On Rank of Semigroup of Order-Preserving Order-Decreasing Partial Contraction Mappings on a Finite Chain
Abstract
Let [n] = {1, 2, . . . , n} be a finite chain, and ODCPn be the semigroup of order-preserving and order-decreasing partial contraction mappings on [n]. In this paper, we study the rank properties of the two-sided ideals of ODCPn. We show that the rank of Kp = {α ∈ ODCPn : |im α| ≤ p}, for 2 ≤ p ≤ n, is and hence, the rank of ODCPn is 2n
References
[2] Ali, B., Jada, M. A., Zubairu, M. M. (2023). Nilpotents in semigroups of order-preserving partial contraction mappings of a finite chain, Submitted.
[3] Al-Kharousi, F., Kehinde, R., Umar, A. (2014). Combinatorial results for certain semigroups of partial isometries of a finite chain. Australasian Journal of Combinatorics, 58(3): 365–375.
[4] Al-Kharousi, F., Kehinde, R., Umar, A. (2016). On the semigroup of partial isometries of a finite chain. Communications in Algebra, 44(2): 639–647.
[5] Ayik, G. Ayik, H. Howie, J. M., Ünlü, Y. (2008). Rank properties of semigroup of singular transformation on a finite set. Communications in Algebra, 36(7):2581–2587.
[6] Bugay, L. (2020). On the ranks of certain ideals of monotone contractions. Hacettepe Journal of Mathematics and Statistics, 49(6): 1988–1996
[7] Bugay, L., Melek, Y., Ayik, H. (2018). The Ranks Of Certain Semigroups of Partial Isometries. Semigroup Forum, 97: 214–222.
[8] Fountain, J. (1979). Adequate semigroups. Proceedings of the Edinburgh Mathematical Society, 22(2): 113–125.
[9] Fountain, J. (1982). Abundant semigroups. Proceedings of the London Mathematical Society, 3(1): 103–129.
[10] Garba, G. U. (1994). Nilpotents in semigroup of partial one-to-one order preserving mappings. Semigroup Forum, 48: 37–49.
[11] Garba, G. U. (1994). Nilpotents in semigroups of partial order-preserving transformations. Proceedings of the Edinburgh Mathematical Society, 37: 361–377.
[12] Garba, G. U. (1994). On the nilpotent ranks of certain semigroups of transformations, Glasgow Mathematical Journal, 36(1): 1–9.
[13] Ganyushkin, O., Mazorchuk, V. (2009). Classical Finite Transformation Semigroups. Springer-Verlag: London Limited.
[14] Gomes, G. M. S., Howie, J. M. (1987). Nilpotents in finite symmetric inverse semigroups, Proceedings of the Edinburgh Mathematical Society, 30: 383-395.
[15] Gomes, G. M. S., Howie, J. M. (1992). On the ranks of certain finite semigroups of transformations. Semigroup Forum, 45: 272–282.
[16] Green, J. A. (1951). On the structure of semigroups. Annals of Mathematics, 54(2):163–172.
[17] Howie, J. M., McFadden, R. B. (1990). Idempotent rank in finite full transformation semigroups, Proceedings of the Royal Society of Edinburgh. Section A: Mathematics, 114: 161-167.
[18] Howie, J. M. (1995). Fundamentals of semigroup theory. London Mathematical Society, New series 12. The Clarendon Press, Oxford University Press.
[19] Higgins, P. M. (1992). Techniques of semigroup theory. Oxford university Press.
[20] Imam, A. T., Usman, L., Idris, l., Ibrahim, S. (2024). Quasi-idempotent in finite semigroup of partial order-preserving transformation. International Journal of Mathematical Sciences and Optimization: Theory and Application, 10(1):53–59.
[21] Levi, I. (2006). Nilpotent Ranks of semigroups of partial transformations. Semigroup Forum, 72: 459–476
[22] Ladraji, A., Umar A. (2004). Combinatorial results for semigroups of order-preserving partial transformations. Journal of Algebra, 278: 342–359.
[23] Peter, I. R., Mogbonju, M. M., Adeniji, A. O., Akinwunmi, S. A., Ibrahim, A. (2024). Some geometric characterization of star-like 3D conjugacy C3ωn∗ on partial one-one transformation semigroups. International Journal of Mathematical Sciences and Optimization: Theory and Application, 10(3):57–66.
[24] Toker K. (2020). Ranks of some subsemigroups of full contraction mappings on a finite chain. Journal of Balikesir University Institute of Science and Technology, 22(2): 403–414.
[25] Umar, A., Al-Kharousi, F. (2012). Studies in semigroup of contraction mappings of a finite chain. The Research Council of Oman Research grant proposal No. ORG/CBS/12/007.
[26] Umar, A. (1993). On the semigroups of partial one-to-one order-decreasing finite transformations, Proceedings of the Royal Society of Edinburgh. Section A: Mathematics, 123(2): 355–363.
[27] Umar A., Zubairu, M. M. (2018). Some Remarks about Semigroups of Partial Contraction Mappings of a Finite Chain. Conference of Proceeddings, North British Semigroups and Applications Network (NBSAN) 27th, University of York.
[28] Umar, A., Zubairu, M. M. (2021). On certain semigroup of contraction mappings of a finite chain. Algebra and Descrete Mathematics, 32(2): 299–320.
This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, adaptation, and reproduction in any medium, provided that the original work is properly cited.