Department of Mathematics, University of Jos, Nigeria.
Abstract
We investigate nonassociative Moufang loops of odd order p1p2 2q4, where p1, p2, q are distinct odd primes satisfying p1 < p2 < q. We show that there exists a normal Hall subloop of order q4 in L, and further prove that subject to some extra conditions the Moufang loop of this order is associative. Notably, the Loops Package gap4r5 does not contain Moufang loops of order p1p2 2q4, indicating a gap in the current knowledge of higher-order Moufang loops. Our results provide new insights into the structure and properties of nonassociative Moufang loops, building upon existing research.
References
[2] F. Leong, The devil and angel of loops, Proc. Amer. Math. Soc., 54, 32–34.
[3] Wright, C. et al. (1965). Nilpotency conditions for finite loops, Illinois J. Math 9: 399– 409.
[4] Bol, G. (1937). Gewebe und gruppen, Math. Ann., 114, 414–431.
[5] Chein, O., and Rajah, (2000). Possible orders of nonassociative Moufang loops. Commentationes Mathematicae Universitatis Carolinae, 41(2):237–244.
[6] Gagola, S. M. III. (2014) On the nuclei of moufang loops with orders coprime to six. Journal of Algebra, 402:280-293.
[7] Ademola, L. A. and Rajah, A (2016). Moufang loops of odd order p3 1p3 2 · · · p3 n. Journal of Progressive Research in Mathematics. 9(3) 1395-1405.
[8] Rajah, A and Ademola, L. A. (2017). Moufang loops of odd order p4q3. Bulletin of the Malaysian Mathematical Sciences Society. DOI:10.1007/s40840-017-0471-2.
[9] Ademola, L. A. (2017). Ph. D. Thesis, Associativity of Moufang Loop of Odd Order, Universiti Sains Malaysia.
[10] Rajah, A and Ademola, L. A. (2018). Moufang loops of odd order p4q13 · · · qn3. Bulletin of the Malaysian Mathematical Sciences Society. DOI:10.1007/s40840-017-0471-2.
[11] Ademola, L. A., Bimwarit R, and Hosea G.G (2019). Determination of Normal Subgroups of Groups of Prime Orders pαqβ, α, β ∈ {1, 2}. Journal of the Nigerian Association of Mathematical Physics. 9(March & May) 1-4.
[12] Ademola L. A. and Zaku G. G. (2021). Investigation On Lesser Prime Order Subloops Of Odd Order Moufang Loops. Asian journal of Pure and applied mathematics. 3(2)30-33
[13] Ademola L. A. and Jelten J. N. (2022). Maximal normal subloops of Moufang loop of odd order pαq4 Asian journal of Pure and applied mathematics. 4(3)42-47.
[14] Zaku G. G. and Ademola L. A. (2023). Existence of An Associator Subloop For Moufang Loops Of Odd Order p2q4 With N ̸= ∅. International Journal of Innovative Mathematics, Statistics & Energy Policies. 11(1), 32-35.
[15] Jaiyeola, T. G. (2009). A study of new concepts in Smarandache quasigroups and loops. ProQuest Information and Learning (ILQ), Ann Arbor, USA, 127pp.
[16] Solarin, A. R. T., Adeniran, J. O., Jaiyeola, T. G., Isere, A. O., and Oyebo, Y. T. (2023). Some Varieties of Loops (Bol-Moufang and Non-Bol-Moufang Types). In M.N. Hounkonnou et al. (Eds.), Algebra without Borders: Classical and Constructive Nonassociative Algebraic Structures (STEAM-H). Springer, Cham.
[17] George, O.O., and Jaiyeola, T. G. (2022). Nuclear identification of some new loop identities of length five. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematic 99(2), 39–58.
[18] Nagy, G. P and Vojtechovsky, P., LOOPS: Computing with quasigroups and loops in GAP, version 1.0.0 computational package for GAP. Loops Package. https://www.math.du.edu/loop.
Copyright (c) 2024 Authors
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, adaptation, and reproduction in any medium, provided that the original work is properly cited.