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Abstract

Multiple imputation (MI) is a commonly applied method of statistically handling missing
data. It involves imputing missing values repeatedlyto account for the variability due to
imputations. There are different techniques of MI that have proven to be effective and available
in many statistical software packages. However, the main problem that arises when statistically
handling missing data, namely, bias, still remains. Indeed, as multiple imputation techniques
are simulation-based methods, estimates of a sample of fully complete data may substantially
vary in every application using the same original data and the same implementation method.
Therefore, the uncertainty is often under- or overestimated, exhibiting poor predictive capability.
A new approach of MI based on regression method is presented. The proposed approach
counsists of constructing a possible lower and upper bound around the sum of square of residuals
(SSE) that would have been obtained in a complete case (that is, if there were no missing
data). Then, iteratively implement regression imputation (RI) to replace the missing values
and compute a new SSE with fully completed data. If the new SSE does not fall within
the constructed bounds, the RI method is repeated until the SSE estimated falls into those
bounds.The SSEs of the prediction are used to assess the performance of the proposed approach
compared to expectation-maximization (EM) imputation and multiple imputation by chained
equations (MICE). The results indicate that the three methods work reasonably well in many
situations, particularly when the amount of missingness is low and when data are missing at
random (MAR) and missing completely at random (MCAR). However, when the proportion of
missingness is severe and the data are missing not at random (MNAR), the proposed method
performs better than MICE and EM algorithms.
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1 Introduction
Multiple imputation (MI) is a highly praised simulation-based method to provide consistent and

asymptotically efficient estimates for the statistical analysis of missing data. This method, first
proposed by Rubin (1986) to impute missing data while solving some of issues, relies on the efficiency
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of classical missing data handling methods such as case deletion and single imputation. Indeed,
case deletion and single imputation are known to be sensitive to missing data mechanisms (MCAR,
MAR, and MNAR) and to underestimate the standard error,leading to an overestimation of test
statistics (Schafer and Graham, 2002; Rubin, 1996). Multiple imputation addresses these issues and
provides more consistent estimates by increasing the number of imputations to reduce bias in the
standard error introduced by the additional uncertainty due to imputations (Allison, 2002; Rubin,
1996; Schafer and Graham, 2002); Little and Rubin, 2002). In addition, unlike other methods,
MI tends to be less sensitive to the different missing data mechanisms: missing completely at
random (MCAR), missing at random (MAR), and missing not at random (MNAR) (Rubin, 1987).
Various methods of multiple imputation have been developed to handle missing data in different
circumstances. These methods include the expectation-maximization (EM) algorithm, multiple
imputation by chained equations (MICE) based on a MonteCarlo Markov chain (MCMC) algorithm,
the imputation-posterior (IP) method and the multiple imputation bypredictive mean matching
(PMM) technique (Dempster et al., 1977; Rubin, (1986, 1987); Oudshoornet al., 1999); King et al.,
2001; White et al., 2011; Azur et al. 2011; Morris et al.,2014; and Kleinke, 2018). However, as
multiple imputation techniques are inherently simulation-based methods, estimates of a sample of
multiplyimputed data may substantially vary in every application using the same original data and
the same implementation method (Nakai and Weiming, 2011; Hippel, 2018). Therefore, uncertainty
is often under- or overestimated, exhibiting poor predictive capability. The determination of the
full additional uncertainty is not straightforward. In addition, the discrepancy between the true
and the estimated parameters becomes considerably large as the fraction of missing data increases.
A possible reduction in this bias requires much more imputation, which requires more resources to
generate, store and analyze the multiplyimputed data.

The present work proposes a new MI approach that addresses these issues by avoiding or at least
reducing bias and improving precision. In contrast to existing MI techniques, the proposed approach
consists of constructing a possible lower and upper bound around the sum of square of residuals
(SSE) that would have been obtained in a complete case (that is, if there were no missing data).
Then,iteratively implement regression imputation (RI) to replace the missing values and compute a
new SSE with fully completed data. If the new SSE does not fall within the constructed bounds, the
RI method is repeated until the SSE estimated falls into those bounds. For a multiple imputation
process, this procedure is repeated for a predefined number of times. The rest of this paper is
organized as follows: Section 2 provides a brief description of MICE and EM algorithms and
presents the proposed method with a detailed discussion of the framework. An illustrative example
using real data and the conclusion are given in Sections 3 and 4, respectively.

2 Methodology
2.1 Brief Description of MICE and EM Algorithms

The MICE procedure fits a regression model for each variable having missing data and uses fully
observed variables as covariates. In cases where all variables have missing values, the procedure
initially fills in all missing variables at random and then regresses each missing variable on the
other fully observed variables. Missing values are imputed using posterior predictive distribution
(see Azur et al., 2011); Raghunathan et al., 2001; Van Buuren, 2007).

The EM algorithm (Dempsteret al., 1977) is a general method for obtaining maximum likelihood
estimates;it involves two steps: the E-step and the M-step. The first essentially calculates the
expected values of the complete-data sufficient statistics given the observed data, X, ; and current
estimates ©' = (1, 02). The second step computes new parameter estimates, @1 = (pi+1, 31

t
Tt
where H;H =3 - and U;Zl = %21;1 (xfj - M§+1)($§k - N?l) + 'Ygt‘ki} -
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The algorithm iteratively proceeds between the E-step and the M-step until the discrepancy
between O and ©'T! converges to a specified criterion. At the final E-step, imputed values are
supplied for missing values.

2.2 Proposed Method

Basically, imputation-based techniques involve replacing missing values using available observations.
The purpose of imputation is to provide consistent test statistics, which means providing a sampling
variance that is as close as possible to the sampling variance without missing data. The aim of
our method is to improve accuracy by constructing a limit around the true SSE even though it is
unknown.Indeed, the main idea is to restrict the imputation to values for which the SSE is as close
as possible to the true SSE. The method requires at least one fully observed variable and can be
applied to any missing data pattern. For the first step of iteration, a regression model is fitted for
each variable having missing values, and the estimation is restricted to individuals with observed
values. Then, missing values are replaced by the predicted values increased with residuals drawn
from a normal distribution. For the remaining iterations, new values are imputed with respect to
the observed values and current imputed values for the missing data. In each iteration, missing
values are replaced under the condition that the SSE obtained from the completed data set is within
the constructed interval. The proposed iterative method can be summarized as follows:

Step 1: Define the number of missing and non-missing variables.

Step 2: Fit a regression model with available observations:
}/jobs — 60 + EZ:l BkXObs + €
where Yj"bs are the available part of the missing variables Y;(j = 1,2,...,p); X2 are the
available part of the fully observed variables; p and q are the number of missing and nonmissing
variables, respectively; fy and i are the coeflicients of the regression; and ¢; is the residual
(€j ~ N(0,0?)). Compute the corresponding sum of squares of residuals, SSEgbs:

- J J ~
J Mobs 22 __ Mobs V7 0bs obs . J
SSEobs - Zi:l €5 = Zi:l Yij - Yij , 1=1,2, e Mgps

Step 3: Use the estimated regression coefficients B = BE, ijl to replace the missing values, Yj"”s
ymis = Bo + i B,_1X ™5 +¢; where ¢ is drawn from N(0,5;,v) with &; being the sum

of squares of residuals for observed data, and v is generated from a chi-square distribution
with df degrees of freedom.

Step 4: Construct an approximate limit around the true sum of squares of residuals. This is done as
follows: /_ ,
i. Compute: SSEﬁef = % with ¢; = nJ‘;LbS the sample size and nibs the number of non-
missing values in the corresponding variable Y;.
ii. Compute 6; = ¢;(1 —¢;) + 0.05. Then, generate a sequence r;; from ¢; — ¢;, with 0.01 as
the increment of the sequence.

, j
iii. Calculate the quantities SSE], = SST# with r; € R; (s is the length of the sequence).

Set B as the set of SSEJ, < the integer rounding of SSEief + %SSEief.
Set SSE]  as the mean of the set of B less than the integer rounding of SSE?, 2
Set SSE{p as the mean of the set of B greater than the integer rounding of round SSEﬁef.

Step 5: Fit a regression model for the fully complete data. If the corresponding
SSE7 does not fall into the interval [SSE], — SSE] ] repeat steps 2-4 until this condition
is met.
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Step 6: For each missing value, draw new ¢;; from N (0, 0;;.v), with &;; being the sum of squares of
residuals (SSE¥) for the current fully complete data, and add to the initial predicted value,
Yﬁ”s.
J

Step 7: Repeat stepsl-5 for each missing variable for a fixed number of times.

3 Results

The dataset used in this study is the estimate of government effectiveness collected by the Word
Bank for 213 countries in the world over 17 years. Originally, the dataset contained missing values,
but we took the complete observations available (n=182), almost ignoring the possible dependencies
of the missing values in the data. As variables, we used the estimate of government effectiveness
collected over 1996, 2003, 2007, and 2010, with the first two years being predictors and the remaining
two years being missing variables. Missing values were generated under the three main missing data
mechanisms (MCAR, MAR and MNAR) using R software with the “ampute” function included in
the MICE package. For purposes of demonstration, each missing value is imputed five times for
each missing variable using EM, MICE and the proposed method, and the results are presented in
Table 1 and 2.

Table 1 and2 show the sum of squares of residuals arising from the use of the three different
techniques under the condition that the data are MCAR, MAR and MNAR. Column 2 provides the
number of missing values in each variable (Y1 and Y2), while columns 3 and 4 give the constructed
bounds (lower and upper) around the true SSE in column 5. The three remaining columns show
the SSE arising from the three imputation techniques: MICE, EM and PM.

Table 1: Comparison of three imputation techniques under MCAR . based on SSE
for the first variable Y1 .
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Y1 N.mis | Lower Upper True MICE EM PM
5 8.6735 | 10.1258 | 9.3151 9.7395 9.7722 9.36
10 8.5599 | 10.5904 | 9.3151 | 10.3643 | 10.2819 | 9.4595
18 8.4089 | 11.3886 | 9.3151 | 10.5842 | 10.2833 | 9.9149
36 7.8078 | 13.2014 | 9.3151 | 11.89947 | 12.2057 | 9.1846
MCAR 55 7.8226 | 11.2932 | 9.3151 | 11.6032 | 12.4745 | 8.9501
73 6.6857 | 10.2436 | 9.3151 9.7966 10.8701 | 8.0189
91 7.2597 | 11.658 | 9.3151 | 14.9306 12.716 8.4517
109 5.2714 | 8.8164 | 9.3151 10.398 9.8927 7.9908
127 | 6.6419 | 11.7138 | 9.3151 | 13.5721 | 17.3383 | 10.1268
5 8.7966 | 10.2696 | 9.3151 9.5222 9.6094 9.2506
10 8.5541 | 10.5833 | 9.3151 9.8496 9.8428 9.3514
18 7.5688 | 10.2508 | 9.3151 9.8847 9.9969 8.9988
36 7.6738 | 12.9748 | 9.3151 | 11.1334 | 12.0294 | 9.4578
MAR 55 7.7929 | 11.2607 | 9.3151 | 11.8589 | 11.5096 | 9.1952
73 9.0928 | 13.7472 | 9.3151 | 14.3103 | 14.8817 | 10.8612
91 6.3904 | 10.262 | 9.3151 | 11.2638 | 10.7526 | 8.5284
109 8.4276 | 14.0008 | 9.3151 | 16.6353 | 17.8809 | 11.3495
127 5.8627 | 10.3734 | 9.3151 17.714 16.8891 | 8.7946
5 8.7843 | 10.2552 | 9.3151 9.738 9.9855 9.3294
10 7.5983 | 9.4007 | 9.3151 8.813 8.9204 8.5477
18 7.7749 | 10.5299 | 9.3151 9.9857 9.9386 9.0218
36 7.8203 | 13.2225 | 9.3151 | 11.4748 | 10.9633 9.335
MNAR 55 6.9131 | 10.2094 | 9.3151 | 10.6906 9.1451 8.5186
73 6.6697 | 10.2062 | 9.3151 | 11.5968 | 12.0234 | 8.3331
91 8.569 | 13.5828 | 9.3151 | 19.7374 | 22.4621 | 10.0657
109 8.4264 | 13.9988 | 9.3151 | 21.8685 | 18.6521 | 11.4969
127 | 6.5209 | 11.2585 | 9.3151 | 17.0477 | 15.7509 | 10.3996

Table 2: Comparison of three imputation techniques under MCAR . based on SSE
for the first variable Y2.
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Y2 Lower Upper True MICE EM PM
12.3243 | 14.388 | 13.3086 | 13.3737 | 13.5326 | 13.2585
12.3014 | 15.2194 | 13.3086 | 14.0902 | 13.8183 | 14.1601
11.7613 | 15.9287 | 13.3086 | 15.5506 | 15.1741 | 13.4568
10.6571 18.019 13.3086 | 15.3601 | 16.5956 | 12.9549
MCAR | 11.4209 | 16.6117 | 13.3086 | 18.3583 | 17.1985 | 13.7546
9.9318 | 15.1793 | 13.3086 | 14.3128 | 14.6456 | 12.0647
11.8683 | 18.4889 | 13.3086 | 18.6878 | 19.1183 | 14.5525
9.2833 15.1176 | 13.3086 | 14.4278 | 18.4212 | 13.7646
10.7228 | 18.4555 | 13.3086 | 21.9708 | 31.6509 | 16.8492
12.5535 | 14.6555 | 13.3086 | 13.709 | 13.5618 | 13.3505
12.2666 | 15.1764 | 13.3086 | 14.2115 | 13.5344 | 14.0913
11.1989 | 15.1671 | 13.3086 | 13.8068 | 13.6584 12.889
11.3107 | 19.1241 | 13.3086 | 16.4912 | 16.9257 | 13.7574
MAR 11.8632 | 17.1424 | 13.3086 | 16.9726 | 16.5702 | 13.4449
13.2819 | 20.033 | 13.3086 | 23.0195 | 21.8117 | 14.7588
10.1789 | 16.1347 | 13.3086 | 14.4793 | 15.6275 | 14.9975
12.2084 | 19.8811 | 13.3086 | 21.1317 | 20.7962 | 15.9713
11.4998 | 19.7928 | 13.3086 | 26.9311 21.291 15.0145
12.3138 | 14.3757 | 13.3086 | 13.5481 | 13.6318 | 13.2058
11.3266 | 14.0134 | 13.3086 | 12.6284 | 12.9213 13.301
11.8877 | 16.1001 | 13.3086 | 14.6709 15.403 13.4561
11.7398 | 19.8495 | 13.3086 | 17.7909 | 18.1661 | 14.0918
MNAR | 10.5839 | 15.5549 | 13.3086 | 17.1281 | 17.0028 | 12.9565
9.9369 15.187 | 13.3086 | 15.0493 | 16.2449 | 12.9912
11.0973 | 17.5623 | 13.3086 | 22.5529 | 22.9957 | 14.0125
11.5177 | 19.1345 | 13.3086 | 28.9392 | 25.3928 | 14.5682
11.0017 | 18.8785 | 13.3086 | 21.473 | 22.0808 | 13.8547

4 Discussion and conclusion

In this work, we proposed an iterative method based on regression for the imputation of missing
values. The proposed method is effective only if : (i) the chosen regression model describe adequately
the data under study, and (ii) the increment of the sequence used to construct the lower and upper
bounds is very small (0.01); otherwise, it will be very likely to obtain bounds that do not include
the true SSE. We used data sets from real life to evaluate the performance of the proposed method
compared to other imputation methods, such as EM and MICE algorithms. Some elements are
removed from these data matrices following the three main missing data mechanisms (MCAR,
MAR and MNAR), and the number of removed data varies from 5 to 127. The removed data
are replaced five times for each variable, and the mean of the SSEs obtained from the individual
analysis of the multiply imputed data is used for the comparison.

Through the results, we find that PM can perform either like or better than EM and MICE in
estimating missing values. With respect to the sum of squares of errors (SSE), it is confirmed that
the three methods work reasonably well in many situations, with slight deviation from the true
SSE. However, this deviation becomes substantially large as the degree of missingness increases and
under the MNAR mechanism. Nonetheless, even in such a situation, PM seems to be better than
EM and MICE. Indeed, we observe that the lower and upper bounds of SSE estimated are close to
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the true SSE under the three missing data mechanisms and that PM always provide SSEs within
these bounds. However, MICE and EM tend to provide SSEs that are considerably different than
the true SSE when the number of missing data increases and under MNAR.
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