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Abstract

The paper introduces a new distribution called the Lomax-Weibull distribution using the
competing risk approach of constructing lifetime distributions. Some structural and mathematical
properties of the proposed lifetime distribution are considered. Parameter estimation of the
Lomax Weibull distribution is obtained using maximum likelihood estimation. The applicability
and flexibility of the new distribution in lifetime analysis is illustrated with the aid of two real
life examples.
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1 Introduction

Classical distributions such as Weibull and Lomax distributions ([22], [23] and [11]) have been
known to be incapable of fitting data from complex systems with non-monotonic aging phenomena.
This reason has led to construction of new distributions for some years using several approaches
presented in [16]. One of the approaches involves mixing two or more lifetime distributions to
obtain the n-fold competing risk models for modelling monotonic and nonmonotonic failure data
whicih could be obtained from complex systems used in diverse scientific fields. Several researchers
have developed lifetime distributions using the method of constructing competing risk models. For
a series system with i'" (i=1,2,..,n) independent components following different distributions, the
distribution of the system is given as;

F(z)=1- H S;(x), (1.1)
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where S;(z) is the survival function of the distribution of the ‘" component. New distributions
have been proposed using equation (1.1) by researchers for n = 2. These distributions have been
found useful in modeling lifetime data analysis. Examples are the Additive Weibull distribution
([24]), modified Weibull distribution ([19]) and log-logistic Weibull distribution ([15]). Other
generalized and modified Lomax distributions such as Gumbel Lomax distribution ([21]), Poisson
Lomax distribution ([2]), transformer Lomax distributions ([4]), Rayleigh Lomax distribution ([8]),
transmuted Lomax distribution ([5]), McDonald Lomax distribution ([10]), gamma Lomax distribution
([7]), Odd Lindley-Lomax model ([3]) and power Lomax distribution ([17]) have been developed
using different constructing methods discussed in [16].

The paper proposes a new lifetime distribution called the Lomax-Weibull (LW) distribution. The
distribution can model monotonic and nonmonotonic failure properties of complex system. Its
applications can be employed in engineering, finance and other scientific areas where lifetime analysis
are needed. The flexibility and usefulness of the LW distribution in fitting lifetime data is presented
in the paper.

The organization of the paper is presented as follows. Section 2 presents the construction of the
LW distribution. Section 3 presents the quantile functions, momemts and mean deviattions of the
LW distribution. In section 4, statistical properties such as order statistics, entropy measures and
residual lifetimes for the new distribution are presented. Section 5 presents parameter estimation
of the LW distribution. Section 6 presents applications of the LW distribution in comparison with
some known distribution in literature using two lifetime data sets. In section 7, the conclusion of
the paper is presented.

2 Construction of the Lomax-Weibull (LW) distribution

The section presents the construction of the LW distribution. Suppose a series system has two
independent components, for which one component follows the Lomax distribution and the second
component follows the Weibull distribution. Employing equation (1.1), the cdf of the LW distribution
is given as;

Frw(zia, 8,7, A) =1 — (14 Bz) % 2> 0,a>0,3> 0,7 >0,A >0, (2.2)

Differentiating equation (2.2) with respect to x, the probability density function (pdf) of the LW
distribution is given as

Frw (@) = (aB + 22 (1 + Ba)) (1 + Bx) (@ FDem", (2.3)
The corresponding survival and hazard functions are given by
Spw(x) = (1+ Bz) "% (2.4)

and
hrw (z) = (af + vy x> 11 + Bz))(1 4 Bx)~L. (2.5)

where Sy (x) and hrw (z) denote the survival and hazard functions of the LW distribution.
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Figure 1: LW Density function Figure 2: LW Hazard function

Figures (1) and (2) show the shapes of the density and hazard function at different combinations
of parameter values of the LW distribution. It is seen in Figure (2) that the LW distribution exhibits
different failure rates shapes that can be experienced in real lifetime events such as increasing,
decreasing, J-shaped and bathtub-shaped failure patterns.

It is necessary to expand the pdf of the LW distribution to allow for easy manipulation of some
mathematical properties of the distribution. It is known that

3 s n4j5—1\ .
(1+2z)™"= Z(_UJ( : )x].
j=0 J
It follows that
(1+ Bx)~(etl) = Z;’io(_l)j (a;_rj)gjxj,
Substituting the resulting expression into equation (3),

Jow(z) = Z Q;(aBa? + yAaI A1 + Ba))e ™ (2.6)
3=0
where Q; = (—1) (a;'j)ﬁj. Equation (2.6) will be employed in the simplications of some of the
properties of the LW distribution.

3 Quantile function, moments and mean deviations

3.1 Quantile function

If ¢ € (0,1), then the quantile function of the LW distribution can be derived from the solution of
FLw(.’Iq) =q. (37)
Substituting equation (2.2) into equation (3.7), we obtain which results in;

(1+ 59cq)’o‘e’7””3 =1-gq,
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which, further, simplifies as
alog(l+ Bzy) + 7:52 +log(1 —q) = 0. (3.8)

The root, x4, gives the unique solution of the nonlinear equation for every ¢ € (0,1). Equation (3.8)
can be used for random number generation at different parameter values of a« > 0,3 > 0, > 0 and
A > 0 of LW distribution as presented in Table 1.

Table 1: Quantile values for the LW distribution for different parameter sets

a=07,8=03, a=2,8=05, a=05,8=15, a=04,8=5, a=8,F=04,
a 7 =0.1,1=0.9 y=141=7 y=18A=3 7 =06A=1 v =0.6A=0.8
1 0.3383 0.1082 0.1470 0.0437 0.0237
2 0.7648 0.2360 0.2886 0.1005 0.0525
3 1.2980 0.3882 0.4048 0.1751 0.0865
4 1.9778 0.5534 0.5034 0.2749 0.1268
5 2.8704 0.6878 0.5928 0.4109 0.1758
6 4.0933 0.7840 0.6796 0.6016 0.2376
7 5.8784 0.8603 0.7695 0.8815 0.3198
8 8.7773 0.9305 0.8715 1.3272 0.4404
9 14.6747 11.0085 1.0077 2.1852 0.6594

3.2 Raw moment

Let the r*" raw moment of variable X following the LW distribution be given as E[X7,], then it
can be obtained by the relation given as

ElXiw] = / z" fow (z)da. (3.9)
0
Substituting equation (2.3) into equation (3.9), we obtain
BIXy] = X000 Q5 fy7 (@B’ + yhamHHA (1 4 Br))e " da

Letting m = ya*, then

afl (ZHH) T (1) AT (M 4
XLW ZQ [ (r+1+1 )+ (’Y)\Ti:j ) (,VrﬂJrl ) (3.10)

gives the r*" raw moments of the LW distribution. Presented in Table 2 is the first four moments
of the LW distribution, its kurtosis and skewness.
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Table 2: Moments of LW distribution for different parameter values

Quantities Parameters vy=05A=15 ~v=15A=15 ~v=05A=05 y=1LA=1

I a=1=3 0.5049 0.3404 0.2671 0.3856
773 0.6187 0.2323 04145 0.4096
143 1.1908 0.2305 2.1631 0.7952
144 3.0263 0.2926 27.1320 2.3132
Kurtosis 10.3751 7.3686 212.1901 20.3575
Skewness 2.3292 1.8149 9.2990 3.2719
7 a=18,0=0.7 0.6819 0.4408 0.3464 0.5850
o 0.8945 0.3323 0.5262 0.5850
143 1.6993 0.3420 2.0546 1.1067
m 4.1551 0.4379 17.3898 3.0055
Kurtosis 7.4083 5.7234 90.1875 13.7968
Skewness 1.7884 1.4400 6.1458 2.5734
I a=18,0=3 0.2788 0.2205 0.1549 0.2280
723 0.2170 0.1102 0.1104 0.1498
143 0.3059 0.0874 0.2581 0.1980
L 0.6253 0.0938 1.6617 0.4286
Kurtosis 18.9364 11.0092 203.1463 29.9329
Skewness 3.2286 2.3500 8.4389 3.8952
7 a=02,=0.7 1.3005 0.6518 0.7653 0.9134
142 2.5831 0.6348 3.4321 1.7088
143 6.6415 0.7941 39.6819 6.8668
g 20.5680 1.1921 882.7319 18.6640
Kurtosis 4.5898 4.5013 95.3207 9.6096
Skewness 1.1431 1.1100 6.8090 2.0892

Dimensional plots for skewness and kurtosis for the LW distribution are presented in Figures
(3) and (4) for some parameter values.

Figure 3: LW Skewness(«,0.6,7,7) Figure 4: LW Kurtosis(0.08,5,0.06,))
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3.3 Incomplete moment, conditional moment and moment generating
function

The conditional moment for the LW distribution is derived using
(XT/X >t ft x fLW )
This is given as
BT (0) | T (1 1,09) | B0 (55 1,40

[ENES [ [ENES )
A

Ay X O ol

E(X"/X >t)= S—Z

(3.11)
where I', (s,m) = [ 2*~le %dx.

The moment generating function of variable X following the LW distribution is given as

wa@%—ﬁmeﬁﬁwwMz—Ejﬁqﬂxm@H+VMWA1a+@@w“*“¢n (3.12)
j=0

Substituting €' = Y72 (“", into equation (3.12), we obtain

k+j+1 k+j k+j+1
o ok aﬂf( A ) r(A +1) 5r(7A +1)
MXLW(t) = § Qj E m ktjt+1 =+ ktj + i+l (313)
=0 k=0 k! AYTX v Yo

The incomplete moment of variable X following the LW distribution can be obtained by the relation
given as

Ix, () = [y " frw(z)da.

This is obtained as

affly (B ) T (B +1,91%) BT (PHE 41,912
IXLW ZQ l(,ywrwrl )+ l( )\,y% )+ l( ’;\7‘+i+1 ) , (314)

3.4 DMean deviations

Mean deviations are measures of total variations of data in a given set from the mean and median
of the data set. The mean deviations about the mean and median for any continuous lifetime
distribution are defined as

MD(p) = [y & — plf(z)de = 2uF (p) — [ o f(z
and
MD(M) = [ |z — M|f(z)dz = p — fOMa:f(x)dx

where p and M are the mean and median of the distribution respectively. The mean deviations
about the mean and median for the LW distribution are given as

N | @B () T (B L) BT (P 4 1
MDLw(LL) _ —2ZQj l ( 7+J+1 ) + l ( A — ) l ( 7+J+1 )
j=0 Ay v Y

+2u {1 1+ ﬂu)*“eﬂﬂ*} . (3.15)
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and

afly (BHEL AMA) Ty (S + 1,yMY) BTy (B 1,y
M‘DLW - _229 (7r+1+1 ) + : ( S "y¥ ) ( 7r+1+1 )

. (3.16)

where I'; (S,m) — f()m 5 le=2dz.

4 Order statistics, entropy measure and residual lifetimes

4.1 Order statistics

Let X(,) be the r*" order statistics for LW distribution. Suppose a random sample of size m be
given as X1, Xo, ..., X, , then pdf of r** order statistics for the class can be obtained from the
general expression given by

from(x) = %[FLW(Q:)]T_IH — Frw(@)]" " fow (z).
Substituting the expansion of [1 — Fry (x)]™ " into the above expression, we obtain

f,.;m<x>=m2 (" @l )

=0

Substituting equations (2.2) and (2.3) into equation (4.17) and further simplification gives

From(@) = (fimz ) (m o k) <r+ . 1)

=0 k=0
x (aff + Az N1 + Bz)) (1 + Br) [ Detl (v (4 1g)

The corresponding cdf to equation (4.18) is given as

Fropn( zm:mz_:( )( k_r)( 1)k [1—(1+Bz) “*W}T%. (4.19)

r=1 k=0

The associated p*" raw moment of the " order statistics for LW distribution is given as

B(XP,,) = Miili i+ (m o k) <7‘ k- 1)

j=0 i=0 k=0
((i+1)a+j>6j
J

4.2 Measures of Entropies

QBF (p-‘ri—‘rl) T (p+j +1 ﬂ].—‘ (p+]+1 + 1)

pEjTl 2] FESES (4.20)
A+ [+ D] * [(Z + 1]

Two measures of entropies commonly used in lifetime analysis are the Shannon and Renyi entropies.
Respectively, they are defined as

Ir(w) = qigylogfy. f2(@)de;w > 0,0 # 1
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and

Hs(f) = El-log(f(X)] = = J;~ f(2)logf (x)dx
The Renyi and Shannon entropies for the LW distribution are given as
j+i(A—1)+1
B Gy

i=135=0 wry A

Hs(f)=—109(a)_mg(5)+i i (’f) (=1 (’%)}(Xm_lm)

2 (0%

s z+1
+(a+1) Z B(X') +~E(X?) (4.22)
=1

where ), ; = (‘:) (i_“(j“_l))ﬂj. The quantities defined by E(Xio"l)*k), E(Xi) and E(X)‘) can
be obtained for the Shannon entropy using equation (3.10).

4.3 Residual and reversed residual lifetimes

The 7" moment of the residual and reversed residual lifetime of random variable X following a LW
distribution can be obtained from

me(t) = B[(X =) /X > 1] = gk [7(0 — )" f()do
and

M,(t) = E[(t = X)" /X < 1] = 75 [y (t —2)" f(w)da.
The resulting expressions are given as

T

L ifT ioo ,
0= e 0 (1) e

=0
[aﬂfu (5= 9Y) | Du (5 + 198 | B (P + mﬂ)} (4.23)
rritl—i i Thitl—i :
)\'y Py YN ~y X
and
1 I
M,.(t) = T'H t! Q
0= e 2 ()
aBDy (MHESE ) T (Lg Faaf) AT ]
rjtl—i + rj—i + rritl—i ( 2 )
)\’7 A vy Y X

5 Parameter estimation of LW distribution

This section presents the maximum likelihood estimation for estimating parameters Q = («, 8,7, \)
in the LW distribution. Suppose a random sample z1, xs, ..., T, is given, then the total log-likelihood
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function of the random sample is given as;

T, = ;log(ab’ + )1+ Bry)) — (o + 1)2109(1 + Bai) — ;m?. (5.25)

Obtaining the components of the score function A = (%, %, %, %, %) which gives the first

partial derivatives of (5.25) with respect to the four parameters, we have

oV, __
ba T E:L:l aB-&-’y/\a:?[zl(l—&-ﬁxi) - (Oé + 1) Z?:l lOg(l + 6$1)7

T, _ Zn otz ! . Zn x;

oB i=1 a,BJr'y)\w;\_l(lJrﬁwi) i=1 (1+px;)’
oY, _ n /\z?_l(ljtﬁwi) . n A
77" = i1 af+yrz; ~t (14+Ba;) 2z %

and

oY, _ yon yo} (I Bri) ty ey (1 Bai)log(wi) S )
22 =1 aBtyrae; " (1+8w;) =1

OYy OXp 91y 9Ly 9Xn)T are equated to zero and

The resulting derivatives given in An(Q) = (W’ W, e ) ow Tp

are solved iteratively by numerical optimization method in R package to obtain &, B, 4 and A
Hypothesis testing and interval estimation for @ = («,,7,A) is carried out by deriving the
asymptotic confidence intervals using Fisher’s information matrix. Under standard regularity
condition, the asymptotic distribution of \/ﬁ(fl — Q) is a multivariate normal distribution with
mean 0 and variance-covariance matrix J,,1(Q) with J,(Q) = lim, . n~1L,(Q) ([15]). These
statistics are required for approximating confidence intervals for 2. The total observed information
matrix I,,(Q) is given as
Aaa Aa,ﬁ Aoc'y Aa)\

Ags Apy Apa

I,(Q) = — g
( ) Aw 2%
AA

100(1 — ¥)% confidence interval for «, 3, and A is given by & + Z% Ve, B £ Z%Hjlgg, ¥+
Z%\/jW and \ + Z% vV jM, where Z% is the standard normal upper percentile.

6 Lifetime data analysis

This section pesents two real data sets to illustrate the usefulness and applicability of the Lomax-
Weibull distribution in comparison with some modified Lomax distributions in literature. The first
data set is 63 service times of aircraft windshield for 1000 hours obtained from [12] and have been
analysed by several authors in literature, recently by [3]. The data set is given as;

0.046, 1.436, 2.592, 0.140, 1.492, 2.600, 0.150, 1.580, 2.670, 0.248, 1.719, 2.717, 0.280, 1.794, 2.819,
0.313, 1.915, 2.820, 0.389, 1.920, 2.878, 0.487, 1.963, 2.950, 0.622, 1.978, 3.003, 0.900, 2.053, 3.102,
0.952, 2.065, 3.304, 0.996, 2.117, 3.483, 1.003, 2.137, 3.500, 1.010, 2.141, 3.622, 1.085, 2.163, 3.665,
1.092, 2.183, 3.695, 1.152, 2.240, 4.015, 1.183, 2.341, 4.628, 1.244, 2.435, 4.806, 1.249, 2.464, 4.881,
1.262, 2.543, 5.140.

The second set consist of data obtained on the breaking stress of 66 carbon fibres of 50 mm length
measured in GPa ([13]). This data set is obtained in the article, recently, published by [8] and is
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given as follows;

0.39, 0.85, 1.08, 1.25, 1.47, 1.57, 1.61, 1.61, 1.69, 1.80, 1.84, 1.87, 1.89, 2.03, 2.03, 2.05, 2.12, 2.35,
241, 2.43, 2.48, 2.50, 2.5, 2.55, 2.55, 2.56, 2.59, 2.67, 2.73, 2.74, 2.79, 2.81, 2.82, 2.85, 2.87, 2.88,
2.93, 2.95, 2.96, 2.97, 3.09, 3.11, 3.11, 3.15, 3.15, 3.19, 3.22, 3.22, 3.27, 3.28, 3.31, 3.31, 3.33, 3.39,
3.39, 3.56, 3.60, 3.65, 3.68, 3.70, 3.75, 4.20, 4.38, 4.42 , 4.70, 4.90.

Some discrepancy tests for comparing the different distributions are employed to determine the
distribution that best fits the data sets. They include the information criteria and goodness-of-tests.
The AdequacyModel package in R software is used to obtain the estimates of the distributions, AIC,
CAIC, BIC, HQIC, Cramer von Mises (W), Anderson darling (A) and Kolmogorov-Smirnov (KS)
tests. The distributions to be compared include

(i) Kumaraswamy-Lomax (KwL) distribution ([6])

F(z) =1~ (1~ (1~ (1+pBz)"*))"
(ii) Gumbel-Lomax (GumbL) distribution ([20])
Fla) = e (O +8) =)

(iii) Gompertz-Lomax (GompL) distribution ([14])

Fle) = 1 - e-30-0+07™)
(iv) Weibull-Lomax (WL) distribution ([21])

F(z) = 1 — ¢ ((Hp)" =1
(v) Lomax distribution ([11])

F(z)=1- (14 pz)~.

Table 3: Estimates and loglikelihood values for first data set

e a B v A
Distribution (std. error) (std. error) (std. error) (std. error)
0.1229 2.3118 0.0963 2.3029 195,798
Lw (0.2198) (5.3825) (0.0669) (0.4495) 95.728
7.3698 0.0106 1.6921 21.3306 202151
KwL (7.8564) (0.0069) (0.2089) (26.9112) 02.1840
92.2248 0.0395 3.7636 3.8292 01507
GumbL (75.1108) (0.0345) (0.7231) (1.0840) 01.3078
GomnL 1.4491 0.2412 2.8045 0.4989
omp (11.1928) (0.6081) (21.4862) (3.9267)
. 3.8634 0.3463 0.1236 0.9165
W (3.5585) (0.8994) (0.2747) (0.4210)
33.9859 0.0143 B B
Lomax (26.6808) (0.0114)
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Table 4: Information criteria and goodness-of-fit values for first data set

KS
Distribution AIC CAIC BIC HQIC W A (p-value)
0.0589

LW 203.7284 204.4180 212.3009 207.1000 0.0286 0.2036
(0.9721)
210.184 210.8737 218.7 21 7 12 7301 0-1196
KwL 0.1840 0.873 8.7566 3.555 0.1286 0.730 (0.3035)
0.1095
GumbL 209.3079 209.9975 217.8804 212.6795 0.1138 0.6865 (0.4070)
0.0676
GompL 204.2728 204.9124 212.8453 207.6444 0.0383 0.2550 (0.9166)
0.0662

WL 204.2340 204.9237 212.8065 207.6056 0.0354 0.2407
(0.9285)
0.2093
Lomax 219.7980 223.9979 228.0842 225.4837 0.1951 1.1807 (0.0067)

The following approximate intervals; (0.1229 £+ 0.4308), (2.3118 &+ 10.5497), (0.0963 + 0.1311)
and (2.3029 4 0.8810) give the 95% two-sided confidence intervals for «, 8, v and A respectively for
the first data set. At 5% level of significance, the critical value of KS test is 0.1713 which is used
to determine the distribution that will poorly fit the data.
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Table 5: Estimates and loglikelihood values for second data set
. o B 8l A )
Distribution (std. error) (std. error) (std. error) (std. error) ~2loglik
. 0.7532 0.0220 0.0146 3.7082 710706
W (14.6960) (0.4324) (0.0081) (0.4113) :
10.2457 0.0231 4.8211 27.9891 L8901
KwL (8.6902) (0.0193) (0.9110) (26.3127) 174.829
76.1144 0.0465 12.8927 3.0042 | .
GumbL (45.9723) (0.0288) (3.0099) (1.3000) 88.537
ComoL 1.0026 0.9097 4.7492 0.0081 .
omp (0.5869) (0.4260) (2.5570) (0.0051) 71.3840
3.1884 0.3884 0.0107 1.8597 —_
WL (2.6385) (0.2965) (0.0099) (0.9117) 5448
44.8534 0.0081 - - 267 9507
Lomax (27.3031) (0.0049) 67.280
Table 6: Information criteria and goodness-of-fit values for second data set
KS
Model AIC CAIC BIC HQIC W A (p-valuc)
0.0790
LW  179.0707 179.7264 187.8293 182.5316  0.0632  0.3972
(0.8050)
0.0977
KwL 1828206 1834853 1915882 1862005 01353 07263 ('san
0.1441
GumbL 1965373  197.1930  205.2059  199.9983  0.3171 L7268 (0 10g0)
0.0847
GompL  179.3840  180.0307 1881426 1828449  0.0674 04348 (o7ayy
0.0867
WL 1795448 180.2005  188.3034  183.0057  0.0726 04665 (7o)
0.3584
Lomax 2712807 2714712 275.6600  273.0112 02490 13514 (000
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The 95% two-sided confidence intervals for «, §, v and X for the second data set are (0.7532 &
128.8042), (0.0220 + 0.8475), (0.0146 4 0.0159) and (3.7082 £ 0.8061) respectively with the critical
value of KS test as 0.1674 at 5% level of significance.
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Figure 5: Densities for first data set Figure 6: Densities for second data set

The superiority of the LW distribution oveer the other compared distributions is evidence in
the values of the discrepancy criteria used. The LW distribution has the lowest values of AIC,
CAIC, BIC, HQIC, W, A, KS and highest p-values for KS test in the two data sets.
Hence, the LW distribution best fits the data sets than the other distribution in comparison with
it.

7 Conclusion

The Lomax-Weibull (LW) distribution as a new four-parameter lifetime distribution has been
introduced and investigated in this paper. The hazard function of the LW distribution exhibits very
flexible property in handing monotonic and nonmonotonic lifetime data. Closed form expressions
are obtained for the moments, quantile function, mean deviations, residual and reversed residual
liifetimes, order statistics and its distribution as well as measures of entropies. Parameter estimates
for the LW distribution are achieved by maximum likelihood estimation technique. Lastly, the
applicability and usefulness of the LW distribution is illustrated using two lifetime data sets obtained
from literature.
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