � k' cos�Ω�� �k/ cos�3Ω�� �k% cos�5Ω�� �ke cos�7Ω��  and the appropriate initial 
conditions are ��0� � k.	, �F�0� � 0, where Ω � 1.01		, � � 0.002		, k. � 0.200426728069, k' �0.200179477536, k/ � 0.246946143 � 10�%	, k% � 0.304016 � 10�f	, ke � 0.374 � 10�l. 
P-stable Obrechkoff methods of order 12 each were used by Simos [34], Wang et al., [38] 
and Van Daele and Van Berghe [35] to solve the Nonlinear Duffing Equation in the 
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interval	Á0	, e..Âµ'..' Ã. Similarly, Archar [36] and Shokri and Saadat [39] the problem in the 

same interval with symmetric Obrechkoff method and trigonometrically fitted method 

each of order 12 respectively. The absolute errors of the MBTFM at � � e..Âµ'..' , in 

comparison with the methods mentioned above are presented in the Table 2 while the 
CPU time for each of the methods are listed in Table 3. 
 
 ( Simos Wang 

et al. 
Daele & 
Berghe 

Achar Shokri & 
Saadat 

MBTFMMBTFMMBTFMMBTFM 

Ä500 3.15 � 10�e 4.08 � 10�Â 4.06 � 10�Â 4.09 � 10�Â 6.09 � 10�'/ 2.07 � 10�'. Ä1000 1.81 � 10�Â 1.27 � 10�f 1.87 � 10�f 1.27 � 10�f 7.99 � 10�'/ 1.64 � 10�'/ Ä2000 1.08 � 10�f 3.93 � 10�J 3.84 � 10�J 3.94 � 10�J 5.52 � 10�'/ 1.28 � 10�'/ Ä3000 2.09 � 10�m 5.17 � 10�l 5.13 � 10�l 5.18 � 10�l 7.27 � 10�'/ 1.77 � 10�'/ Ä4000 6.55 � 10�J 1.23 � 10�l 3.19 � 10�l 1.23 � 10�l 6.99 � 10�'/ 1.66 � 10�'/ Ä5000 2.67 � 10�J 4.07 � 10�'. 9.89 � 10�'. 4.09 � 10�'. 6.65 � 10�'/ 1.59 � 10�'/ 

Table 2:Table 2:Table 2:Table 2: Comparison of the End Point Absolute error for Comparison of the End Point Absolute error for Comparison of the End Point Absolute error for Comparison of the End Point Absolute error for Å � Æ¿.ÇÀ¾.¿¾     

    
    
    ( Simos Wang 

et al. 
Daele & 
Berghe 

Achar Shokri & 
Saadat 

MBTFMMBTFMMBTFMMBTFM 

Ä500 
1.437	 1.406	 1.484	 1.188	 1.453	 4.849	

Ä1000 
2.892	 2.891	 2.938	 2.312	 2.874	 6.844	

Ä2000 
6.233	 6.236	 6.360	 4.812	 6.267	 8.792	

Ä3000 
9.859	 9.546	 9.719	 7.548	 9.859	 9.958	

Ä4000 
13.548	 13.063	 13.390	 9.986	 13.424	 13.365	

Ä5000 
16.922	 16.499	 16.969	 12.860	 16.857	 16.917	

Table 3:Table 3:Table 3:Table 3: Comparison of CPU TimeComparison of CPU TimeComparison of CPU TimeComparison of CPU Time 
 
 
From Tables 2 and 3, and Figure 3 it is clear that MBTFMMBTFMMBTFMMBTFM is more efficient than the 
methods of Simos [34], Wang et al., [38], Van Daele and Van Berghe [35], Archar [36] and 
Shokri and Saadat [39]. 
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Figure 3: Efficiency curve for Problem 2Figure 3: Efficiency curve for Problem 2Figure 3: Efficiency curve for Problem 2Figure 3: Efficiency curve for Problem 2    

    

Example 3: Test like Equation Example 3: Test like Equation Example 3: Test like Equation Example 3: Test like Equation     
Consider the test-like equation with double frequencies given by  �′′��� � �2���� � 12 cos��� , ��0� � 1,			�′�0� � 0 whose solution in closed form is given 
by ���� � ÈÉÊ�Â=�$ÈÉÊ�=�/ . This equation was solved by Wang [40] with Ë &stable linear 

symmetric multistep method of order 8 and hence a better comparison with MBTFMMBTFMMBTFMMBTFM of 
the same order. The maximum absolute errors are compared with MBTFM in the interval 60, 500³7 and are presented in Table 4. 

Table 4:Table 4:Table 4:Table 4: Comparison of Comparison of Comparison of Comparison of Maximum ErrorsMaximum ErrorsMaximum ErrorsMaximum Errors 
 
It is obvious from Table 4 and Figure 4 that although MBTFM and Six-step method of 
Wang [40] are of the same order, MBTFM is a more efficient integrator for this problem. 

Method � 
 1000 2000 3000 4000 

 
MBTFM 

Error 2.26 � 10�e 4.90 � 10�'. 1.52 � 10�'' 1.49 � 10�'/ 
NFE 2002 4002 6002 8002 

 
Six-step order 8 

Error 9.00 � 10�% 1.00 � 10�Â 3.00 � 10�m 3.00 � 10�J 
NFE 6001 12001 18001 24001 
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Figure 4: Efficiency curve for Problem 3Figure 4: Efficiency curve for Problem 3Figure 4: Efficiency curve for Problem 3Figure 4: Efficiency curve for Problem 3    

 

Example 4: Linear Kramarz Problem (Kramarz, 1980)Example 4: Linear Kramarz Problem (Kramarz, 1980)Example 4: Linear Kramarz Problem (Kramarz, 1980)Example 4: Linear Kramarz Problem (Kramarz, 1980)    
Consider the linear non autonomous stiff problem given by �′′��� � Á 2498 4998&2499 &4999Ã 	����,	 ��0� � Á21Ã	, �F�0� � x00y , 0 � � � 100.  The analytical solution is given by ���� �62 cos���, & cos���7K . Nguyen et al. [27] considered an order 6 Trigonometric Implicit 
Runge-Kutta (TIRK3) for the numerical integration of the problem. The newly developed 
MBTFM is compared with TIRK3 and the end point global errors, Number of Functions 
Evaluation and the CPU time are presented in Table 5.  
 
Methods N Errors NF

E 
CPU 
Time 

N Errors NFE CPU 
Time 

N Errors NFE CPU 
Time 

MBTFM 3 3.5E-
28 

20 0.046 6 1.7E-
27 

38 0.063 25 9.2E-
28 

152 0.297 

TIRK3 3 3.3E-
12 

327 0.29 142 9.0E-
12 

707 0.501 170 3.7E-
12 

811 0.591 

Table 5:Table 5:Table 5:Table 5: Comparison of End Point Global ErrorsComparison of End Point Global ErrorsComparison of End Point Global ErrorsComparison of End Point Global Errors 
 
In Table 5, MBTFM is not just accurate method for Linear Kramarz Problem but also 
efficient as the cost of implementation is very low compare to TIRK3. This is evident in 
Figures 5 and 6 respectively. 
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Figure 5: Efficiency curve for Problem 4Figure 5: Efficiency curve for Problem 4Figure 5: Efficiency curve for Problem 4Figure 5: Efficiency curve for Problem 4    

    
    
    

    

    
Figure 6: Efficiency curve fFigure 6: Efficiency curve fFigure 6: Efficiency curve fFigure 6: Efficiency curve for Problem 4or Problem 4or Problem 4or Problem 4 

    

    
Example 5Example 5Example 5Example 5    (Franco, 2006)(Franco, 2006)(Franco, 2006)(Franco, 2006)    
We also consider the oscillatory linear system �′′��� � Á 13 &12&12 13 Ã ���� � Á 9 cos 2� & 12 sin 2�&12 cos 2� � 9 sin 2�Ã  with initial conditions ��0� �
Á10Ã 				and			�F�0� � Á&48 Ã, whose exact solution is  ���� � Ásin � & sin 5� � cos 2�sin � � sin 5� � sin 2�Ã.  
This problem was solved by Franco [41] in the interval 60,1007 for ( � '/Ì 		H � 2 using order 

6 Explicit Two Step Hybrid Method (ETSHM6). Table 6 displays the maximum absolute 
error of MBTFM in comparison with ETSHM6ETSHM6ETSHM6ETSHM6. 
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 ( MBTFM ETSHM6ETSHM6ETSHM6ETSHM6 
Max Err. NFE Max Err. NFE 14 

7.15 � 10�m 802 1.00 � 10�/ 3000 

18 
2.69 � 10�l 1602 3.16 � 10�Â 4500 

116 
1.06 � 10�'' 3202 3.16 � 10�m 6000 

132 
4.14 � 10�'e 6402 3.16 � 10�l 13500 

Table 6:Table 6:Table 6:Table 6: Comparison of Maximum Errors and Number of Functions EvaluationComparison of Maximum Errors and Number of Functions EvaluationComparison of Maximum Errors and Number of Functions EvaluationComparison of Maximum Errors and Number of Functions Evaluation    
 
As expected, the MBTFM being a higher order method than ETSHM6ETSHM6ETSHM6ETSHM6 of Franco [41] is 
more efficient as contained in Table 6 and Figure 7. 
   

 
Figure 7: Efficiency curve for Figure 7: Efficiency curve for Figure 7: Efficiency curve for Figure 7: Efficiency curve for Problem 5Problem 5Problem 5Problem 5 

 

Problem 6:Problem 6:Problem 6:Problem 6: Non Linear Perturbed Systems   (Fang Non Linear Perturbed Systems   (Fang Non Linear Perturbed Systems   (Fang Non Linear Perturbed Systems   (Fang et al.et al.et al.et al.    2009) 2009) 2009) 2009)  
Consider the nonlinear perturbed system on the range 60	, 107 with ² � 10�%. �1′′ � ²Í1��� & 25�1 & ²9�12 � �22:						�1�0� � 1			,			�1′ �0� � 0 �2′′ � ²Í2��� & 25�2 & ²9�12 � �22:						�2�0� � ²			,			�2′ �0� � 5 

where Í1��� � 1 � ²2 � 2² sin�5� � �2� � 2 cos��2� � �25 & 4�2� sin��2� Í2��� � 1 � ²2 � 2² sin�5� � �2� & 2 sin��2� � �25 & 4�2� cos��2� 

The exact solution is given by  �1��� � cos�5�� � ² sin��2�			,			�2��� � sin�5�� � ² cos��2� 
which according for Fang et al. [42] represents a periodic motion of constant frequency 
with small perturbation of variable frequency. As selected by [42] and Ngwane and Jator 
[43], we choose � � 5 and the numerical results of the maximum global errors of MBTFM 
were compared with Block Hybrid Trigonometrically fitted BHT of Ngwane and Jator 
(2015) and Trigonometrically Fitted Adapted Runge-Kutta Nystrom TFARKN 5(3) of 
Fang et al. (2009) as presented in Table 7. 
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MBTFMMBTFMMBTFMMBTFM BHT TFARKN 5(3) � & log'.�q¤¤� � & log'.�q¤¤� ��¤b3b~NbD� & log'.�q¤¤� 50	 10.95	 50	 3.42	 29�6�	 2.78	100	 14.71	 100	 4.61	 88�9�	 5.33	260	 17.26	 260	 7.52	 262�8�	 7.85	810	 22.20	 810	 10.43	 811�4�	 10.38	
Table 7:Table 7:Table 7:Table 7: Comparison of log of Maximum Errors and Number StepsComparison of log of Maximum Errors and Number StepsComparison of log of Maximum Errors and Number StepsComparison of log of Maximum Errors and Number Steps 

 
From Table 7 and Figure 8 it can be seen that MBTFM outperformed BHT which is 
implemented in a corresponding fixed step size mode and TFARKN 5(3) which is 
implemented in variable step size mode respectively.  
 

 
Figure 8: Efficiency curve for Problem 6Figure 8: Efficiency curve for Problem 6Figure 8: Efficiency curve for Problem 6Figure 8: Efficiency curve for Problem 6 

 

5555    Conclusion Conclusion Conclusion Conclusion     
We considered a maximal order trigonometrically fitted method for the solution of second 
order initial value problems with oscillatory solution in this paper. The algorithm is self-
starting, has good accuracy and required only six functions evaluation at each integration 
step except the first integration step that required eight functions evaluation. 
Representative numerical examples that are linear and nonlinear and highly oscillatory 
were presented. The numerical examples considered showed that MBTFMMBTFMMBTFMMBTFM is an accurate 
and efficient integrator as presented in tables 1-7 and Figures 2-8. 
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