Existence of (v,k,2) difference sets with k<2030 and k-2 is a natural number
Abstract
(v, k, 2) symmetric designs(or Biplanes) are known to exist for some integer values k < 16. This paper investigates the existence of a class of (v, k, 2) difference sets with <math>2 < <sqrt>k-2</sqrt> < 45<\math> and <math><sqrt>k-2<\sqrt><\math> is an integer using variance technique, representation, group and algebraic number Theories. Our results indicate that most of these parameters do not exist.
References
[2] Y. J. Ionin and M. S. Shrikhande, Combinatorics of Symmetric Designs, New Mathematical Monographs, Cambridge University Press, UK, (2006).
[3] D. R. Hughes, On biplanes and semibiplanes , Combin. Math, Proceedings of Australian Conference of Combinatorial Maths. 686, 55-58, (1978).
[4] T. Beth, D. Jungnickel and H. Lenz, Design theory, Cambridge University Press, (1999).
[5] A. Pott, Finite Geometry and Character Theory , Springer-Verlag Publishers (1995).
[6] L. D. Baumert, Cyclic Difference Sets, volume 182 of Lecture Notes in Mathematis, Springer-Verlag Publishers, (1971).
[7] O. Gjoneski, A. S. Osifodunrin, K. W. Smith Non existence of (176, 50, 14) and (704, 38, 2) difference sets , to appear.
[8] L. E. Kopilovich, Difference sets in non cyclic abelian groups , Cybernetics 25 (2), 153-157, (1996).
[9] A. V. López and M. A. G. Sánchez, On the existence of abelian di?erence sets with 100 < k ≤ 150 , J. Combin. Math. and Combin. Computing 23 , 97-112, (1997).
[10] A. S. Osifodunrin, Do (1276, 51, 2) difference sets exist? , Kragujevac J. Math. Vol. 35, No. 3, 479-492,(2011).
[11] A. S. Osifodunrin, On the existence of (v, k, λ) difference sets with order k < 1250 and k − λ is a square , International Scholarly Research Network, ISRN Algebra, Volume 2012, Article ID 367129, 19 pages, (2012).
[12] A. S. Osifodunrin, On the non-existence of difference sets with perfect square order , British Journal of Mathematics and Computer Science 18 (2): 1-17, 2016. Article no.BJMCS.9173
[13] K. W. Smith and S. M. Borman, Investigations in non abelian difference sets of order 25. Retrieved on June. 20, 2007 from: http://www.cst.cmich.edu/users/smith1kw/
[14] W. Ledermann, Introduction to Group Characters , Cambridge Univ. Press, Cambridge, 1977.
[15] R. Liebler, The inversion formula , J. Combin. Math. and Combin. Computing 13, 143-160, (1993).
[16] J. Dillon, Variations on a scheme of McFarland for noncyclic difference sets , J. Comb. Theory A 40, 9-21, (1985).
[17] B. Schmidt, Cyclotomic Integers and Finite Geometry , Jour. of Ame. Math. Soc., 12, N. 4 , pp.929-952, 1999.
[18] S. L. Ma, Planar functions, relative difference sets and character theory , J. of Algebra , 342-356, (1996).
[19] S. Lang, Algebraic number theory , Addison-Wesley, Reading, MA, 1970. [20] R. Turyn, Character sums and difference set, Pacific J. Math. 54315 , 319-346, (1965).
[21] I. Stewart and D. Tall, Algebraic Number Theory and Fermat's Last Theorem , A. K. Peters Publishers (3rd ed) 2002.
[22] K. W. Smith, Non-Abelian Difference sets J.Comb.Theory A., pp. 144-156, 1993.
[23] The GAP Group, GAP Groups, Algorithms, and Programming, Version 4.7.4 ; 2014, (http://www.gap-system.org) .
This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, adaptation, and reproduction in any medium, provided that the original work is properly cited.