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Abstract
In the present paper, the authors investigated a subclass TγDλ,ω(α, β, ξ, µ; p : n) of analytic
functions in the open unit disk U. Using Ruscheweyh operator Rnfγ(z) and a generalized
Sǎlǎgean differential operator Dn

λ,ωfγ(z) involving modified Sigmoid function, a class of nor-
malized analytic function given by:

Φnλ,ωfγ(z) = µDn
λ,ωfγ(z) + (1− µ)Rnfγ(z); λ, ω ≥ 0, µ ∈ [0, 1], n ∈ N0, z ∈ U

was established.
Some geometric properties of the subclass TγDλ,ω(α, β, ξ, µ; p : n) were investigated. The

results extended and generalized some earlier results.

Keywords: Univalent functions, Sigmoid function, Differential operator, Fekete-Szego inequality,
Starlikeness, Convexity, Close-to-convex funtions.
MSC2010: 30C45

1 Introduction and Preliminaries
Special functions are particular mathematical functions whose names and notations are due to
their importance and applications in mathematical analysis, physics and other fields of science and
engineering. Some special functions appear as solutions of differential equations. Symbolic com-
putation where algorithms and software are required for manipulation of mathematical expressions
make use of special functions. Activation functions are examples of special functions. Sigmoid
function is the most popular of the three activation functions in the hardware implementation of
Artificial Neural Network (ANN). In biologically inspired neural networks, the activation function
is usually an abstraction representing the rate of action potential firing in the cell. Some of the sig-
moid functions have been used as activation function of artificial neurons including the logistic and
hyperbolic tangent functions. Sigmoid curves are also used as commutative distribution functions
that go from 0 to 1 like the integrals of the logistics distribution, normal distribution, and student’s
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t probability functions. The study of sigmoid function in geometric function theory is motivated
by its significance in science, engineering and other fields of endeavours.
The study of analytic functions in complex analysis is significant because of their properties and
applications but univalent functions have other interesting features aside being analytic which make
its study of more interest. There are many subclasses of analytic and univalent functions in geo-
metric function theory. A class T of functions with negative coefficients from second term was first
introduced by Silverman [1] and has since then opened up a prolific line of research interest in that
direction among function theorists.

Let A denotes the class of functions of the form:

f(z) = z +

∞∑
k=2

akz
k (1.1)

which are analytic in the open unit disk U = {z ∈ C : |z| < 1} and let

γ(s) =
2

1 + e−s
; s ≥ 0 (1.2)

be a modified sigmoid function then, γ(s) = 1 fo s = 0.
We denote by T the subclass of A consisting of functions f(z) ∈ A which are analytic and

univalent in U and of the form

f(z) = z −
∞∑
k=2

akz
k, ak ≥ 0 (1.3)

Hence, we have fγ(z) ∈ Tγ defined as

fγ(z) = z −
∞∑
k=2

γ(s)akz
k, ak ≥ 0 (1.4)

where γ(s) = 1+ 1
2s−

1
24s

3 + 1
240s

5− 17
40320s

7 + . . . defined by (1.2). We also define identity function
for Tγ as

eγ(z) = z (1.5)

We say that f(z) is starlike in domain U if f : U → C is univalent and f(U) is a starlike domain
with respect to origin.
Then f(z) ∈ A is said to be starlike of order ρ if it satisfies

Re

{
zf ′(z)

f(z)

}
> ρ

for some (ρ(0 ≤ ρ ≤ 1)) and for all z ∈ U . Also a univalent function f(z) ∈ A is said to be
convex of order ρ if and only if zf ′(z) is starlike of order ρ. In other words, if

Re

{
1 +

zf ′′(z)

f ′(z)

}
> ρ

for some (ρ(0 ≤ ρ ≤ 1)) and for all z ∈ U .
Further more, a univalent function f(z) ∈ A is said to be close-to-convex of order ρ if

Re {zf ′(z)} > ρ

for some (ρ(0 ≤ ρ ≤ 1)) and for all z ∈ U .
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2 Differential Operators

2.1 Sǎlǎgean Differential Operator
Let f(z) ∈ A, the Sǎlǎgean differential operator introduced in [2] denoted by Dnf(z) is defined by

D0f(z) = f(z)
D1f(z) = zf ′(z)
...

Dnf(z) = z(Dn−1f(z))′.

where n ∈ N0 = N ∪ {0} . If f(z) is given by (1.1), then

Dnf(z) = z +

∞∑
k=2

knakz
k (2.1)

Several other differential operators have been recently introduced to generalize (2.1) following
the introduction of Sǎlǎgean differential operator in [2]. Some of the operators include:
Al-Oboudi differential operator: Let f(z) ∈ A, in [3], Al-Oboudi defined a differential operator
as follows

D0f(z) = f(z)
Dλf(z) = D1f(z) = (1− λ)f(z) + λzf ′(z) = Dλf(z), λ ≥ 0,
...

Dn
λf(z) = Dλ

(
Dn−1f(z)

)
.

Thus,

Dn
λf(z) = z +

∞∑
k=2

{1 + (k − 1)λ}n akzk λ ≥ 0 (2.2)

For λ = 1, (2.2) becomes (2.1).
Darus and Ibrahim in [4] defined a generalized differential operator

Dn
α,β,λf(z) = z +

∞∑
k=2

{β(k − 1)(λ− α) + 1}n akzk (2.3)

for α, β, λ ≥ 0, k ≥ 2 and n ∈ N0 = N ∪ {0}.
Rǎducanu generalized Sǎlǎgean and Al-Oboudi differential operators in [5] as follows

Dn
α,λf(z) = z +

∞∑
k=2

[1 + (αλk + α− λ)(k − 1)]nakz
k (2.4)

Ramadan and Darus introduced a generalized differential operator in [6] as follows

Dn
α,β,λ,δf(z) = z +

∞∑
k=2

[(λ− δ)(β − α)(k − 1) + 1]
n
akz

k (2.5)

for α, β, δ ≥ 0, λ > 0, λ > δ, β > α, k ≥ 2 and n ∈ N0 = N ∪ {0}.
In [7], Darus and Ibrahim introduced a generalized differential operator

D0f(z) = f(z)
D1
α,λf(z) = (α− λ)f(z) + (λ− α+ 1)zf ′(z)
...

Dn
α,λf(z) = D1

α,λ

(
Dn−1f(z)

)
.
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Thus,

Dn
α,λf(z) = z +

∞∑
k=2

{[(k − 1)(λ− α) + k]}n akzk λ ≥ 0 (2.6)

The operators are generalized form of some well-known differential operators such as Sǎlǎgean
operator (2.1) and Al-Oboudi operator (2.2) for example.

2.1.1 Differential Operator Involving modified Sigmoid Function

In [8], Fadipe-Joseph et. al introduced Sǎlǎgean differential operator involving modified sigmoid
function which is defined as follows
Let fγ(z) ∈ Aγ , the Sǎlǎgean differential operator denoted by Dnfγ(z) is defined by

D0fγ(z) = fγ(z)
D1fγ(z) = γ(s)zf ′γ(z)
...

Dnfγ(z) = D[Dn−1fγ(z)] = γ(s)z[Dn−1fγ(z)]′.

Hence,

Dnfγ(z) = γn(s)z +

∞∑
k=2

γm(s)knakz
k; m = n+ 1 (2.7)

for details, see [8].

2.1.2 New Differential Operator Involving modified Sigmoid Function

Let fγ(z) ∈ Tγ , then from (2.6) and (2.7) we obtain a generalized differential operator involving
modified sigmoid function as follows:

Dn
λ,ωfγ(z) = γn(s)z −

∞∑
k=2

γn+1(s)[(k − 1)(λ− ω) + k]nakz
k (2.8)

for λ, ω ≥ 0. See [7] and [8] for detail.

2.1.3 Ruscheweyh Operator involving modified sigmoid function with Rn : Tγ → Tγ,
n ∈ N0 = N ∪ {0}

Let fγ(z) ∈ Tγ , then the Ruscheweyh operator involving modified sigmoid function denoted by
Rnfγ(z) is defined as

Rnfγ(z) = z −
∞∑
k=2

γ(s)Bk(n)akz
k ak ≥ 0 (2.9)

where,

Bk(n) = B(n, k) =

(
n+ k − 1

n

)
=

(n+ 1)(n+ 2) . . . (n+ k − 1)

(k − 1)!
(2.10)

=
(n+ 1)(n+ 2) . . . (n+ k − 1)

(k − 1)!
=

(n+ 1)k−1
(1)k−1

.

Hence, B(0, k) =

(
k − 1

0

)
=

(1)k−1
(1)k−1

= 1. See [8] and [9] for detail.
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2.1.4 Combination of Generalised Sǎlǎgean Differential Operator and Ruscheweyh
Operator involving modified sigmoid function

We combine the generalised Sǎlǎgean differential operator involving modified sigmoid function de-
fined by (2.8) and the Ruscheweyh operator involving modified sigmoid function defined (2.9) above
to obtain a certain operator defined as:

Φnλ,ωfγ(z) = µDn
λ,ωfγ(z) + (1− µ)Rnfγ(z); λ ∈ [0, 1], µ ∈ [0, 1] z ∈ U. (2.11)

Φnλ,ωfγ(z) = µγn(s)z−
∞∑
k=2

µγn+1(s)[(k−1)(λ−ω) +k]nakz
k + (1−µ)z+

∞∑
k=2

(1−µ)γ(s)Bk(n)akz
k

= [µγn(s)− µ+ 1]z −
∞∑
k=2

γ(s) {µ[γn(s)(k − 1)(λ− ω) + k]n + (1− µ)Bk(n)} akzk.

Subclasses of univalent functions in geometric function theory are characterized by simple analytic
inequalities and play significant role in the study of univalent functions. Several authors such as
[12], [4], [13], [7], [6], [5], [14], [15], [16], [17], [18], [19] and [20] have successfully defined and
investigated various subclasses of univalent functions. In particular, Joshi and Sangle in [10] intro-
duced and studied subclass TDλ(α, β, ξ, µ;n) of univalent functions by using Al-Oboudi operator
as a generalised Sǎlǎgean differential operator in the unit disk U = {z : |z| < 1}. This was moti-
vated by the work of Joshi and Sangle [10]. Using differential operator defined in (2.11), a class
TγDλ,ω(α, β, ξ, µ; p : n) of univalent functions which extends and generalizes the class earlier studied
in [10] was established.

2.2 Definition:
A function fγ(z) ∈ Tγ defined by (1.4) is in the class TγDλ,ω(α, β, ξ, µ; p : n) if∣∣∣∣∣∣ [Φnλ,ωfγ(z)]′ − [µγn(s)− µ+ 1]

pξ
[
(Φnλ,ωfγ(z))′ − α

]
−
[
(Φnλ,ωfγ(z))′ − (µγn(s)− µ+ 1)

]
∣∣∣∣∣∣ < β

where 0 ≤ α < 1

2
ξ, 0 < β ≤ 1,

1

2
≤ ξ ≤ 1, µ ∈ [0, 1] and p, n ∈ N0 = N∪{0} ; n ≥ 0 and p ≥ 2 z ∈ U.

3 Main Results
In this section we state and prove the main results of this paper.
We begin by proving the necessary and sufficient condition for a function to belong to the class
TγDλ,ω(α, β, ξ, µ; p : n).

Theorem 3.1
If a function fγ(z) belongs to the class TγDλ,ω(α, β, ξ, µ; p : n), then

∞∑
k=2

kγ(s)[1 + β(pξ − 1)] {µ[γn(s)(k − 1)(λ− ω) + k]n + (1− µ)Bk(n)} ak

≤ pξβ[µγn(s)− µ+ 1− α].
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Proof:
Suppose fγ(z) belongs to the class TγDλ,ω(α, β, ξ, µ; p : n), by equation (2.11) and definition 2.2,
we have that ∣∣∣∣∣−

∞∑
k=2

kγ(s) {µ[γn(s)(k − 1)(λ− ω) + k]n + (1− µ)Bk(n)} akzk−1
∣∣∣∣∣

≤ β

∣∣∣∣∣pξ[µγn(s)− µ+ 1− α]−
∞∑
k=2

kγ(s)(1− pξ) {µ[γn(s)(k − 1)(λ− ω) + k]n + (1− µ)Bk(n)} akzk−1
∣∣∣∣∣

|z| ≤ r and as r → 1+, then

∞∑
k=2

kγ(s) {µ[γn(s)(k − 1)(λ− ω) + k]n + (1− µ)Bk(n)} ak

≤ βpξ[µγn(s)− µ+ 1− α] +

∞∑
k=2

βkγ(s)(1− pξ) {µ[γn(s)(k − 1)(λ− ω) + k]n + (1− µ)Bk(n)} ak

⇒
∞∑
k=2

kγ(s)[1 + β(pξ − 1)] {µ[γn(s)(k − 1)(λ− ω) + k]n + (1− µ)Bk(n)} ak

≤ pξβ[µγn(s)− µ+ 1− α].

Hence,

∞∑
k=2

ak ≤
pξβ[µγn(s)− µ+ 1− α]

kγ(s)[1 + β(pξ − 1)] {µ[γn(s)(k − 1)(λ− ω) + k]n + (1− µ)Bk(n)}
(3.1)

The result is sharp for

f(z) = z − pξβ[µγn(s)− µ+ 1− α]

kγ(s)[1 + β(pξ − 1)] {µ[γn(s)(k − 1)(λ− ω) + k]n + (1− µ)Bk(n)}
zk; k ≥ 2.

Corollary 3.1
Let a function fγ(z) belongs to the class T1Dλ,ω(α, β, ξ, µ; p : n) then.

∞∑
k=2

k[1 + σ(pξ − 1)] {µ[(k − 1)(λ− ω) + k]n + (1− µ)Bk(n)}ak ≤ pξβ(1− α).

Corollary 3.2
Let a function fγ(z) belongs to the class T1Dλ,1(α, β, ξ, µ; p : n) then.

∞∑
k=2

k[1 + β(pξ − 1)] {µ[(k − 1)(λ− 1) + k]n + (1− µ)Bk(n)}ak ≤ pξβ(1− α).

Corollary 3.3
Let a function fγ(z) belongs to the class T1Dλ,1(α, β, ξ, 1; p : n) then.

∞∑
k=2

k[1 + β(pξ − 1)] {[(k − 1)(λ− 1) + k]n} ak ≤ pξβ(1− α).
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Corollary 3.4
Let a function fγ(z) to the class T1Dλ,0(α, β, ξ, 1; 2 : n) then.

∞∑
k=2

k[1 + β(2ξ − 1)] {[(k − 1)λ+ 1]n}ak ≤ 2ξβ(1− α).

The result is sharp for

f(z) = z − 2ξβ(1− α)

k[1 + β(2ξ − 1)] {[(k − 1)λ+ 1]n}
zk.

Remark: Class T1Dλ,1(α, β, ξ, 1; 2 : n) ≡ TDλ(α, β, ξ;n) studied in [10]. Thus,

TDλ(α, β, ξ;n) ⊂ TγDλ,ω(α, β, ξ, µ; p : n).

Theorem 3.2
Let TγDλ,ω(α, β, ξ, µ; p : n), then

r − r2 pξβ[µγn(s)− µ+ 1− α]

2[1 + β(pξ − 1)] {µ[γn(s)(λ− ω) + 2]n + (1− µ)B2(n)}
≤ |fγ(z)|

≤ r + r2
pξβ[µγn(s)− µ+ 1− α]

2[1 + β(pξ − 1)] {µ[γn(s)(λ− ω) + 2]n + (1− µ)B2(n)}
.

Proof:
By Theorem 3.1, for any function f ∈ TγDλ,ω(α, β, ξ, µ; p : n), we have that

ak ≤
∞∑
k=2

pξβ[µγn(s)− µ+ 1− α]

kγ(s)[1 + β(pξ − 1)] {µ[γn(s)(k − 1)(λ− ω) + k]n + (1− µ)Bk(n)}
(k = 2, 3, . . .)

and

|fγ(z)| ≥ |z| −
∞∑
k=2

γak|z|k ≥ |z| − |z|2
∞∑
k=2

γak

≥ |z| − |z|2
∞∑
k=2

ak

|fγ(z)| ≥ r−r2 pξβ[µγn(s)− µ+ 1− α]

2[1 + β(pξ − 1)] {µ[γn(s)(λ− ω) + 2]n + (1− µ)B2(n)}
where |z| = r, and k = 2.

(3.2)
Similarly,

|fγ(z)| ≤ |z|+
∞∑
k=2

γ(s)ak|z|k ≤ |z|+ |z|2γ(s)a2

⇒ |f(z)| ≤ z + γ|z|2
∞∑
k=2

γ(s)ak, k ≥ 2

|fγ(z)| ≤ r+γr2 pξβ[µγn(s)− µ+ 1− α]

2γ(s)[1 + β(pξ − 1)] {µ[γn(s)(λ− ω) + 2]n + (1− µ)B2(n)}
for |z| = r, and k = 2.

(3.3)
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From (3.2) and (3.3) we have

r − r2 pξβ[µγn(s)− µ+ 1− α]

[1 + β(pξ − 1)] {µ[γn(s)(λ− ω) + 2]n + (1− µ)B2(n)}
≤ |fγ(z)|

≤ r + r2
pξβ[µγn(s)− µ+ 1− α]

[1 + β(pξ − 1)] {µ[γn(s)(λ− ω) + 2]n + (1− µ)B2(n)}
.

Theorem 3.3
Let TγDλ,ω(α, β, ξ, µ; p : n), then

1− r pξβ[µγn(s)− µ+ 1− α]

[1 + β(pξ − 1)] {µ[γn(s)(λ− ω) + 2]n + (1− µ)B2(n)}
≤ |f ′γ(z)|

≤ 1 + r
pξβ[µγn(s)− µ+ 1− α]

[1 + β(pξ − 1)] {µ[γn(s)(λ− ω) + 2]n + (1− µ)B2(n)}
.

Proof:
Let fγ ∈ TγDλ,ω(α, β, ξ, µ; p : n), then, by Theorem 3.1, if f ∈ TγDλ,ω(α, β, ξ, µ; p : n), we have
that

∞∑
k=2

ak ≤
pξβ[µγn(s)− µ+ 1− α]

kγ(s)[1 + β(pξ − 1)] {µ[γn(s)(k − 1)(λ− ω) + k]n + (1− µ)Bk(n)}
(k = 2, 3, . . .)

and thus,

a2 ≤
pξβ[µγn(s)− µ+ 1− α]

2γ(s)[1 + β(pξ − 1)] {µ[γn(s)(λ− ω) + 2]n + (1− µ)B2(n)}
(k = 2).

But

|f ′γ(z)| ≥ 1−
∞∑
k=2

kγ(s)|ak||zk−1| and |f ′γ(z)| ≤ 1 + 2γ(s)|z||a2|.

So that

|f ′γ(z)| ≥ 1−kγ|z| pξβ[µγn(s)− µ+ 1− α]

kγ(s)[1 + β(pξ − 1)] {µ[γn(s)(k − 1)(λ− ω) + k]n + (1− µ)Bk(n)}
(for k ≥ 2).

Hence,

|f ′γ(z)| ≥ 1− 2rγ
pξβ[µγn(s)− µ+ 1− α]

2γ(s)[1 + β(pξ − 1)] {µ[γn(s)(λ− ω) + 2]n + (1− µ)B2(n)}
(for k = 2; |z| = r)

(3.4)
Also,

|f ′γ(z)| ≤ 1 + 2rγ
pξβ[µγn(s)− µ+ 1− α]

2γ(s)[1 + β(pξ − 1)] {µ[γn(s)(λ− ω) + 2]n + (1− µ)B2(n)}
(for k = 2; |z| = r)

(3.5)
Then, for z ∈ U , the equalities (3.4) and (3.5)

⇒ 1− rγ pξβ[µγn(s)− µ+ 1− α]

γ(s)[1 + β(pξ − 1)] {µ[γn(s)(λ− ω) + 2]n + (1− µ)B2(n)}
≤ |f ′γ(z)|

≤ 1 + rγ
pξβ[µγn(s)− µ+ 1− α]

γ(s)[1 + β(pξ − 1)] {µ[γn(s)(λ− ω) + 2]n + (1− µ)B2(n)}
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which completes the proof.
Theorem 3.4

If a function fγ(z) defined by (1.4) belongs to the class TγDλ,ω(α, β, ξ, µ; p : n).
Let

f1(z) = z and fγ(z) = z− pξβγ(s)[µγn(s)− µ+ 1− α]

γ(s)[1 + β(pξ − 1)] {µ[γn(s)(k − 1)(λ− ω) + k]n + (1− µ)Bk(n)}
zk, k ≥ 2.

Then the function fγ ∈ TγDλ,ω(α, β, ξ, µ; p : n) if and only if it can be expressed in the form

fγ(z) =

∞∑
k=1

µkfk(z) (3.6)

where µk ≥ 0 and
∑∞
k=1 µk = 1.

Proof:
Let
fγ(z) =

∑∞
k=1 µkfk(z); µk ≥ 0, k = 1, 2, . . . and

∑∞
k=1 µk = 1.

Thus,

fγ(z) =

∞∑
k=1

µkfk = µ1f1(z) +

∞∑
k=2

µkfk(z).

Thus,

fγ(z) = µ1(z)+

∞∑
k=2

µk

{
z − pξβ[µγn(s)− µ+ 1− α]

kγ(s)[1 + β(pξ − 1)] {µ[γn(s)(k − 1)(λ− ω) + k]n + (1− µ)Bk(n)}
zk
}

= (µ1 + µ2 + . . .)z −
∞∑
k=2

µk
pξβ[µγn(s)− µ+ 1− α]

kγ(s)[1 + β(pξ − 1)] {µ[γn(s)(k − 1)(λ− ω) + k]n + (1− µ)Bk(n)}
zk

µ1(z) + µ2f2(z) + µ3f3(z) + . . . = µ1(z) +

∞∑
k=2

µkfk

where µ1 + µ2 + . . . =
∑∞
k=1 µk = 1. Then,

fγ(z) = z −
∞∑
k=1

µk
pξβ[µγn(s)− µ+ 1− α]

kγ(s)[1 + β(pξ − 1)] {µ[γn(s)(k − 1)(λ− ω) + k]n + (1− µ)Bk(n)}
.

It thus follows that
∞∑
k=2

µk
pξβ[µγn(s)− µ+ 1− α]

kγ(s)[1 + β(pξ − 1)] {µ[γn(s)(k − 1)(λ− ω) + k]n + (1− µ)Bk(n)}

×kγ(s)[1 + β(pξ − 1)] {µ[γn(s)(k − 1)(λ− ω) + k]n + (1− µ)Bk(n)}
pξβ[µγn(s)− µ+ 1− α]

∞∑
k=2

µk = 1− µ1 ≤ 1.

In otherwords,

fγ(z) = µ1 +

∞∑
k=2

µk = 1⇒ 1− µ1 ≤ 1.
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By Theorem 3.1 therefore, fγ ∈ TγDλ,ω(α, β, ξ, µ; p : n).
Conversely, if TγDλ,ω(α, β, ξ, µ; p : n), then by Theorem 3.1,

ak ≤
pξβ[µγn(s)− µ+ 1− α]

kγ(s)[1 + β(pξ − 1)] {µ[γn(s)(k − 1)(λ− ω) + k]n + (1− µ)Bk(n)}
(k ≥ 2).

By setting

µk ≤
pξβ[µγn(s)− µ+ 1− α]

kγ(s)[1 + β(pξ − 1)] {µ[γn(s)(k − 1)(λ− ω) + k]n + (1− µ)Bk(n)} ak
and

µ1 = 1−
∞∑
k=2

µk.

So that

µk =
pξβ[µγn(s)− µ+ 1− α]kγ(s)[1 + β(pξ − 1)] {µ[γn(s)(k − 1)(λ− ω) + k]n + (1− µ)Bk(n)}
kγ(s)[1 + β(pξ − 1)] {µ[γn(s)(k − 1)(λ− ω) + k]n + (1− µ)Bk(n)} pξβ[µγn(s)− µ+ 1− α]

.

We therefore notice that we can express fk in terms of (3.6). Thus, fγ(z) =
∑∞
k=1 µkfk which

completes the proof.

3.1 Fekete-Szegǒ inequality for the class TγDλ,ω(α, β, ξ, µ; p : n)

In this section, the Fekete-Szegǒ inequality for functions fγ(z) belonging to the class TγDλ,ω(α, β, ξ, µ; p :
n) was established.

Theorem 3.5
If a function fγ(z) ∈ Tγ belongs to the class TγDλ,ω(α, β, ξ, µ; p : n) and ϕ ∈ R. Then,

|a3 − ϕa22| ≤
R[Ω2

2 − ϕRΩ1]

Ω1Ω2
2

Proof: From Equation 3.1,

a2 =
pξβ[µγn(s)− µ+ 1− α]

2γ(s)[1 + β(pξ − 1)] {µ[γn(s)(λ− ω) + 2]n + (1− µ)B2(n)}
(k = 2); and

a3 =
pξβ[µγn(s)− µ+ 1− α]

3γ(s)[1 + β(pξ − 1)] {µ[γn(s)2(λ− ω) + 3]n + (1− µ)B3(n)}
(k = 3).

So that
a3 − ϕa22 =

pξβ[µγn(s)− µ+ 1− α]

3γ(s)[1 + β(pξ − 1)] {µ[γn(s)2(λ− ω) + 3]n + (1− µ)B3(n)}

−ϕ
{

pξβ[µγn(s)− µ+ 1− α]

2γ(s)[1 + β(pξ − 1)] {µ[γn(s)(λ− ω) + 2]n + (1− µ)B2(n)}

}2

⇒ |a3 − ϕa22| ≤
∣∣∣∣ RΩ2
− ϕR2

Ω2
1

∣∣∣∣ =

∣∣∣∣RΩ2
1 − ϕR2Ω2

Ω2Ω2
1

∣∣∣∣
where Ω1 = 2γ(s)[1 + β(pξ − 1)] {µ[γn(s)(λ− ω) + 2]n + (1− µ)B2(n)} ;

Ω2 = 3γ(s)[1 + β(pξ − 1)] {µ[γn(s)2(λ− ω) + 3]n + (1− µ)B3(n)} ; and

R = {pξβ[µγn(s)− µ+ 1− α]} .
Therefore,

|a3 − ϕa22| ≤
R[Ω2

2 − ϕRΩ1]

Ω1Ω2
2

which completes the proof.
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3.2 Radius Properties for class TγDλ,ω(α, β, ξ, µ; p : n)

We now obtain the radii of starlikeness, convexity and close to convexity for the class Radii of
close-to-convexity, starlikeness and convexity for fγ ∈ TγDλ,ω(α, β, ξ, µ; p : n) in this section as
follows:

Theorem 3.6
Let the function fγ(z) be in the class TγDλ,ω(α, β, ξ, µ; p : n); then fγ(z) is starlike of order
ρ (0 ≤ ρ < 1) in |z| < r1, where

r1 = infk

{
(1− ρ)kγ(s)[1 + β(pξ − 1)] {µ[γn(s)(k − 1)(λ− ω) + k]n + (1− µ)Bk(n)}

pξβγ(s)[µγn(s)− µ+ 1− α](k − ρ)

} 1
k−1

k ≥ 2.

Proof: It suffices to show that
∣∣∣ zf ′γ(z)fγ(z)

− 1
∣∣∣ < 1− ρ.

That is, ∣∣∣∣zf ′γ(z)

fγ(z)
− 1

∣∣∣∣ =

∣∣∣∣z −∑∞k=2 γ(s)kakz
k − z +

∑∞
k=2 γ(s)akz

k

z −
∑∞
k=2 γ(s)akzk

∣∣∣∣∣∣∣∣−∑∞k=2 γ(s)(k − 1)akz
k−1

1−
∑∞
k=2 γ(s)akzk−1

∣∣∣∣ ≤ ∑∞k=2 γ(s)(k − 1)ak|z|k−1

(1−
∑∞
k=2 γ(s)ak|z|k−1)

< 1− ρ

It follows that
∞∑
k=2

γ(s)
(k − ρ)|z|k−1

(1− ρ)
≤ 1

ak

|z|k−1 ≤ (1− ρ)kγ(s)[1 + β(pξ − 1)] {µ[γn(s)(k − 1)(λ− ω) + k]n + (1− µ)Bk(n)}
pξβγ(s)[µγn(s)− µ+ 1− α](k − ρ)

.

Equivalently,

|z| ≤
{

(1− ρ)kγ(s)[1 + β(pξ − 1)] {µ[γn(s)(k − 1)(λ− ω) + k]n + (1− µ)Bk(n)}
pξβγ(s)[µγn(s)− µ+ 1− α](k − ρ)

} 1
k−1

; |z| < r1.

Thus,

r1 = infk

{
(1− ρ)kγ(s)[1 + β(pξ − 1)] {µ[γn(s)(k − 1)(λ− ω) + k]n + (1− µ)Bk(n)}

pξβγ(s)[µγn(s)− µ+ 1− α](k − ρ)

} 1
k−1

k ≥ 2

which completes the proof.
Theorem 3.7

Let the function fγ(z) be in the class TγDλ,ω(α, β, ξ, µ; p : n), then fγ(z) is convex of order ρ (0 ≤
ρ < 1) in |z| < r2, where

r2 = infk

{
(1− ρ)kγ(s)[1 + β(pξ − 1)] {µ[γn(s)(k − 1)(λ− ω) + k]n + (1− µ)Bk(n)}

k(k − ρ)pξβγ(s)[µγn(s)− µ+ 1− α]

} 1
k−1

k ≥ 2

(3.7)
Proof : It suffices to show that

∣∣∣ zf ′′γ (z)

f ′γ(z)

∣∣∣ < 1− ρ, |z| < r2.

Since ∣∣∣∣zf ′′γ (z)

f ′γ(z)

∣∣∣∣ =

∣∣∣∣∑∞k=2 γ(s)k(k − 1)akz
k−1

1−
∑∞
k=2 kγ(s)akzk−1

∣∣∣∣ ≤ ∑∞k=2 γ(s)k(k − 1)ak|z|k−1

1−
∑∞
k=2 γ(s)kak|z|k−1

< 1− ρ

To prove the Theorem, we must show that∑∞
k=2 γ(s)k(k − 1)ak|z|k−1

1−
∑∞
k=2 γ(s)kak|z|k−1

< 1− ρ
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∞∑
k=2

γ(s)k(k − ρ)ak|z|k−1 ≤ 1− ρ.

And by Theorem 3.1, we obtain

|z|k−1 ≤ (1− ρ)kγ(s)[1 + β(pξ − 1)] {µ[γn(s)(k − 1)(λ− ω) + k]n + (1− µ)Bk(n)}
k(k − ρ)pξβγ(s)[µγn(s)− µ+ 1− α]

or

r2 = infk

{
(1− ρ)kγ(s)[1 + β(pξ − 1)] {µ[γn(s)(k − 1)(λ− ω) + k]n + (1− µ)Bk(n)}

k(k − ρ)pξβγ(s)[µγn(s)− µ+ 1− α]

} 1
k−1

which completes the proof.
The result is sharp for the function fγ(z) given by

z − pξβγ(s)[µγn(s)− µ+ 1− α]

γ(s)[1 + β(pξ − 1)] {µ[γn(s)(k − 1)(λ− ω) + k]n + (1− µ)Bk(n)}
zk, k ≥ 2.

Theorem 3.8
Let the function fγ(z) be in the class TγDλ,ω(α, β, ξ, µ; p : n). Then fγ(z) is closed-to-convex of
order ρ (0 ≤ ρ < 1) in |z| < r3, where

r3 = infk

{
(1− ρ)[1 + β(pξ − 1)] {µ[γn(s)(k − 1)(λ− ω) + k]n + (1− µ)Bk(n)}

pξβ[µγn(s)− µ+ 1− α]

} 1
k−1

k ≥ 2.

(3.8)
The result is sharp for the function fγ(z) given by

z − pξβγ(s)[µγn(s)− µ+ 1− α]

γ(s)[1 + β(pξ − 1)] {µ[γn(s)(k − 1)(λ− ω) + k]n + (1− µ)Bk(n)}
zk, k ≥ 2.

Proof : It suffices to show that |f ′γ(z)− 1| = 1− ρ (0 ≤ ρ < 1 for |z| < r3.
Thus,

|f ′(z)− 1| =

∣∣∣∣∣1−
∞∑
k=2

kγ(s)akz
k−1 − 1

∣∣∣∣∣ =

∣∣∣∣∣−
∞∑
k=2

kγ(s)akz
k−1

∣∣∣∣∣ ≤
∣∣∣∣∣
∞∑
k=2

kγ(s)akz
k−1

∣∣∣∣∣ .
Since |f ′γ(z)− 1| ≤

∞∑
k=2

γ(s)kak|zk−1| ≤ 1− ρ if we divide bothsides by (1− ρ), then,

∞∑
k=2

γ(s)

(
k

1− ρ

)
ak
∣∣zk−1∣∣ ≤ 1. (3.9)

By coefficient estimates of fγ(z) ∈ TγDλ,ω(α, β, ξ, µ; p : n) given by Theorem 3.1 above, (3.8) holds
if

kγ(s)|z|k−1

(1− ρ)
≤ kγ(s)[1 + β(pξ − 1)] {µ[γn(s)(k − 1)(λ− ω) + k]n + (1− µ)Bk(n)}

pξβ[µγn(s)− µ+ 1− α]
k ≥ 2.

We find (k − 1)th root of both sides and multiply through by the inverse of kγ
(1−ρ) so that

|z| ≤
{

(1− ρ)[1 + β(pξ − 1)] {µ[γn(s)(k − 1)(λ− ω) + k]n + (1− µ)Bk(n)}
pξβ[µγn(s)− µ+ 1− α]

} 1
k−1

.

Hence,

r3 ≤
{

(1− ρ)[1 + β(pξ − 1)] {µ[γn(s)(k − 1)(λ− ω) + k]n + (1− µ)Bk(n)}
pξβ[µγn(s)− µ+ 1− α]

} 1
k−1

.
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generalised Sǎlǎgean operator, General Mathematics 15, 4, 69–82 (2007).

[13] Najafzadeh, Sh. & Vijaya, R. Application of Sǎlǎgean and Ruscheweyh operators on univalent
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