Parastrophes and Cosets of Soft Quasigroups
Abstract
This paper introduced the concept of soft quasigroup, its parastrophes, soft nuclei, left (right) coset, distributive soft quasigroups and normal soft quasigroups. Necessary and sufficient conditions for a soft set over a quasigroup (loop) to be a soft quasigroup (loop) were established. It was proved that a soft set over a group is a soft group if and only if it is a soft loop or either of two of its parastrophes is a soft groupoid. For a finite quasigroup, it was shown that the orders (arithmetic and geometric means) of the soft quasigroup over it and its parastrophes are equal. It was also proved that if a soft quasigroup is distributive, then all its parastrophes are distributive, idempotent and flexible soft quasigroups. For a distributive soft quasigroup,
it was shown that its left and right cosets form families of distributive soft quasigroups that are isomorphic. If in addition, a soft quasigroup is normal, then its left and right cosets forms families of normal soft quasigroups. On another hand, it was found that if a soft quasigroup is a normal and distributive soft quasigroup, then its left (right) quotient is a family of commutative distributive quasigroups which have a 1-1 correspondence with the left (right) coset of the soft quasigroup.
Copyright (c) 2022 Anthony Oyem, Tèmítópé Gbóláhàn Jaiyéolá
This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, adaptation, and reproduction in any medium, provided that the original work is properly cited.