Bivariate BCI Algebras

  • E. Ilojide Department of Mathematics, Federal University of Agriculture, Abeokuta 110101, Nigeria
  • O. O. George Department of Mathematics, University of Lagos, Akoka, Nigeria.
Keywords: Bivariate BCI Algebras, ρ- Variate BCI Algebras, λ-Variate BCI Algebras

Abstract

In this paper, the concept of bivariate BCI algebras is introduced. Properties of ρ- variate, λ- variate and bivariate BCI algebras are investigated.

References

1] Ahn S. S. and So K. S., On ideals and upper sets in BE-algebras, Sci. Math. Jpn. 68(2008), 351–357.
[2] Ahn S. S. and So K. S., On Generalized upper sets in BE-algebras, Bull. Korean Math. Soc. 46(2009), 281–287.
[3] Ebrahimi M. and Izadara A., The Ideal Entropy of BCI- algebras and its Application in Binary Linear Codes, Soft Computing, 2019, 23:39–57.
[4] Francis M. O., Adeniji A. O., Mogbonju M. M., Workdone by m-Topological Transformation Semigroup, International Journal of Mathematical Sciences and Optimization: Theory and Applications, 9(1) (2023), 33–42.
[5] Hu Q. P. and Li X., On BCH algebras, Math. Seminar Notes II, (1983), 313–320.
[6] Ibrahim A., Akinwunmi S. A. and Mogbonju M. M. and Onyeozili I. A., Combinatorial Model of 3- Dimensional Nildempotency Star-like Classes NcWn∗ Partial One To One Semigroups, International Journal of Mathematical Sciences and Optimization: Theory and Applications, 10(1) (2024), 25–33.
[7] Ilojide E., Monics and Krib Maps in Nayo Algebras, Journal of The Nigerian Mathematical Society, 40,(1),(2021), 1–16.
[8] Ilojide E., On Obic Algebras, International Journal of Mathematical Combinatorics, 4(2019), 80–88.
[9] Ilojide E., A Note on Torian Algebras, International Journal of Mathematical Combinatorics, 2(2020), 80–87.
[10] Ilojide E., On Ideals of Torian Algebras, International J. Math. Combin. 2(2020), 101–108.
[11] Ilojide E., On Kreb Algebras, Journal of Algebraic Hyperstructures and Logical Algebras 5(2)(2024), 169–182.
[12] Ilojide E., On Isomorphism Theorems of Torian Algebras, International Journal of Mathematical Combinatorics, 1(2021), 56–61.
[13] Ilojide E., Jaiyeola T. G. and Olatinwo M. O., On Holomorphy of Fenyves BCI-algebras, Journal of the Nigerian Mathematical Society, 38(2),(2019), 139–155.
[14] Ilojide E., Jaiyeola T. G. and Owojori O. O., On the Classification of groupoids and quasigroups generated by Linear bivariate polynomials over the ring Zn, international Journal of Mathematical Combinatorics, 2(2011), 79–97.
[15] Imai Y. and Iseki K., On Axiom System of Propositional Calculi, Proc. Japan Acad., 42(1996), 19–22.
[16] Iseki K., An Algebra Related with Propositional calculus, Proc. Japan Acad., 42(1996), 26–29.
[17] Jaiyeola T. G., Ilojide E., Olatinwo M. O. and Smarandache F. S., On the Classification of BolMoufang Type of Some Varieties of Quasi Neutrosophic Triplet Loops (Fenyves BCI-algebras), Symmetry 10(2018), 427. https://doi.org/10.3390/sym10100427.
[18] Jaiyeola T. G., Ilojide E., Saka A. J. and Ilori K. G., On the Isotopy of Some Varieties of Fenyves Quasi Neutrosophic Triplet Loops(Fenyves BCI-algebras), Neutrosophic Sets and Systems, 31(2020), 200–223. DOI: 105281/zenodo.3640219.
[19] Kim H. S. and Kim Y. H., On BE-algebras, Sci. Math. Jpn. 66(2007),113–116.
[20] Kim H. S., Neggers J. and Ahn S. S., On Pre-Commutative Algebras, Mathematics, 7(2019), 336. doi:10.33390/math7040336.
[21] Neggers J., Sun S. A. and Hee S. K., On Q-algebras, International J. of Math. and Math. Sci. 27(2001), 749–757.
[22] Neggers J. and Kim H. S., On d-algebras, Mathematica Slovaca, 49(1999), 19–26.
[23] Yiseng H., BCI Algebra, Science Press, Beijing (2006), 356pp.
Published
2025-01-15
How to Cite
Ilojide, E., & George, O. O. (2025). Bivariate BCI Algebras. International Journal of Mathematical Sciences and Optimization: Theory and Applications, 11(1), 24-31. Retrieved from http://ijmso.unilag.edu.ng/article/view/2455
Section
Articles